Меню

Значение ударного тока для чего



Ударный ток короткого замыкания

Наибольшего значения полный ток КЗ достигает при наибольших значениях его составляющих. В § 4.3 было установлено, что начальное значение апериодического тока достигает максимума, когда ток предшествующего режима равен нулю (холостой ход), а в момент КЗ периодическая составляющая вынужденного тока проходит через свой максимум. Это условие принимается в качестве расчетного.

Максимальное мгновенное значение полного тока КЗ – iу – называют ударным током. Найдем условия, при которых ударный ток достигает своего наибольшего значения для случая, когда ток предшествующего режима был равен нулю, т. е. Im = 0. В этом случае уравнение для полного тока КЗ принимает вид:

и представляет собой функцию двух независимых переменных: времени t и фазы включения α. Максимум тока наступает при α = 0.

Для цепей с преобладающей индуктивностью φк 90°, поэтому условия возникновения наибольшей апериодической составляющей и условие, при котором достигается максимум мгновенного значения полного тока, очень близки друг другу. Поэтому в практических расчетах максимальное значение полного тока КЗ, которое называют ударным током КЗ iу, обычно находят при наибольшем значении апериодической составляющей, считая, что он наступает приблизительно через полпериода, что при f= 50 Гц составляет около 0,01 с с момента возникновения КЗ.

Рис. 4.6. К определению ударного тока КЗ

Таким образом, выражение для ударного тока КЗ можно записать в следующем виде:

который называют ударным коэффициентом и который показывает превышение ударного тока над амплитудой периодической составляющей. его величина находится в пределах , что соответствует предельным значениям Та, т. е. Та = 0 при Lк = 0 и Та = ∞ при Rк = 0.

Естественно, чем меньше Та, тем быстрее затухает апериодическая составляющая и тем, соответственно, меньше ударный коэффициент. Влияние этой составляющей сказывается лишь в начальной стадии переходного процесса; в сетях и установках высокого напряжения она практически исчезает спустя 0,1…0,3 с, а в установках низкого напряжения она практически совсем незаметна.

Трехфазное КЗ ранее было названо симметричным, но этот термин является строгим только к периодическим составляющим токов в фазах. Апериодические же составляющие токов и, следовательно, полные токи во всех фазах не могут быть одинаковыми.

Дата добавления: 2015-05-19 ; просмотров: 2795 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Определение мгновенного и действующего значений ударного тока КЗ

Ударный ток короткого замыкания

Наибольшего значения полный ток КЗ достигает при наибольших значениях его составляющих. В § 4.3 было установлено, что начальное значение апериодического тока достигает максимума, когда ток предшествующего режима равен нулю (холостой ход), а в момент КЗ периодическая составляющая вынужденного тока проходит через свой максимум. Это условие принимается в качестве расчетного.

Максимальное мгновенное значение полного тока КЗ –

– называют ударным током. Найдем условия, при которых ударный ток достигает своего наибольшего значения для случая, когда ток предшествующего режима был равен нулю, т. е.
Im =
0. В этом случае уравнение для полного тока КЗ принимает вид:

и представляет собой функцию двух независимых переменных: времени t

и фазы включения
α
. Максимум тока наступает при
α =
0.

Для цепей с преобладающей индуктивностью φк ≈

90°, поэтому условия возникновения наибольшей апериодической составляющей и условие, при котором достигается максимум мгновенного значения полного тока, очень близки друг другу. Поэтому в практических расчетах максимальное значение полного тока КЗ, которое называют ударным током КЗ

, обычно находят при наибольшем значении апериодической составляющей, считая, что он наступает приблизительно через полпериода, что при
f=
50 Гц составляет около 0,01 с с момента возникновения КЗ.

Рис. 4.6. К определению ударного тока КЗ

Таким образом, выражение для ударного тока КЗ можно записать в следующем виде:

который называют ударным коэффициентом и который показывает превышение ударного тока над амплитудой периодической составляющей. его величина находится в пределах , что соответствует предельным значениям Та

, т. е.
Та =
0 при
Lк =
0 и
Та= ∞
при
Rк =
0.

Естественно, чем меньше Та

, тем быстрее затухает апериодическая составляющая и тем, соответственно, меньше ударный коэффициент. Влияние этой составляющей сказывается лишь в начальной стадии переходного процесса; в сетях и установках высокого напряжения она практически исчезает спустя 0,1…0,3 с, а в установках низкого напряжения она практически совсем незаметна.

Трехфазное КЗ ранее было названо симметричным, но этот термин является строгим только к периодическим составляющим токов в фазах. Апериодические же составляющие токов и, следовательно, полные токи во всех фазах не могут быть одинаковыми.

Под действующим значением полного тока к.з. понимают среднеквадратичный ток к.з. за период, в центре которого расположен рассматриваемый момент времени. Значение этого тока определяют по выражению

Если в (3.14) значение выразить через его составляющие , и произвести соответствующие преобразования [1], то получим

где — действующее значение периодической слагающей тока к.з.;

действующее значение апериодической слагающей тока к.з. в момент времени . При этом согласно [1], можно записать

Наибольший практический интерес представляет действующее значение тока к.з. в течение первого периода к.з., то есть в том периоде времени, в котором расположен ударный ток к.з. В этом случае действующее значение тока к.з. принято обозначать .

Согласно формуле (3.15) можно записать

где (так как цепь к.з. подключена к источнику неограниченной мощности); .

Тогда или окончательно,

Имея в виду, что может изменяться от 1 до 2, получим, что по выражению (3.17) может находиться в пределах

Определение мгновенного и действующего значений ударного тока КЗ

Проанализировав участие каждого СГ в подпитке точки КЗ, задать режимы их работы

5.5 Определение мгновенного и действующего значений ударного тока КЗ.

Если все источники электрической энергии находятся примерно в одинаковых условиях относительно точки короткого замыкания, то величины мгновенного и действующего значений ударного тока КЗ можно определить по формулам:

где — начальный сверхпереходный ток,

причем — эквивалентная постоянная времени затухания апериодической составляющей тока КЗ,

— результирующее индуктивное сопротивление схемы относительно точки КЗ при отсутствии активных сопротивлений,

— результирующее активное сопротивление схемы относительно точки КЗ при отсутствии реактивных сопротивлений,

ω — круговая частота, равная 314 1/с.

Если точка КЗ находится на шинах генератора или на высокой стороне блочного трансформатора, или на шинах нагрузки, то мгновенное значение ударного тока в месте КЗ следует определять как сумму мгновенных ударных токов от источника, на шинах которого произошло КЗ и от эквивалентного источника, заменяющего всю остальную часть системы.

1. Используя схему замещения и результаты преобразования п.5.1. привести схему замещения к двухлучевому виду:

2. Найти начальные значения периодических составляющих тока КЗ обоих лучей.

3. Составить схему замещения, в которую все элементы вводятся своими активными сопротивлениями. Величины этих сопротивлений находятся по известному индуктивному сопротивлению элемента и отношению , взятому из табл.5.2.

Наименование элемента Отношение
Турбогенераторы до 100 МВт 15-85
Турбогенераторы 100-500 МВт 100-140
Трансформаторы 5-30 МВА 7-17
Трансформаторы 60-500 МВА 20-50
Реакторы до 1000 А 15-70
Реакторы от 1500 А 40-80
ЛЭП 2-8
Обобщенная нагрузка 2,5

4. Свернуть схему замещения к двухлучевому виду и определить активные сопротивления лучей .

5. Определить постоянные времени затухания апериодических составляющих тока КЗ по формуле:

6. Определить ударные коэффициенты .

7. Найти мгновенное значение ударного тока в месте КЗ, как сумму соответствующих токов лучей.

8. Следует иметь ввиду, что действующее значение ударного тока КЗ (Iу) не есть сумма соответствующих токов по ветвям. Этот ток определяется, как среднеквадратичное значение по формуле:

где , — ударный коэффициент i-й ветви,

— действующие значения соответственно периодической и апериодической составляющих тока КЗ i-й ветви.

Пример 5.Для расчётной схемы, приведенной на рис.5.3, рассчитать мгновенное и действующее значение ударного тока трехфазного к.з в точке “К”.

Так как система и генератор находятся примерно в одинаковых условиях относительно точки КЗ, то ударный ток рассчитываем по начальному действующему значению периодической составляющей тока КЗ. из примера 1.

Составляем схему замещения рис.28, в которую все элементы вводим своими активными сопротивлениями в соответствии с таблицей 2. Рассчитываем .

Рассчитываем мгновенное и действующее значения ударного тока:

5.6. Определение значения остаточного напряжения в указанной точке для момента времени t =0.

Разворачивая схему замещения (рис.24),определить последовательно значения токов в ветвях и напряжения в узлах в относительных единицах. Вычислить значение напряжения в заданной точке «М» в именованных единицах по формуле:

Читайте также:  Амперметр щитовой переменного тока прямого включения

где — среднее напряжение ступени, на которой находится точка » М».

Проанализировав участие каждого СГ в подпитке точки КЗ, задать режимы их работы

Информация о работе «Расчёт токов короткого замыкания»

Раздел: Физика Количество знаков с пробелами: 32290 Количество таблиц: 8 Количество изображений: 23

Похожие работы

Релейная защита и расчет токов короткого замыкания

… на постоянном оперативном токе. Рисунок 1 – Схема распределительной сети На рисунке обозначено: ПГТВ – защита от перегруза токами высших гармоник; – температурные указатели, указатели циркуляции масла и воды в системе охлаждения с действием на сигнал. 1. Расчет токов короткого замыкания Величина токов короткого замыкания для ряда защит (дифференциальных, токовых отсечек и т.д.) …

Расчёт токов короткого замыкания, релейной защиты и автоматики для кабельной линии

… . Предотвращение возникновения аварий или их развитие при повреждениях в электрической части энергосистемы может быть обеспечено путем быстрого отключения повреждённого элемента, для этого применяется релейная защита и автоматика. Основным назначением РЗ является автоматическое отключение повреждённого элемента (как правило кз) от остальной, неповреждённой части системы при помощи выключателей. …

Расчет симметричных и несимметричных коротких замыканий в электроэнергетической системе

… схемы замещения нулевой последовательности 8.4 Определение токов и напряжений в месте повреждения К1 8.4.1 Двухфазное короткое замыкание на землю Введение Курсовая работа выполняется по теме «Расчет симметричных и несимметричных коротких замыканий в электроэнергетической системе» В работе рассчитываются токи и напряжения при симметричном и несимметричном коротких замыканиях (КЗ). В …

Вопросы реконструкции линии 10 кВ подстанции «Василево», с заменой масляных выключателей на вакуумные, выбором разъединителей и трансформаторов тока

… BК £ Iтерм2 ×tтерм Выбор разъединителей. Разъединители используют для включения и отключения обесточенных участков электрической цепи под напряжением. Выбор разъединителей производится по тем же параметрам что и выключатели, кроме условия по отключающей способности. [3] В соответствии с перечисленными условиями (1.1 — 1.5) выбираем на стороне 10 кВ разъединитель РЛНД — 10/200 …

Способы определения ударного коэффициента и ударного тока короткого замыкания

Способ расчета ударного тока КЗ зависит от требуемой точности расчета и конфигурации исходной схемы.

При расчете ударного тока КЗ с целью проверки проводников и электрических аппаратов по условиям КЗ допустимо считать, что амплитуда периодической составляющей тока КЗ в момент наступления ударного тока равна амплитуде этой составляющей в начальный момент КЗ.

В практических расчетах ударный ток находят при наибольшей апериодической составляющей. Наибольшее начальное значение апериодической составляющей при холостом ходе в предшествующем режиме и когда вектор напряжения проходит через нуль.

С учетом этих условий выражение для ударного тока КЗ можно записать

где КУД – ударный коэффициент, характеризующий превышение ударного тока над амплитудой периодической составляющей тока КЗ, зависит от Та (рис. 2.26).

Ударный коэффициент рекомендуется определять по формуле:

Ударный коэффициент зависит от постоянной времени затухания апериодической составляющей . При КУД →1, а при КУД →2, т.е. значение ударного коэффициента изменяется в пределах 1

где Та.эк – эквивалентная времени затухания апериодической составляющей тока КЗ рассчитывается по формуле:

где Xрез(R=0) — результирующее индуктивное сопротивление схемы, найденное при отсутствии всех активных сопротивлений (Rрез = 0);

Rрез(Х=0) — результирующее активное сопротивление схемы при отсутствии всех индуктивных сопротивлений (Xрез = 0), найденных относительно точки КЗ.

В тех случаях, когда исходная расчетная схема является многоконтурной, но точка КЗ делит ее на несколько независимых частей, то ударный ток допустимо принимать равным сумме ударных токов от соответствующих частей схемы, т.е.

где IП0i – начальное действующее значение периодической составляющей тока КЗ от i – й части схемы;

КУДi – ударный коэффициент тока КЗ от от i – й части схемы.

В приближенных расчетах эквивалентную постоянную времени не определяют, а принимают усредненные значения ударного коэффициента для ветви с гидрогенераторами – KУД.Г = 1,9; для ветви с турбогенераторами – KУД.Т = 1,8: для ветви с системой – KУД.С =1,4.

Ударный ток КЗ для сложной схемы определяют по формуле

iУД = (IП0.Г ·KУД.Г +IП0.Т ·KУД.Т +IПС ·KУД.С). (2.57)

Рис. 2.26. Зависимость КУД от постоянной времени ТА

(или от отношения ) при Iпt=Iп0

Источник

Ударный ток короткого замыкания

Проверка электронной аппаратуры и всех видов шин может производится разными способами. Например, чтобы выявить степень электродинамической устойчивости, применяется ударный ток короткого замыкания (iуд), значение которого определяется путем расчетов. По своей сути, данная величина является максимальным мгновенным значением полного тока КЗ. Рассчитать указанную характеристику можно на стадии между отсутствием тока в предыдущем режиме и максимальным показателем апериодической компоненты.

  1. Составные части короткого замыкания
  2. Расчеты ударного тока КЗ
  3. Использование ударного коэффициента
  4. Максимальная действующая величина полного тока

Составные части короткого замыкания

Прежде чем рассуждать об ударном токе, необходимо рассмотреть из каких частей вообще состоит полный ток короткого замыкания. Известно, что его основными составляющими являются свободная апериодическая часть и вынужденная периодическая компонента. Своей максимальной отметки ток КЗ достигает при наивысших значениях обеих составных частей.

Ударный ток короткого замыкания

Апериодический ток в самом начале появления становится максимальным в момент нулевого значения тока в предыдущем режиме, представляющем собой холостой ход. Непосредственно при наступлении КЗ, вынужденный ток с периодической составляющей проходит свою максимальную отметку. Данное условие становится показателем, используемым в расчетах. Полный ток КЗ с максимальным мгновенным значением и есть ударный ток короткого замыкания.

На практике этот показатель рассчитывается при максимальной величине апериодической части. С этой целью выбирается режим, предшествующий аварии, называемый холостым ходом. Данной состояние сети считается одним из наиболее сложных по сравнению с индуктивным или активно-индуктивным доаварийным током, при которых показатель апериодической части будет ниже.

Условия, при которых образуется апериодическая составляющая, приведены на рисунке. Они полностью зависят от предыдущего состояния тока до аварийного режима. Красный вектор соответствует доаварийному току, синий – периодическому току КЗ. Вектор зеленого цвета показывает разницу между ними, выдающую величину апериодического тока в начальной стадии.

Расчеты ударного тока КЗ

Предварительные расчеты показывают, что апериодическая компонента примет максимальное первоначальное значение в том случае, когда фазное напряжение в момент включения при коротком замыкании будет равным нулю. В некоторых случаях угол напряжения может превышать нулевую отметку.

В это же время фаза периодической части будет равна 90 градусам, и ток начнет терять свое максимальное амплитудное значение. Следовательно, возникает отставание тока от напряжения как раз на эти 900. Причиной такого состояния выступают активные сопротивления короткозамкнутой цепи с очень малыми значениями.

При достижении фазой напряжения 90 градусов, ток периодической компоненты выйдет из нулевой отметки, что приведет к выполнению закона коммутации. В данном случае апериодического тока не будет, поэтому не возникнет и ударный ток.

На приведенном рисунке хорошо видно возникновение ударного тока короткого замыкания, отмеченного зеленой кривой. Она еще не дошла до точки затухания, а синяя кривая, соответствующая периодическому току, проходит через нее и точку своего амплитудного значения. При этом обе кривые в этот момент принимают общий знак с положительным показателем. Подобная ситуация возникает на второй половине периода от начала замыкания, то есть, примерно через 0,01 с.

Рассчитать ударный ток можно при помощи следующей формулы:

В которой Ку является ударным коэффициентом, а Inmax – амплитудным значением периодического тока короткого замыкания. Изменения Ку происходят в пределах меньше 1 и больше 2, тогда как электромагнитная постоянная времени Та может изменяться от 0 до бесконечности, характеризующая скорость затухания апериодической компоненты. По мере уменьшения Та, ускоряется затухание свободной составляющей, одновременно наступает снижение ударного коэффициента.

В сетях высокого напряжения она полностью исчезает уже через 0,1-0,3 секунды, а при низком напряжении затухание также происходит очень быстро из-за наличия высокого активного сетевого сопротивления.

Использование ударного коэффициента

Ударный коэффициент в режиме короткого замыкания играет важную роль, поэтому его следует рассмотреть более подробно. Этот показатель, применяемый в расчетах, можно выразить короткой формулой: Ку = iy/inm. Здесь iy является ударным током КЗ, а inm представляет собой амплитуду периодической составной части.

Данный коэффициент применяется при расчетах ударного тока. Если в формуле амплитуду inm заменить на действующий ток, получится следующее выражение: Ку = iy√2inm. Следовательно, формула для вычисления ударного тока приобретет следующий вид: iy = Ку√2inm. На практике значение ударного коэффициента КЗ принимается за 1,8 в электроустановках более 1 кВ; величина 1,3 берется при возникновении КЗ за участком кабельной линии большой протяженности.

Читайте также:  Чему равен сдвиг фаз в цепи переменного тока с емкостным сопротивлением

Этот же показатель используется для вторичной стороны понижающего трансформатора с мощностью, не превышающей 1000 кВА и сетей с напряжением до 1 кВ. Для ускорения расчетов существует таблица, содержащая коэффициенты для аварийных ситуаций, встречающихся чаще всего.

Оборудование и установки Постоянная времени Та Ударный коэффициент Ку
Турбогенераторы 0,1-0,3 1,95
Блок, состоящий из генератора и трансформатора 0,04 1,8
Высоковольтная ЛЭП 0,01 1,3
Короткая низковольтная ЛЭП 0,001

Теоретически, при отсутствии в цепи активных сопротивлений и постоянной времени, равной бесконечности, затухание периодической компоненты вообще бы не наступило, и она сохранила бы свое начальное значение на весь период КЗ до момента отключения аварийного участка. При этом, ударный коэффициент достиг бы своего максимума и составил Ку = 2.

Если короткое замыкание наступило в местах, удаленных от источника питания на значительные расстояния, токи, появляющиеся в этой точке, будут небольшими, сравнительно с номинальным током этого источника питания. В процессе КЗ изменения номинала будут практически незаметными, а напряжение на клеммах следует принять за постоянную величину.

Таким образом, периодическая компонента будет оставаться постоянной по своей амплитуде на протяжении всего времени КЗ. Изменения самого тока КЗ будут происходить лишь когда апериодическая составляющая будет постепенно затухать.

Максимальная действующая величина полного тока

Поскольку ударный ток является разновидностью полного тока, его следует рассмотреть подробнее. Действующее значение данного параметра определяется в любой из временных промежутков. Оно выглядит в виде среднеквадратичного значения на протяжении одного периода, с учетом рассматриваемого момента времени. В виде формулы — это выражение представлено следующим образом:

Если же характеристики тока не синусоидальные – его действующее значение выбирается в виде квадратного корня, извлекаемого из суммы квадратов всех составных частей.

Следовательно, ударный ток с действующим значением будет рассчитываться в таком порядке:

На практике, чтобы правильно рассчитать ударный ток короткого замыкания, выстраиваются две замещающие схемы, состоящие из чисто активных и реактивных сопротивлений.

Апериодическая составляющая тока короткого замыкания

Как рассчитать ток короткого замыкания

Ток короткого замыкания однофазных и трехфазных сетей

Мощность короткого замыкания

Что такое ток короткого замыкания

Что такое короткое замыкание (КЗ): в чем причина, виды, защита, определение для чайников

Источник

Ток короткого замыкания и его расчет. Ударный ток короткого замыкания

Однажды одной даме, не очень сведущей в электротехнике, монтер сообщил причину пропадания света в ее квартире. Это оказалось короткое замыкание, и женщина потребовала немедленно его удлинить. Над этой историей можно посмеяться, но лучше все же рассмотреть эту неприятность подробнее. Специалистам-электрикам и без этой статьи известно, что это за явление, чем оно грозит и как рассчитать ток короткого замыкания. Изложенная ниже информация адресована людям, не имеющим технического образования, но, как и все прочие, не застрахованным от неприятностей, связанных с эксплуатацией техники, машин, производственного оборудования и самых обычных бытовых приборов. Каждому человеку важно знать, что такое короткое замыкание, каковы его причины, возможные последствия и методы его предотвращения. Не обойтись в этом описании и без знакомства с азами электротехнической науки. Не знающий их читатель может заскучать и не дочитать статью до конца.

ток короткого замыкания

Популярное изложение закона Ома

Независимо от того, каков характер тока электрической цепи, он возникает только в том случае, если существует разница потенциалов (или напряжение, это то же самое). Природа этого явления может быть объяснена на примере водопада: если есть разность уровней, вода течет в каком-то направлении, а когда нет – она стоит на месте. Даже школьникам известен закон Ома, согласно которому, ток тем больше, чем выше напряжение, и тем меньше, чем выше сопротивление, включенное в нагрузку:

I – величина тока, которую иногда называют «силой тока», хотя это не совсем грамотный перевод с немецкого языка. Измеряется в Амперах (А).

На самом деле силой (то есть причиной ускорения) ток сам по себе не обладает, что как раз и проявляется во время короткого замыкания. Этот термин уже стал привычным и употребляется часто, хотя преподаватели некоторых вузов, услышав из уст студента слова «сила тока» тут же ставят «неуд». «А как же огонь и дым, идущие от проводки во время короткого замыкания? – спросит настырный оппонент, — Это ли не сила?» Ответ на это замечание есть. Дело в том, что идеальных проводников не существует, и нагрев их обусловлен именно этим фактом. Если предположить, что R=0, то и тепло бы не выделялось, как ясно из закона Джоуля-Ленца, приведенного ниже.

U – та самая разница потенциалов, называемая также напряжением. Измеряется в Вольтах (у нас В, за границей V). Его также называют электродвижущей силой (ЭДС).

R – электрическое сопротивление, то есть способность материала препятствовать прохождению тока. У диэлектриков (изоляторов) оно большое, хотя и не бесконечное, у проводников – малое. Измеряется в Омах, но оценивается в качестве удельной величины. Само собой, что чем толще провод, тем он лучше проводит ток, а чем он длиннее, тем хуже. Поэтому удельное сопротивление измеряется в Омах, умноженных на квадратный миллиметр и деленных на метр. Кроме этого, на его величину влияет температура, чем она выше, тем больше сопротивление. Например, золотой проводник длиной в 1 метр и сечением в 1 кв. мм при 20 градусах Цельсия обладает общим сопротивлением 0,024 Ома.

Есть еще формула закона Ома для полной цепи, в нее введено внутреннее (собственное) сопротивление источника напряжения (ЭДС).

ударный ток короткого замыкания

Две простых, но важных формулы

Понять причину, по которой возникает ток короткого замыкания, невозможно без усвоения еще одной нехитрой формулы. Мощность, потребляемая нагрузкой, равна (без учета реактивных составляющих, но о них позже) произведению тока на напряжение.

P – мощность, Ватт или Вольт-Ампер;

U – напряжение, Вольт;

Мощность бесконечной не бывает, она всегда чем-то ограничена, поэтому при ее фиксированной величине при увеличении тока напряжение уменьшается. Зависимость этих двух параметров рабочей цепи, выраженная графически, называется вольт-амперной характеристикой.

И еще одна формула, необходимая для того, чтобы произвести расчет токов короткого замыкания, это закон Джоуля-Ленца. Она дает представление о том, сколько тепла выделяется при сопротивлении нагрузке, и очень проста. Проводник будет греться с интенсивностью, пропорциональной величинам напряжения и квадрата тока. И, конечно же, формула не обходится без времени, чем дольше раскаляется сопротивление, тем больше оно выделит тепла.

формула тока короткого замыкания

Что происходит в цепи при коротком замыкании

Итак, читатель может считать, что освоил все главные физические закономерности для того, чтобы разобраться в том, какой может быть величина (ладно, пусть будет сила) тока короткого замыкания. Но сначала следует определиться с вопросом о том, что, собственно, это такое. КЗ (короткое замыкание) — это ситуация, при которой сопротивление нагрузки близко к нулю. Смотрим на формулу закона Ома. Если рассматривать его вариант для участка цепи, несложно понять, что ток будет стремиться к бесконечности. В полном варианте он будет ограничен сопротивлением источника ЭДС. В любом случае ток короткого замыкания очень велик, а по закону Джоуля-Ленца, чем он больше, тем сильнее греется проводник, по которому он идет. Причем зависимость не прямая, а квадратичная, то есть, если I увеличится стократно, то тепла выделится в десять тысяч раз больше. В этом и состоит опасность явления, приводящего порой к пожарам.

Провода накаляются докрасна (или добела), они передают эту энергию стенам, потолкам и другим предметам, которых касаются, и поджигают их. Если фаза в каком-то приборе касается нулевого проводника, возникает ток короткого замыкания источника, замкнутого на самого себя. Горючее основание электропроводки – страшный сон инспекторов пожарной охраны и причина многих штрафов, налагаемых на безответственных собственников зданий и помещений. И всему виной, конечно же, не законы Джоуля-Ленца и Ома, а пересохшая от старости изоляция, неаккуратно или безграмотно произведенный монтаж, повреждения механического характера или перегрузка проводки.

Однако и ток короткого замыкания, каким бы он ни был большим, также не бесконечен. На размеры бед, которые он может натворить, влияет продолжительность нагрева и параметры схемы электроснабжения.

Цепи переменного тока

Рассмотренные выше ситуации имели общий характер или касались цепей постоянного тока. В большинстве случаев электроснабжение и жилых, и промышленных объектов производится от сети переменного напряжения 220 или 380 Вольт. Неприятности с проводкой, рассчитанной на постоянный ток, чаще всего случаются в автомобилях.

Читайте также:  Косметика для гальванического тока

Между этими двумя основными типами электропитания есть разница, и существенная. Дело в том, что прохождению переменного тока препятствуют дополнительные составляющие сопротивления, называемые реактивными и обусловленные волновой природой возникающих в них явлений. На переменный ток реагируют индуктивности и емкости. Ток короткого замыкания трансформатора ограничивается не только активным (или омическим, то есть таким, которое можно измерить карманным приборчиком-тестером) сопротивлением, но и его индуктивной составляющей. Второй тип нагрузки – емкостный. Относительно вектора активного тока векторы реактивных составляющих отклонены. Индуктивный ток отстает, а емкостный опережает его на 90 градусов.

Примером разницы поведения нагрузки, обладающей реактивной составляющей, может служить обычный динамик. Его некоторые любители громкой музыки перегружают до тех пор, пока диффузор магнитное поле не выбивает вперед. Катушка слетает с сердечника и тут же сгорает, потому что индуктивная составляющая ее напряжения уменьшается.

Виды КЗ

Ток короткого замыкания может возникать в разных цепях, подключенных к различным источникам постоянного или переменного тока. Проще всего дело обстоит с обычным плюсом, который вдруг соединился с минусом, минуя полезную нагрузку.

А вот с переменным током вариантов больше. Однофазный ток короткого замыкания возникает при соединении фазы с нейтралью или ее заземлении. В трехфазной сети может возникнуть нежелательный контакт между двумя фазами. Напряжение в 380 или более (при передаче энергии на большие расстояния по ЛЭП) вольт также может вызвать неприятные последствия, в том числе и дуговую вспышку в момент коммутации. Замкнуть может и все три (или четыре, вместе с нейтралью) провода одновременно, и ток трехфазного короткого замыкания будет течь по ним до тех пор, пока не сработает защитная автоматика.

Но и это еще не все. В роторах и статорах электрических машин (двигателей и генераторов) и трансформаторах порой случается такое неприятное явление, как межвитковое замыкание, при котором соседние петли провода образуют своеобразное кольцо. Этот замкнутый контур обладает крайне низким сопротивлением в сети переменного тока. Сила тока короткого замыкания в витках растет, это становится причиной нагрева всей машины. Собственно, если такая беда произошла, не следует ждать, пока оплавится вся изоляция и электромотор задымится. Обмотки машины нужно перематывать, для этого необходимо специальное оборудование. Это же касается и тех случаев, когда из-за «межвиткового» возник ток короткого замыкания трансформатора. Чем меньше обгорит изоляция, тем проще и дешевле будет перемотка.

Расчет величины тока при коротком замыкании

Каким бы ни было катастрофичным то или иное явление, для инженерной и прикладной науки важна его количественная оценка. Формула тока короткого замыкания очень похожа на закон Ома, просто к ней требуются некоторые пояснения. Итак:

I к.з.=Uph / (Zn + Zt),

I к.з. — величина тока короткого замыкания, А;

Uph – фазное напряжение, В;

Zn — полное (включая реактивную составляющую) сопротивление короткозамкнутой петли;

Zt – полное (включая реактивную составляющую) сопротивление трансформатора питания (силового), Ом.

Полные сопротивления определяются как гипотенуза прямоугольного треугольника, катеты которого представляют собой величины активного и реактивного (индуктивного) сопротивления. Это очень просто, нужно пользоваться теоремой Пифагора.

Несколько чаще, чем формула тока короткого замыкания, на практике используются экспериментально выведенные кривые. Они представляют собой зависимости величины I к.з. от длины проводника, сечения провода и мощности силового трансформатора. Графики представляют собой совокупность нисходящих по экспоненте линий, из которых остается лишь выбрать подходящую. Метод дает приблизительные результаты, но его точность вполне отвечает практическим потребностям инженеров по энергоснабжению.

Как проходит процесс

Кажется, что все происходит мгновенно. Что-то загудело, свет померк и тут же погас. На самом деле, как любое физическое явление, процесс можно мысленно растянуть, замедлить, проанализировать и разбить на фазы. До наступления аварийного момента цепь характеризуется установившимся значением тока, находящимся в пределах номинального режима. Внезапно полное сопротивление резко уменьшается до величины, близкой к нулю. Индуктивные составляющие (электродвигатели, дроссели и трансформаторы) нагрузки при этом как бы замедляют процесс роста тока. Таким образом, в первые микросекунды (до 0,01 сек) сила тока короткого замыкания источника напряжения остается практически неизменной и даже несколько снижается за счет начала переходного процесса. ЭДС его при этом постепенно достигает нулевого значения, затем проходит через него и устанавливается в каком-то стабилизированном значении, обеспечивающем протекание большого I к.з. Сам ток в момент переходного процесса представляет собой сумму из периодической и апериодической составляющих. Форма графика процесса анализируется, в результате чего можно определить постоянную величину времени, зависящую от угла наклона касательной к кривой разгона в точке ее перегиба (первой производной) и времени запаздывания, определяемого величиной реактивной (индуктивной) составляющей суммарного сопротивления.

ток короткого замыкания трансформатора

Ударный ток КЗ

В технической литературе часто встречается термин «ударный ток короткого замыкания». Не следует пугаться этого понятия, оно вовсе не такое страшное и к поражению электричеством прямого отношения не имеет. Понятие это означает максимальное значение I к.з. в цепи переменного тока, достигающее своей величины обычно через полпериода после того, как возникла аварийная ситуация. При частоте 50 Гц период составляет 0,2 секунды, а его половина – соответственно 0,1 сек. В этот момент взаимодействие проводников, расположенных вблизи друг относительно друга, достигает наибольшей интенсивности. Ударный ток короткого замыкания определяется по формуле, которую в этой статье, предназначенной не для специалистов и даже не для студентов, приводить не имеет смысла. Она доступна в специальной литературе и учебниках. Само по себе это математическое выражение не представляет особой сложности, но требует довольно объемных комментариев, углубляющих читателя в теорию электроцепей.

защита от токов короткого замыкания

Полезное КЗ

Казалось бы, очевидный факт состоит в том, что короткое замыкание – явление крайне скверное, неприятное и нежелательное. Оно может привести в лучшем случае к обесточиванию объекта, отключению аварийной защитной аппаратуры, а в худшем – к выгоранию проводки и даже пожару. Следовательно, все силы нужно сосредоточить на том, чтобы избежать этой напасти. Однако расчет токов короткого замыкания имеет вполне реальный и практический смысл. Изобретено немало технических средств, работающих в режиме высоких токовых значений. Примером может служить обычный сварочный аппарат, особенно дуговой, замыкающий в момент эксплуатации практически накоротко электрод с заземлением. Другой вопрос состоит в том, что режимы эти носят кратковременный характер, а мощность трансформатора позволяет выдерживать эти перегрузки. При сварке в точке касания окончания электрода проходят огромные токи (они измеряются в десятках ампер), в результате чего выделяется достаточно тепла для местного расплавления металла и создания прочного шва.

расчет токов короткого замыкания

Методы защиты

В первые же годы бурного развития электротехники, когда человечество еще отважно экспериментировало, внедряя гальванические приборы, изобретало различные виды генераторов, двигателей и освещения, возникла проблема защиты этих устройств от перегрузок и токов короткого замыкания. Самое простое ее решение состояло в последовательной с нагрузкой установке плавких элементов, которые разрушались под воздействием резистивного тепла, в случае если ток превышал установленное значение. Такие предохранители служат людям и сегодня, их главные достоинства состоят в простоте, надежности и дешевизне. Но есть у них и недостатки. Сама простота «пробки» (так назвали держатели плавких ставок за их специфическую форму) провоцирует пользователей после ее перегорания не мудрствовать лукаво, а заменять вышедшие из строя элементы первыми попавшимися под руку проволочками, скрепками, а то и гвоздями. Стоит ли упоминать о том, что такая защита от токов короткого замыкания не выполняет своей благородной функции?

сила тока короткого замыкания

На промышленных предприятиях для обесточивания перегруженных цепей автоматические выключатели начали использовать раньше, чем в квартирных щитках, но в последние десятилетия «пробки» были в основном заменены ими. «Автоматы» намного удобнее, их можно не менять, а включить, устранив причину КЗ и дождавшись, когда тепловые элементы остынут. Контакты у них иногда подгорают, в этом случае их лучше заменить и не пытаться почистить или починить. Более сложные дифференциальные автоматы при высокой стоимости не служат дольше обычных, но функционально их нагрузка шире, они отключают напряжение в случае минимальной утечки тока «на сторону», например при поражении человека током.

сила тока короткого замыкания источника

В обыденной же жизни экспериментировать с коротким замыканием не рекомендуется.

Источник