Меню

Зависимость тока от напряжения в генераторе



Автомобильный генератор и его особенности

Автомобильный генератор и его особенности В рамках данной статьи поговорим об особенностях принципиального устройства автомобильных генераторов. Для владельцев автомобилей, разбирающихся в предмете, данная статья не будет интересна. Но для тех, кому автомобильные генераторы интересны в прикладном плане, эта информация может оказаться полезной.

В современных автомобилях в качестве генераторов применяются синхронные трёхфазные электрические машины переменного тока, у которых в выпрямителе применяется схема Ларионова.

Чтобы генератор после пуска двигателя отдавал ток в нагрузку, необходимо обеспечить питание обмотке возбуждения. Это происходит при повороте ключа замка зажигания в рабочее положение.

Ток в обмотке возбуждения управляется стабилизатором напряжения, который может быть выполнен в виде отдельного узла или встроен в щёточный узел генератора. В подавляющем большинстве современных генераторов стабилизатор напряжения (СН) питается от отдельной секции выпрямителя.

Устройство автомобильного генератора

Среди прочих генераторов переменного тока, генератор автомобильный выделяется несколькими особенностями. Прежде всего, автомобильный генератор хотя и выдает постоянный ток, на деле он является генератором тока переменного, который затем выпрямляется диодным мостом и превращается в постоянный ток.

Такое решение весьма популярно, тот же генератор переменного тока из асинхронного двигателя можно превратить в генератор постоянного тока, достаточно лишь добавить диодный выпрямитель.

Генераторы с выпрямлением переменного тока называются вентильными генераторами постоянного тока. К таким генераторам и относится автомобильный генератор.

Выходное напряжение автомобильного генератора постоянно

Одна из отличительных черт автомобильного генератора — напряжение на его выходных клеммах поддерживается в узком диапазоне при помощи специального стабилизатора, называемого регулятором напряжения. Но и это не является чем-то исключительным для электрических машин.

Стабилизаторы напряжения можно встретить в комплектации многих источников бесперебойного питания, в том числе среди тех, которые берут энергию для своих аккумуляторов от механических генераторов тех же домашних ГЭС или от солнечных батарей.

Главная же отличительная черта именно автомобильного генератора — то что он получает механическую энергию через ремень от коленвала двигателя внутреннего сгорания, у которого частота вращения совсем не постоянна, зависит она от режима работы транспортного средства в текущий момент, и никак не связана с нуждами потребителей постоянного тока.

Вот и получается, что задача генератора и его электроники — суметь заряжать автомобильный аккумулятор и питать потребители стабилизированным напряжением, независимо от того, каковы текущие обороты якоря — напряжение обязано оставаться в узком коридоре в районе 14 вольт.

Схема проверочного стенда

Если напряжение по какой-то причине выйдет за пределы диапазона стабилизации, зарядный ток аккумулятора может стать чрезвычайно высоким, и электролит попросту выкипит.

Такое явление не является чем-то невиданным, многие автолюбители сталкивались с ним, когда регулятор напряжения на генераторе выходил вдруг из строя — электролит в аккумуляторе в таком случае быстро выкипает.

Если же напряжение с генератора окажется слишком низким, то аккумулятор преждевременно разрядится. С данной проблемой также сталкивались многие автомобилисты.

Итак, стабильное выходное напряжение — обязательное условие правильной работы автомобильного генератора. Но этого достичь не так уж и просто. Диапазон варьирования частоты вращения ротора генератора в автомобиле довольно широк. На холостых оборотах это порядка 800 — 1200 оборотов в минуту, а в момент хорошего разгона — до 5000 и даже до 6000 оборотов в минуту, в зависимости от того, что это за автомобиль.

Токоскоростная характеристика автомобильного генератора

Таким образом, поскольку напряжение автомобильного генератора поддерживается почти постоянным благодаря регулятору напряжения, он имеет собственную токоскоростную характеристику (ТСХ), ведь при разных скоростях вращения ротора, ток нагрузки получается разным. Напряжение постоянное, но чем выше обороты — тем выше ток, и чем ниже обороты — тем ток с силовых клемм генератора меньше.

Примечательно кстати то, что автомобильный генератор имеет предел по току, и поэтому обладает свойством самоограничения. Это значит, что когда ток достигнет определенной предельной величины, как бы ни повышались обороты дальше, ток нарастать уже больше не будет, просто не сможет.

Токоскоростаня характеристика (ТСХ) автомобильного генератора снимается по методике, принятой в качестве международного стандарта. Она (характеристика) снимается в процессе испытания работы генератора на стенде в паре с полностью заряженным аккумулятором такой номинальной емкости, которая в ампер-часах составляет половину (50%) номинального тока генератора в амперах. На характеристике находят характерные важные точки: n0, nrg, nн, nmax.

Начальная частота вращения ротора n0 – это теоретическая частота вращения ротора без нагрузки. Так как характеристику начинают снимать начиная с тока в 2 ампера, то эту точку находят путем экстраполяции характеристики до пересечения с горизонтальной осью оборотов.

Минимальную рабочую частоту генератора nrg принимают соответствующей оборотам коленвала на холостом ходу. Это примерно от 1500 до 1800 оборотов в минуту для ротора генератора. Ток при данной частоте, как правило, составляет от 40 до 50% от номинала для данного генератора. Этого тока должно хватить для питания минимального количество жизненно важных потребителей в автомобиле.

Номинальные обороты ротора генератора nн — это как раз та частота, при которой генерируется номинальный ток Iн, он не должен быть меньше номинала по паспорту.

Максимальные обороты ротора генератора nmax – это та частота вращения ротора, при которой генератором отдается максимальный ток, величина которого не сильно отличается от номинала испытываемого генератора.

Для генераторов отечественного производства раньше было принято указывать номинальный ток при 5000 оборотах в минуту. Указывалась и расчетная частота nр для расчетного тока генератора Iр, равного двум третьим от номинального тока. Этот расчетный режим соответствовал такому режиму работы генератора, когда его узлы не сильно нагревались. Все характеристики снимались при напряжении 14 или 13 вольт.

Самовозбуждение автомобильного генератора и КПД

Автомобильный генератор обязан самовозбуждаться на частоте вращения его ротора ниже частоты при оборотах коленвала на холостом ходу. Проверка проводится на стенде, где самовозбуждение должно произойти при подключении генератора к аккумулятору с контрольной лампой.

Возможности автомобильного генератора с энергетической точки зрения характеризуются величиной его КПД. Чем больше КПД — тем меньшая мощность отбирается от двигателя внутреннего сгорания для получения той же полезной отдачи в форме электрической мощности.

КПД генератора зависит главным образом от конструктивных особенностей конкретного изделия: какова толщина пластин в статоре и толщина набора, насколько качественно пластины друг от друга изолированы (насколько малы токи Фуко), каково сопротивление обмоток статора и ротора, насколько широки контактные кольца ротора, каково качество щеток и подшипников? И т. д.

Но одно сказать можно точно — чем выше номинальная мощность генератора — тем выше и КПД. Между тем, типичный КПД автомобильных генераторов, да и вообще вентильных генераторов, не превышает 60%.

Главный показатель возможностей генератора — это его токоскоростная характеристика, она показывает наглядно, чего можно ожидать от того или иного генератора, на что можно рассчитывать. По характерным точкам составляют таблицу для генератора.

Для примера приведем таблицу характеристик генераторов отечественного производства:

Диапазон выходного напряжения на разных оборотах и в зависимости от температуры и нагрузки, отражает возможности регулятора напряжения автомобильного генератора.

Источник

Генератор постоянного тока: устройство, принцип работы, классификация

На заре электрификации генератор постоянного тока оставался безальтернативным источником электрической энергии. Довольно быстро эти альтернаторы были вытеснены более совершенными и надёжными трехфазными генераторами переменного тока. В некоторых отраслях постоянный ток продолжал быть востребованным, поэтому устройства для его генерации совершенствовались и развивались.

Даже в наше время, когда изобретены мощные выпрямительные устройства, актуальность генераторов постоянного электротока не потерялась. Например, они используются для питания силовых линий на городском электротранспорте, используемых трамваями и троллейбусами. Такие генераторы по-прежнему используют в технике электросвязи в качестве источников постоянного электротока в низковольтных цепях.

Устройство и принцип работы

В основе действия генератора лежит принцип, вытекающий из закона электромагнитной индукции. Если между полюсами постоянного магнита поместить замкнутый контур, то при вращении он будет пересекать магнитный поток (см. рис. 1). По закону электромагнитной индукции в момент пересечения индуцируется ЭДС. Электродвижущая сила возрастает по мере приближения проводника к полюсу магнита. Если к коллектору (два жёлтых полукольца на рисунке) подсоединить нагрузку R, то через образованную электрическую цепь потечёт ток.

Принцип действия генератора постоянного тока

Рис. 1. Принцип действия генератора постоянного тока

По мере выхода витков рамки из зоны действия магнитного потока ЭДС ослабевает и приобретает нулевое значение в тот момент, когда рамка расположится горизонтально. Продолжая вращение контура, его противоположные стороны меняют магнитную полярность: часть рамки, которая находилась под северным полюсом, занимает положение над южным магнитным полюсом.

Величины ЭДС в каждой активной обмотке контура определяются по формуле: e1 = Blvsinw t; e2 = -Blvsinw t; , где B магнитная индукция, l – длина стороны рамки, v – линейная скорость вращения контура, t время, w t – угол, под которым рамка пересекает магнитный поток.

Читайте также:  Практические методы расчета токов короткого замыкания

При смене полюсов меняется направление тока. Но благодаря тому, что коллектор поворачивается синхронно с рамкой, ток на нагрузке всегда направлен в одну сторону. То есть рассматриваемая модель обеспечивает выработку постоянного электричества. Результирующая ЭДС имеет вид: e = 2Blvsinw t, а это значит, что изменение она подчиняется синусоидальному закону.

Строго говоря, данная конструкция обеспечивает только полярность неподвижных щеток, но не устраняет пульсации ЭДС. Поэтому график сгенерированного тока имеет вид, как показано на рис.2.

График тока, выработанного примитивным генератором

Рисунок 2. График тока, выработанного примитивным генератором

Такой ток, за исключением редких случаев, не пригоден для использования. Приходится сглаживать пульсации до приемлемого уровня. Для этого увеличивают количество полюсов постоянных магнитов, а вместо простой рамки используют более сложную конструкцию – якорь, с большим числом обмоток и соответствующим количеством коллекторных пластин (см. рис. 3). Кроме того, обмотки соединяются разными способами, о чём речь пойдёт ниже.

Ротор генератора

Рис. 3. Ротор генератора

Якорь изготавливается из листовой стали. На сердечниках якоря имеются пазы, в которые укладываются несколько витков провода, образующего рабочую обмотку ротора. Проводники в пазах соединены последовательно и образуют катушки (секции), которые в свою очередь через пластины коллектора создают замкнутую цепь.

С точки зрения физики процесса генерации не имеет значения, какие детали вращаются – обмотки контура или сам магнит. Поэтому на практике якоря для маломощных генераторов делают из постоянных магнитов, а полученный переменный ток выпрямляют диодными мостами и другими схемами.

И напоследок: если на коллектор подать постоянное напряжение, то генераторы постоянного тока могут работать в режиме синхронных двигателей.

Конструкция двигателя (он же генератор) понятна из рисунка 4. Неподвижный статор состоит из двух сердечников полюсов, состоящих из ферримагнитных пластин, и обмоток возбуждения, соединённых последовательно. Щётки расположены по одной линии друг против друга. Для охлаждения обмоток используется вентилятор.

Классификация

Различают два вида генераторов постоянного тока:

  • с независимым возбуждением обмоток;
  • с самовозбуждением.

Для самовозбуждения генераторов используют электричество, вырабатываемое самим устройством. По принципу соединения обмоток якоря самовозбуждающиеся альтернаторы с делятся на типы:

  • устройства с параллельным возбуждением;
  • альтернаторы с последовательным возбуждением;
  • устройства смешанного типа (компудные генераторы).

Рассмотрим более подробно особенности каждого типа соединения якорных обмоток.

С параллельным возбуждением

Для обеспечения нормальной работы электроприборов, требуется наличие стабильного напряжения на зажимах генераторов, не зависящее от изменения общей нагрузки. Задача решается путём регулировки параметров возбуждения. В альтернаторах с параллельным возбуждением выводы катушки подключены через регулировочный реостат параллельно якорной обмотке.

Реостаты возбуждения могут замыкать обмотку «на себя». Если этого не сделать, то при разрыве цепи возбуждения, в обмотке резко увеличится ЭДС самоиндукции, которая может пробить изоляцию. В состоянии, соответствующем короткому замыканию, энергия рассеивается в виде тепла, предотвращая разрушение генератора.

Электрические машины с параллельным возбуждением не нуждаются во внешнем источнике питания. Благодаря наличию остаточного магнетизма всегда присутствующего в сердечнике электромагнита происходит самовозбуждение параллельных обмоток. Для увеличения остаточного магнетизма в катушках возбуждения сердечники электромагнитов делают из литой стали.

Процесс самовозбуждения продолжается до момента, пока сила тока не достигнет своей предельной величины, а ЭДС не выйдет на номинальные показатели при оптимальных оборотах вращения якоря.

Достоинство: на генераторы с параллельным возбуждением слабо влияют токи при КЗ.

С независимым возбуждением

В качестве источника питания для обмоток возбуждения часто используют аккумуляторы или другие внешние устройства. В моделях маломощных машин используют постоянные магниты, которые обеспечивают наличие основного магнитного потока.

На валу мощных генераторов расположен генератор-возбудитель, вырабатывающий постоянный ток для возбуждения основных обмоток якоря. Для возбуждения достаточно 1 – 3% номинального тока якоря и не зависит от него. Изменение ЭДС осуществляется регулировочным реостатом.

Преимущество независимого возбуждения состоит в том, что на возбуждающий ток никак не влияет напряжение на зажимах. А это обеспечивает хорошие внешние характеристики альтернатора.

С последовательным возбуждением

Последовательные обмотки вырабатывают ток, равен току генератора. Поскольку на холостом ходе нагрузка равна нулю, то и возбуждение нулевое. Это значит, что характеристику холостого хода невозможно снять, то есть регулировочные характеристики отсутствуют.

В генераторах с последовательным возбуждением практически отсутствует ток, при вращении ротора на холостых оборотах. Для запуска процесса возбуждения необходимо к зажимам генератора подключить внешнюю нагрузку. Такая выраженная зависимость напряжения от нагрузки является недостатком последовательных обмоток. Такие устройства можно использовать только для питания электроприборов с постоянной нагрузкой.

Со смешанным возбуждением

Полезные характеристики сочетают в себе конструкции генераторов со смешанным возбуждением. Их особенности: устройства имеют две катушки – основную, подключённую параллельно обмоткам якоря и вспомогательную, которая подключена последовательно. В цепь параллельной обмотки включён реостат, используемый для регулировки тока возбуждения.

Процесс самовозбуждения альтернатора со смешанным возбуждением аналогичен тому, который имеет генератор с параллельными обмотками (из-за отсутствия начального тока последовательная обмотка в самовозбуждении не участвует). Характеристика холостого хода такая же, как у альтернатора с параллельной обмоткой. Это позволяет регулировать напряжения на зажимах генератора.

Смешанное возбуждение сглаживает пульсацию напряжения при номинальной нагрузке. В этом состоит главное преимущество таких альтернаторов перед прочими типами генераторов. Недостатком является сложность конструкции, что ведёт к удорожанию этих устройств. Не терпят такие генераторы и коротких замыканий.

Технические характеристики генератора постоянного тока

Работу генератора характеризуют зависимости между основными величинами, которые называются его характеристиками. К основным характеристикам можно отнести:

  • зависимости между величинами при работе на холостом ходе;
  • характеристики внешних параметров;
  • регулировочные величины.

Некоторые регулировочные характеристики и зависимости холостого хода мы раскрыли частично в разделе «Классификация». Остановимся кратко на внешних характеристиках, которые соответствуют работе генератора в номинальном режиме. Внешняя характеристика очень важна, так как она показывает зависимость напряжения от нагрузки, и снимается при стабильной скорости оборотов якоря.

Внешняя характеристика генератора постоянного тока с независимым возбуждением выглядит следующим образом: это кривая, зависимости напряжения от нагрузки (см. рис. 5). Как видно на графике падение напряжения наблюдается, но оно не сильно зависит от тока нагрузки (при сохранении скорости оборотов двигателя, вращающего якорь).

Внешняя характеристика ГПТ

Рис. 5. Внешняя характеристика ГПТ

В генераторах с параллельным возбуждением зависимость напряжения от нагрузки сильнее выражена (см. рис. 6). Это связано с падением тока возбуждения в обмотках. Чем выше нагрузочный ток, тем стремительнее будет падать напряжение на зажимах генератора. В частности, при постепенном падении сопротивления до уровня КЗ, напряжение падёт до нуля. Но резкое замыкание в цепи вызывает обратную реакцию генератора и может быть губительным для электрической машины этого типа.

Характеристика ГПТ с параллельным возбуждением

Рис. 6. Характеристика ГПТ с параллельным возбуждением

Увеличение тока нагрузки при последовательном возбуждении ведёт к росту ЭДС. (см. верхнюю кривую на рис. 7). Однако напряжение (нижняя кривая) отстаёт от ЭДС, поскольку часть энергии расходуется на электрические потери от присутствующих вихревых токов.

Внешняя характеристика генератора с последовательным возбуждением

Рис. 7. Внешняя характеристика генератора с последовательным возбуждением

Обратите внимание на то, что при достижении своего максимума напряжение, с увеличением нагрузки, начинает резко падать, хотя кривая ЭДС продолжает стремиться вверх. Такое поведение является недостатком, что ограничивает применение альтернатора этого типа.

В генераторах со смешанным возбуждением предусмотрены встречные включения обеих катушек – последовательной и параллельной. Результирующая намагничивающая сила при согласном включении равна векторной сумме намагничивающих сил этих обмоток, а при встречном – разнице этих сил.

В процессе плавного увеличении нагрузки от момента холостого хода до номинального уровня, напряжение на зажимах будет практически постоянным (кривая 2 на рис. 8). Увеличение напряжения наблюдается в том случае, если количество проводников последовательной обмотки будет превышать количество витков соответствующее номинальному возбуждению якоря (кривая 1).

Изменение напряжения для случая с меньшим числом витков в последовательной обмотке, изображает кривая 3. Встречное включение обмоток иллюстрирует кривая 4.

Внешняя характеристика ГПТ со смешанным возбуждением

Рис. 8. Внешняя характеристика ГПТ со смешанным возбуждением

Генераторы со встречным включением используют тогда, когда необходимо ограничить токи КЗ, например, при подключении сварочных аппаратов.

В нормально возбуждённых устройствах смешанного типа ток возбуждения постоянный и от нагрузки почти не зависит.

Реакция якоря

Когда к генератору подключена внешняя нагрузка, то токи в его обмотке образуют собственное магнитное поле. Возникает магнитное сопротивление полей статора и ротора. Результирующее поле сильнее в тех точках, где якорь набегает на полюсы магнита, и слабее там, где он с них сбегает. Другими словами якорь реагирует на магнитное насыщение стали в сердечниках катушек. Интенсивность реакции якоря зависит от насыщения в магнитопроводах. Результатом такой реакции является искрение щёток на коллекторных пластинах.

Снизить реакцию якоря можно путём применения компенсирующих дополнительных магнитных полюсов или сдвигом щёток с осевой линии геометрической нейтрали.

Среднее значение электродвижущей силы пропорционально магнитному потоку, количеству активных проводников в обмотках и частоте вращения якоря. Увеличивая или уменьшая указанные параметры можно управлять величиной ЭДС, а значит и напряжением. Проще всего, желаемого результата можно достичь путём регулировки частоты вращения якоря.

Читайте также:  Пальцы правой руки как током

Мощность

Различают полную и полезную мощность генератора. При постоянной ЭДС полная мощность пропорциональна току: P = EIa. Отдаваемая в цепь полезная мощность P1 = UI.

Важной характеристикой альтернатора является его КПД – отношение полезной мощности к полной. Обозначим данную величину символом ηe. Тогда: ηe=P1/P.

На холостом ходе ηe = 0. максимальное значение КПД – при номинальных нагрузках. Коэффициент полезного действия в мощных генераторах приближается к 90%.

Применение

До недавнего времени использование тяговых генераторов постоянного тока на ж/д транспорте было безальтернативным. Однако уже начался процесс вытеснения этих генераторов синхронными трёхфазными устройствами. Переменный ток, синхронного альтернатора выпрямляют с помощью выпрямительных полупроводниковых установок.

На некоторых российских локомотивах нового поколения уже применяют асинхронные двигатели, работающие на переменном токе.

Похожая ситуация наблюдается с автомобильными генераторами. Альтернаторы постоянного тока заменяют асинхронными генераторами, с последующим выпрямлением.

Пожалуй, только передвижные сварочные аппараты с автономным питанием неизменно остаются в паре с альтернаторами постоянного тока. Не отказались от применения мощных генераторов постоянного тока также некоторые отрасли промышленности.

Видео по теме

Источник

Напряжение генератора автомобиля, норма на холостом ходу и под нагрузкой

Напряжение генератора автомобиля, норма на холостом ходу и под нагрузкой

Из статьи вы узнаете какое напряжение генератора считается нормой на холостом ходу и под нагрузкой, как влияет данный параметр на срок службы аккумуляторной батареи.

Важные моменты

Напряжение (U) и емкость АКБ автомобиля — главные параметры, на которые необходимо уделять внимание при выборе и проверке источника питания.

Главным назначением аккумулятора является пуск двигателя в период, когда генератор машины еще не подключился к работе, а АКБ является единственным источником питания.

Чтобы исключить проблемы в эксплуатации, автовладелец должен знать следующие моменты:

  • От чего зависит ресурс аккумуляторной батареи;
  • Каким должно быть напряжение (в обычном режиме, после пуска двигателя и под нагрузкой);
  • Чем вызвано снижение емкости в холодное время года и прочие моменты.

Рассмотрим эти вопросы подробно.

От чего зависит срок годности АКБ?

Каждый производитель после изготовления батареи устанавливает гарантийный срок ее эксплуатации.

Кроме этого параметра, существует и фактический период, зависящий от многих факторов — своевременности обслуживания, соблюдения правил эксплуатации, состояния электропроводки и прочих моментов.

Из-за того, что условия обслуживания АКБ отличаются, различается и срок годности изделия.

У автовладельцев, которые эксплуатируют машину только в теплое время года, аккумулятор живет дольше всего. Другое дело, когда автомобиль нужен круглый год, вне зависимости от температуры на улице.

В такой ситуации срок годности АКБ снижается. Это вызвано и тем, что во втором случае водитель может накатать больший километраж.

Также на ресурс аккумулятора влияет:

  • Исправность и правильность работы генератора и регулятора напряжения.
  • Подключение к электропроводке автомобиля дополнительного оборудования, имеющего большой номинальный ток.
  • Режим эксплуатации. Меньше всего «живут» аккумуляторные батареи на такси, которые прохаживают большой километраж в течение года. Кроме того, такие автомобили работают в режиме частого пуска двигателя, что создает нагрузку на АКБ и генератор. При активном применении транспортного средства срок службы источника питания не превышает 1,5 лет.

При обычном режиме эксплуатации, когда автовладелец регулярно проверяет аккумулятор и проводит ТО, ресурс батареи составляет 4-5 лет при общем пробеге за этот период в 60-80 тысяч километров.

Чтобы избежать проблем, желательно периодически проверять напряжение генератора и аккумулятора.

Но упомянутый срок службы не наивысший, ведь при аккуратном обслуживании АКБ может проработать до восьми лет.

Но стоит знать, что рано или поздно замена аккумулятора потребуется, ведь с момента начала эксплуатации рабочие пластины постепенно изнашиваются. Чем больше циклов заряда и разрядки проходит батарея, тем быстрее она выходит из строя.

Практика показывает, что ключевую роль играет генератор, его исправность и текущее напряжение. Вот почему этому аспекту необходимо уделять ключевое внимание.

Какое напряжение генератора считается нормой?

Чтобы проверить напряжение генератора, необходимо завести мотор и отключить всю нагрузку. В этом случае мультиметр должен показывать 14.3 -15,5 Вольт (смотрите видео в конце статьи). Допускается отклонение на 0,1 Вольта в одну и другую сторону.

После этого необходимо поочередно подключать потребителей и проверять напряжение генератора.

Источник

Генераторы независимого возбуждения

Дата публикации: 29 января 2013 .
Категория: Статьи.

Свойства генераторов анализируются с помощью характеристик, которые устанавливают зависимости между основными величинами, определяющими работу генераторов. Такими основными величинами являются: 1) напряжение на зажимах U, 2) ток возбуждения iв, 3) ток якоря Iа или ток нагрузки I, 4) скорость вращения n.

Обычно генераторы работают при n = const. Поэтому основные характеристики генераторов определяются при n = nн = const.

Существуют пять основных характеристик генераторов: 1) холостого хода, 2) короткого замыкания, 3) внешняя, 4) регулировочная, 5) нагрузочная.

Все характеристики могут быть определены как экспериментальным, так и расчетным путем.

Рассмотрим основные характеристики генератора независимого возбуждения.

Характеристика холостого хода

Характеристика холостого хода (х. х. х.) U = f (iв) при I = 0 и n = const определяет зависимость напряжения или электродвижущей силы (э. д. с.) якоря Eа от тока возбуждения при холостом ходе (I = 0, P2 = 0). Характеристика снимается экспериментально по схеме рисунка 1, а при отключенном рубильнике.

Рисунок 1. Схемы генераторов и двигателей независимого (а), параллельного (б), последовательного (в), смешанного (г) возбуждения (сплошные стрелки – направления токов в режиме генератора, штриховые – в режиме двигателя)

Рисунок 2. Характеристика холостого хода генератора независимого возбуждения

Снятие характеристики целесообразно начинать с максимального значения тока возбуждения и максимального напряжения U = (1,15 – 1,25) Uн (точка а кривой на рисунке 2). При уменьшении iв напряжение уменьшается по нисходящей ветви аб характеристики сначала медленно ввиду насыщения магнитной цепи, а затем быстрее. При iв = 0 генератор развивает некоторое напряжение U00 = Об (рисунок 2), обычно равное 2 – 3% от Uн, вследствие остаточной намагниченности полюсов и ярма индуктора. Если затем изменить полярность возбуждения и увеличить iв в обратном направлении, начиная с iв = 0, то при некотором iв div > .uk-panel’>» data-uk-grid-margin>

Источник

Регулировка напряжения и ограничение силы тока генератора

Карягин А. В. Соловьев Г. М.

Напряжение на щетках генератора зависит от числа оборотов якоря. Поэтому при большом числе оборотов коленчатого вала двигателя напряжение генератора может превысить расчетную величину, что вызовет перегорание ламп и тонких обмоток приборов, а также сильное увеличение зарядного тока аккумуляторной батареи. Постоянное напряжение генератора поддерживают электромагнитные регуляторы напряжения.

Кроме регулятора напряжения, необходим также ограничитель тока, так как даже при постоянном напряжении ток, отдаваемый генератором во внешнюю цепь, меняется в зависимости от сопротивления этой цепи. Чем больше включено потребителей (нагрузка генератора), тем меньше сопротивление этой цепи (цепь параллельная) и тем больше, следовательно, ток, отдаваемый генератором (ток нагрузки). При чрезмерном же токе сильно нагретые обмотки генератора могут быть повреждены.

Действие электромагнитных регуляторов и ограничителей основано на уменьшении магнитного потока обмотки возбуждения, в котором вращается якорь генератора. Поэтому уменьшать магнитный поток необходимо в момент превышения якорем генератора оборотов, при которых генератор дает нормальное напряжение, или когда ток во внешней цепи станет больше расчетной величины. Уменьшение магнитного потока достигается автоматическим включением в цепь обмотки возбуждения добавочного сопротивления.

Значительно реже применяются генераторы, у которых зарядный ток регулируется третьей добавочной щеткой. Сравнительно постоянное напряжение поддерживается благодаря параллельной работе генератора и аккумуляторной батареи.

Регулятор напряжения – это электромагнитный прибор, состоящий из ярма с сердечником 8 (рис. 1) и обмоткой 7, включенной параллельно якорю Я генератора. Добавочное сопротивление 2 включено параллельно замкнутым контактам 3 и 4; при размыкании контактов сопротивление вводится в цепь обмотки возбуждения Ш (шунт).

Рисунок 1 – Схема регулятора напряжения

На рисунке 1 приведена схема регулятора напряжения:

  1. Провод;
  2. Добавочное сопротивление;
  3. Неподвижный контакт;
  4. Подвижный контакт;
  5. Якорек;
  6. Пружина;
  7. Обмотка регулятора;
  8. Ярмо с сердечником;
  9. Провод;
  10. Ш – шунт;
  11. Я – якорь генератора.

При замкнутых контактах 3 и 4 регулятора напряжения ток проходит по следующим проводникам:

а) через обмотку регулятора: положительная щетка – масса – обмотка 7 – провод 1 – отрицательная щетка;

б) через обмотку возбуждения генератора: положительная щетка — обмотка возбуждения Ш – провод 9 – ярмо 8 – контакты 4 и 3 – провод 1 – отрицательная щетка (путь тока показан на схеме стрелками).

Когда напряжение генератора повысится до расчетного предела, сердечник ярма 8, намагничиваемый током, проходящим по обмотке 7, притянет к себе якорек 5 и контакты 3 и 4 разомкнутся. При этом в цепь обмотки возбуждения включится сопротивление 2; поэтому напряжение генератора резко упадет, что повлечет уменьшение тока в обмотке 7 и ее магнитного потока, а следовательно, и снижение намагниченности сердечника. Контакты под действием пружины 6 снова соединятся и замкнут накоротко сопротивление 2, пока напряжение генератора опять не возрастет, и т. д. Контакты 3 и 4 размыкаются и замыкаются настолько быстро, что напряжение на щетках генератора практически остается постоянным при изменении числа оборотов якоря в широких пределах.

Читайте также:  Как выбрать ток автомата при постоянном токе

Ограничитель тока не позволяет току генератора превышать расчетную величину и работает по тому же принципу, что и регулятор напряжения, но отличается от него включением обмотки электромагнита. Обмотка 3, состоящая из небольшого числа витков толстой проволоки (рис. 2), включена последовательно между генератором и потребителями 1.

При замкнутых контактах 6 и 7 ограничителя тока и включенных потребителях пути тока будут следующие:

а) через обмотку ограничителя: положительная щетка – потребители 1 – провод 2 – обмотка 3 – ярмо 9 – отрицательная щетка;

б) через обмотку возбуждения генератора: положительная щетка – обмотка возбуждения Ш – провод 8 – контакты 7 и 6 – якорек 5 – ярмо 9 – отрицательная щетка (путь тока указан на схеме стрелками).

При достижении током расчетной силы во внешней цепи, а значит и в обмотке 3, контакты 6 и 7 размыкаются и в цепь обмотки возбуждения включается добавочное сопротивление 10. Вследствие уменьшения тока в обмотке возбуждения напряжение генератора, а следовательно, и ток, отдаваемый генератором во внешнюю цепь, снизятся, контакты снова замкнутся под действием пружины 4 и замкнут накоротко сопротивление; процесс протекает так же, как при работе регулятора напряжения.

При отключении потребителей (кроме аккумуляторной батареи) ограничитель тока поддерживает постоянную величину зарядного тока независимо от увеличения числа оборотов коленчатого вала двигателя; при включении же различных потребителей зарядный ток будет уменьшаться в зависимости от сопротивления внешней цепи (нагрузки). При этом, если ток внешней цепи превышает максимально допускаемый ограничителем, то, кроме тока генератора, во внешнюю цепь пойдет ток из аккумуляторной батареи, т.е. батарея будет разряжаться.

Ограничители тока и регуляторы напряжения работают не одновременно. Пока ток, отдаваемый генератором, не достигает допускаемой максимальной величины, работает только регулятор напряжения. Когда ток генератора достигает предельной величины, ограничитель тока включает добавочное сопротивление, а регулятор напряжения перестает работать.

Генераторы с третьей щеткой устанавливались на автомобилях «Москвич» (до 1953 г.), ГАЗ-ММ, ЗИС-5М. Схема генератора с третьей щеткой показана на рис. 3. Генератор, выполненный по этой схеме, имеет, кроме двух главных щеток (положительной 4 и отрицательной 3), третью (добавочную) щетку 1. К этой щетке присоединена одним концом обмотка 2 возбуждения. Вторым концом эта обмотка соединена с главной щеткой 4. При таком включении обмотки возбуждения ток ее зависит только от величины ЭДС, возникающей в витках обмотки, расположенных между главной 4 и третьей 1 щетками.

Схема ограничителя тока

Рисунок 2 – Схема ограничителя тока

На рисунке 2 приведена схема ограничителя тока:

  1. Лампа накаливания (потребители);
  2. Провод;
  3. Обмотка ограничителя;
  4. Пружина;
  5. Якорек;
  6. Подвижный контакт;
  7. Неподвижный контакт;
  8. Провод;
  9. Ярмо с сердечником;
  10. Добавочное сопротивление;
  11. Ш – шунт;
  12. Я – якорь генератора.

При замкнутых контактах 6 и 7 ограничителя тока и включенных потребителях пути тока будут следующие:

а) через обмотку ограничителя: положительная щетка – потребители 1 – провод 2 – обмотка 3 – ярмо 9 – отрицательная щетка;

б) через обмотку возбуждения генератора: положительная щетка – обмотка возбуждения Ш – провод 8 – контакты 7 и 6 – якорек 5 – ярмо 9 – отрицательная щетка (путь тока указан на схеме стрелками).

При достижении током расчетной силы во внешней цепи, а значит и в обмотке 3, контакты 6 и 7 размыкаются и в цепь обмотки возбуждения включается добавочное сопротивление 10. Вследствие уменьшения тока в обмотке возбуждения напряжение генератора, а следовательно, и ток, отдаваемый генератором во внешнюю цепь, снизятся, контакты снова замкнутся под действием пружины 4 и замкнут накоротко сопротивление; процесс протекает так же, как при работе регулятора напряжения.

При отключении потребителей (кроме аккумуляторной батареи) ограничитель тока поддерживает постоянную величину зарядного тока независимо от увеличения числа оборотов коленчатого вала двигателя; при включении же различных потребителей зарядный ток будет уменьшаться в зависимости от сопротивления внешней цепи (нагрузки). При этом, если ток внешней цепи превышает максимально допускаемый ограничителем, то, кроме тока генератора, во внешнюю цепь пойдет ток из аккумуляторной батареи, т.е. батарея будет разряжаться.

Ограничители тока и регуляторы напряжения работают не одновременно. Пока ток, отдаваемый генератором, не достигает допускаемой максимальной величины, работает только регулятор напряжения. Когда ток генератора достигает предельной величины, ограничитель тока включает добавочное сопротивление, а регулятор напряжения перестает работать.

Генераторы с третьей щеткой устанавливались на автомобилях «Москвич» (до 1953 г.), ГАЗ-ММ, ЗИС-5М. Схема генератора с третьей щеткой показана на рис. 3. Генератор, выполненный по этой схеме, имеет, кроме двух главных щеток (положительной 4 и отрицательной 3), третью (добавочную) щетку 1. К этой щетке присоединена одним концом обмотка 2 возбуждения. Вторым концом эта обмотка соединена с главной щеткой 4. При таком включении обмотки возбуждения ток ее зависит только от величины ЭДС, возникающей в витках обмотки, расположенных между главной 4 и третьей 1 щетками.

Схема генератора с третьей щеткой

Рисунок 3 – Схема генератора с третьей щеткой

На рисунке 3 приведена схема генератора с третьей щеткой:

  1. Третья (добавочная) щетка;
  2. Обмотка возбуждения;
  3. Отрицательная щетка;
  4. Положительная щетка.

Автоматическое ограничение тока в трехщеточных генераторах основано на взаимодействии магнитных потоков, создаваемых током обмотки возбуждения и током якоря при нагрузке генератора.

Пока генератор не работает или работает вхолостую, когда ЭДС генератора равна электродвижущей силе аккумуляторной батареи, имеется только один магнитный поток, создаваемый током обмотки возбуждения (строго говоря, при работе вхолостую вокруг обмотки якоря возникает слабое магнитное поле, поскольку к щеткам присоединена обмотка возбуждения).

При работе же генератора под нагрузкой возникает второй магнитный поток обмотки якоря. В местах, где магнитные силовые линии потоков идут в одном направлении, магнитный поток обмотки возбуждения усиливается, а в местах, где они идут в противоположных направлениях, ослабляется; при этом происходит искажение магнитного потока, т.е. смещение магнитных силовых линии по направлению вращения якоря (рис. 3).

С повышением числа оборотов якоря напряжение на главных щетках (3 и 4) генератора стремится возрасти. Но как только напряжение генератора превысит ЭДС аккумуляторной батареи, ток генератора резко возрастает. Вследствие же увеличения тока якоря произойдет дальнейшее смещение магнитного потока Поэтому количество силовых линий, пересекаемых обмоткой якоря на участке между положительной щеткой 4 и третьей щеткой 1, уменьшится. Напряжение между этими щетками упадет, что вызовет уменьшение тока в обмотке возбуждения, а следовательно, и величины магнитного потока, в котором вращается якорь. Отсюда напряжение на главных щетках генератора почти не изменится, несмотря на увеличение числа оборотов якоря генератора.

Третья щетка регулирует напряжение только при соединении генератора с аккумуляторной батареей, служащей «буфером», выравнивающим напряжение на щетках генератора.

Благодаря малой величине сопротивления цепи генератор – батарея напряжение генератора мало отличается от ЭДС батареи. При возрастании же сопротивления в цепи генератор – батарея (окисление зажимав штырей или ослабление крепления проводов, сульфатация пластин батареи и др.), а тем более при разрыве этой цепи напряжение генератора резко увеличивается.

При работе генератора без батареи напряжение его, рассчитанное на рабочее напряжение 6 в, даже при средних оборотах возрастает с 7,0-7,5 в до 30-40 в, что приводит к перегоранию нитей включенных ламп и тонких обмоток приборов, находящихся под током, а также к сильному нагреву обмотки возбуждения.

Кроме автоматического регулирования тока в обмотке возбуждения и зависящего от него напряжения генератора, третья щетка позволяет изменять зарядный ток генератора при данном числе оборотов якоря.

Если передвинуть (вручную) третью щетку в направлении вращения якоря, зарядный ток возрастет; при смещении третьей щетки против направления вращения якоря зарядный ток уменьшится.

Это объясняется тем, что изменяется количество силовых линий, пересекаемых витками обмотки якоря, находящимся между главной и третьей щетками.

К положительным качествам генераторов с электромагнитными регуляторами напряжения и ограничителями тока относятся:

1) сохранение постоянства напряжения при всех режимах работы двигателя;

2) автоматическая регулировка зарядного тока в зависимости от состояния аккумуляторной батареи (чем больше напряжение на зажимах батареи, тем меньше зарядный ток), что способствует увеличению срока службы батареи;

3) возможность использования генератора без аккумуляторной батареи даже при средних и больших оборотах коленчатого вала двигателя.

Недостатки этих генераторов – сложное устройство регуляторов напряжения и ограничителей тока, трудность их регулировки.

Трехщеточные генераторы отличаются простым устройством, позволяют регулировать зарядный ток простым смещением третьей щетки. Однако они имеют крупные недостатки:

1) неустойчивость напряжения при изменении степени зараженности и внутреннего сопротивления аккумуляторной батареи; при этом, чем больше напряжение на зажимах батареи, тем выше напряжение на щетках генератора, а также и зарядный ток; для предохранения же батареи от перезарядки требуется при данном условии не увеличивать, а уменьшать зарядный ток;

2) невозможно использовать генератор без аккумуляторной батареи вследствие резкого повышения напряжения генератора;

3) резкое колебание зарядного тока в зависимости от мощности включенных потребителей.

Источник

Adblock
detector