Меню

Зависимость тока от мощности в асинхронных трехфазных двигателях



Механические и электрические характеристики асинхронных электродвигателей

В данной статье осветим тему механических и электрических характеристик электродвигателей. На примере асинхронного двигателя рассмотрим такие параметры как мощность, работа, КПД, косинус фи, вращающий момент, угловая скорость, линейная скорость и частота. Все эти характеристики оказываются важными при проектировании оборудования, в котором электродвигатели служат в качестве приводных.

Механические характеристики электродвигателя представляют собой зависимость угловой скорости ω от развиваемого им момента на валу, т.е. ω = f (M). Различают естественные и искусственные механические характеристики электродвигателя.

Естественная механическая характеристика соответствует работе электродвигателя с номинальными параметрами при нормальной схеме включения. Искусственная механическая характеристика соответствует работе электродвигателя с параметрами, отличающимися от номинальных, например, при введении сопротивления, изменении питающего напряжения, частоты и др.

Механические характеристики электродвигателей

Механические характеристики электродвигателей: 1 — абсолютно жесткая характеристика, 2 — жесткая характеристика, 3 — мягкая механическая характеристика

Сегодня особенно широко распространены в промышленности именно асинхронные электродвигатели, поэтому на их характеристиках и остановимся.

Естественная механическая характеристика асинхронного двигателя

Естественная механическая характеристика асинхронного двигателя

Для примера рассмотрим АИР80В2У3.

Асинхронный электродвигатель АИР80В2У3

Номинальная механическая мощность асинхронного электродвигателя

На шильдике (на паспортной табличке) электродвигателя указывается всегда номинальная механическая мощность на валу данного двигателя. Это не та электрическая мощность, которую данный электродвигатель потребляет из сети.

Так, например, для двигателя АИР80В2У3, номинал в 2200 ватт соответствует именно механической мощности на валу. То есть в оптимальном рабочем режиме данный двигатель способен выполнять механическую работу 2200 джоулей каждую секунду. Обозначим эту мощность как P1 = 2200 Вт.

Номинальная механическая мощность асинхронного электродвигателя

Номинальная активная электрическая мощность асинхронного электродвигателя

Чтобы определить номинальную активную электрическую мощность асинхронного электродвигателя, опираясь на данные с шильдика, необходимо принять в расчет КПД. Так, для данного электродвигателя КПД составляет 83%.

Номинальная активная электрическая мощность асинхронного электродвигателя

Что это значит? Это значит, что только часть активной мощности, подаваемой из сети на обмотки статора двигателя, и безвозвратно потребляемой двигателем, преобразуется в механическую мощность на валу. Активная мощность равна P = P1/КПД. Для нашего примера, по представленному шильдику видим, что P1 = 2200, КПД = 83%. Значит P = 2200/0,83 = 2650 Вт.

Номинальная полная электрическая мощность асинхронного электродвигателя

Полная электрическая мощность, подаваемая на статор электродвигателя от сети всегда больше механической мощности на валу и больше активной мощности, безвозвратно потребляемой электродвигателем.

Номинальная полная электрическая мощность асинхронного электродвигателя

Для нахождения полной мощности достаточно активную мощность разделить на косинус фи. Таким образом, полная мощность S = P/Cosφ. Для нашего примера P = 2650 Вт, Cosφ = 0,87. Следовательно полная мощность S = 2650/0,87 = 3046 ВА.

Номинальная реактивная электрическая мощность асинхронного электродвигателя

Часть полной мощности, подаваемой на обмотки статора асинхронного электродвигателя, возвращается в сеть. Это реактивная мощность Q.

Реактивная мощность связана с полной мощностью через sinφ, и связана с активной и с полной мощностью через квадратный корень. Для нашего примера:

Q = √( 3046 2 — 2650 2 ) = 1502 ВАР

Реактивная мощность Q измеряется в ВАР — в вольт-амперах реактивных.

Теперь давайте рассмотрим механические характеристики нашего асинхронного двигателя: номинальный рабочий момент на валу, угловую скорость, линейную скорость, частоту вращения ротора и ее связь с частотой питания электродвигателя.

Частота вращения ротора асинхронного электродвигателя

Скорость вращательного движения на практике часто оценивается частотой вращения, то есть числом оборотов вала двигателя в минуту. Угловая скорость выражается в радианах в секунду (рад/с). Угловой скоростью удобнее пользоваться при выводе формул и проведении расчетов, частотой вращения — при практической оценке скоростных свойств двигателей.

На шильдике мы видим, что при питании переменным током частотой в 50 Гц, ротор двигателя совершает при номинальной нагрузке 2870 оборотов в минуту, обозначим эту частоту как n1.

Частота вращения ротора асинхронного электродвигателя

Что это значит? Поскольку магнитное поле в обмотках статора создается переменным током частотой 50 Гц, то для двигателя с одной парой полюсов (коим является АИР80В2У3) частота «вращения» магнитного поля, синхронная частота n, оказывается равной 3000 оборотов в минуту, что тождественно 50 оборотам в секунду.

Но поскольку двигатель асинхронный, то п оявление в обмотке ротора ЭДС и вращающего момента возможно только при наличии разности между скоростями магнитного поля и ротора. Это различие называют скольжением (s). Ротор вращается с отставанием на величину скольжения .

Значение s можно определить, разделив разность синхронной и асинхронной частот на синхронную частоту, и выразив это значение в процентах:

s = ( ( n – n1 )/ n) *100%

Для нашего примера s = ( (3000 – 2870)/3000 ) *100% = 4,3%.

Угловая скорость асинхронного двигателя

Угловая скорость асинхронного двигателя

Угловая скорость ω выражается в радианах в секунду. Для определения угловой скорости достаточно частоту вращения ротора n1 перевести в обороты в секунду (f), и умножить на 2 Пи, поскольку один полный оборот составляет 2 Пи или 2*3,14159 радиан. Для двигателя АИР80В2У3 асинхронная частота n1 составляет 2870 оборотов в минуту, что соответствует 2870/60 = 47,833 оборотам в секунду.

Умножая на 2 Пи, имеем: 47,833*2*3,14159 = 300,543 рад/с. Можно перевести в градусы, для этого вместо 2 Пи подставить 360 градусов, тогда для нашего примера получится 360*47,833 = 17220 градусов в секунду. Однако подобные расчеты обычно ведут именно в радианах в секунду. Поэтому угловая скорость ω = 2*Пи*f, где f = n1/60.

Линейная скорость асинхронного электродвигателя

Линейная скорость асинхронного электродвигателя

Линейная скорость v относится к оборудованию, на котором асинхронный двигатель установлен в качестве привода. Так, если на вал двигателя установлен шкив или, скажем, наждачный диск, известного радиуса R, то линейная скорость точки на краю шкива или диска может быть найдена по формуле:

Номинальный вращающий момент асинхронного двигателя

Каждый асинхронный электродвигатель характеризуется номинальным вращающим моментом Мн. Вращающий момент М связан с механической мощностью P1 через угловую скорость следующим образом:

Вращающий момент или момент силы, действующей на определенном расстоянии от центра вращения, для двигателя сохраняется, причем с ростом радиуса уменьшается сила, а чем радиус меньше, тем больше сила, поскольку:

Так, чем больше радиус шкива, тем меньшая сила действует на его краю, а наибольшая сила действует непосредственно на валу электродвигателя.

Номинальный вращающий момент асинхронного двигателя

Для приведенного в качестве примера двигателя АИР80В2У3 мощность P1 равна 2200 Вт, а частота n1 равна 2870 оборотов в минуту или f = 47,833 оборота в секунду. Следовательно угловая скорость составляет 2*Пи*f, то есть 300,543 рад/с, и номинальный вращающий момент Мн равен P1/(2*Пи*f). Мн = 2200/(2*3,14159*47,833) = 7,32 Н*м.

Таким образом, исходя из данных, указанных на шильдике асинхронного электродвигателя, можно найти все основные электрические и механические его параметры.

Надеемся, что данная статья помогла вам разобраться в том, как связаны между собой угловая скорость, частота, вращающий момент, активная, полезная и полная мощность, а также КПД электродвигателя.

Источник

О наболевшем — Или расчет силы тока трехфазных асинхронных двигателей на 380В

Кстати при установке новых двигателей ничего и считать не надо, как правило номинальный ток для обоих режимов (звезда 380 и треугольник 220) указан на шильдике, вместе со всеми остальными параметрами.

Так какже, правильно расчитать, грубо или поточнее мощность асинхронного двигателя в стандартной ситуации?
Для начала определимся с это самой «стандартной ситуацией» и с чем ее едят.
Стандартной я называю ситуацию, когда двигатель расчитанный на 380\220 звезда\треугольник, подключается на стандартные 380 звездой, на все три фазы. В промышленности это встречается наиболее часто, и также часто вызывает вопросы по поводу того, какого номинала автоматы ставить, ибо многие, знают стандартную формулу мощности I=P\U и почемуто, видимо от большой грамотности или большого ума, от которого горе по Грибоедову, начинают для трехфазной нагрузки применять ее.

Читайте также:  Где поверить трансформаторы тока

А теперь раскрываю секрет, страааашный секрет.
Для расчета защиты маломощных двигателей на 380В, мощностью до 30 квт вполне достаточно умножить мощность ровно на 2, то есть P*2=

In , автомат все равно выбирается ближайший по номиналу в большую сторону, то есть 63А для 30 квт двигателя, имеющего на валу нагрузкой ну скажем турбину вентилятора типа Циклон. Это страаашный, нигде в учебниках не озвученный секретный экспресс-метод грубого расчета силы тока двигателей на 380В. Почему так? Очень просто при U=380В на один КВТ мощности приходится примерно сила тока в 2 Ампера. (Да меня щас побьют теоретики, которые помнят про КПД и Косинус ФИ. Помолчите Господа, пока помолчите, я же сказал, для МАЛОМОЩНЫХ двигателей до 30 квт, а для низких мощностей, зная модельный ряд наших автоматов, эти 2 значения можно и не учитывать, особенно если нагрузка на вал минимальная)

А теперь представим типовой двигатель* со следующими параметрами:
P=30 квт
U=380 В
сила тока на шильдике стерлась.
cos φ = 0,85
КПД=0,9

Как найти его силу тока? Если считать так, как советуют и сами считают упрямые «очень умные» горе-инженера, особенно любящие озадачивать этим вопросом на собеседованиях, то получаем цифру в 78,9А, после чего горе-инженера начинают лихорадочно вспоминать про пусковые токи, задумчиво хмурить брови и морщить лбы, а затем не стесняясь требуют поставить автомат минимум на 100А, так как ближайший по номиналу 80А будет выбивать при малейшей попытке запуска офигенными пусковыми токами. И переспорить их очень тяжело, так как все нижеследующее вызывает у умных дяденек бурю эмоций, недержание мочи и кала, разрыв шаблона, и погружение в глубокий транс с причитаниями и маханием корочками тех универов где они учились считать и жить..

если считать грубо, то 30*2=60А

Более полная формула, рекомендованная к применению выглядит несколько иначе.
Мощность в квт переводится в ватты, для чего 30*1000=30000 вт
Затем ватты делим на напряжение, затем делим на корень квадратный из 3(1,73), (у нас же ТРИ ФАЗЫ) и получаем примерную силу тока, которую нужно уточнить, поделив дополнительно на cos φ(коэффициент мощности, ибо всякая индуктивная нагрузка имеет и реактивную мощность Q) и затем, уточнить еще раз, поделив при желании на КПД, итак:

Уточняем расчет: 53,6А\0,9 = 59,65А (Кстати программа электрик, считающая по похожей формуле, выдает более точные данные 59,584 А, то есть немного меньше чем мой проверенный временем расчет. то есть расчет довольно точен, а расхождения в десятые и сотые доли ампера в нашем случае никого особо не волнуют, почему — написано ниже)

59,65 Ампер, — почти полное совпадение с первым грубым расчетом, расхождение составляет всего лишь -0,35А, что для выбора автомата защиты не играет никакой роли в данном случае. Ну и какой же автомат выбрать??
При условии что нагрузка на валу не велика, скажем какая нибудь турбина вентилятора, можно смело ставить ВА 47-29 на 63А фирмы ИЭК, категории С..наиболее часто встречающиеся.
На вопли о пусковых токах могу смело ответить, что 63А пакетник категории В,С,D выдерживает по току превышение 1,13 раза дольше часа и 1,45 раза меньше часа, то есть если на автомате написано 63А, то это не значит, что при броске до 70А его сразу выбьет. Нифига подобного, нагрузку в 113% (сила тока равна 71,19А) он будет держать минимум час, особенно это касается дорогих автоматов фирм Легранд\АВВ, и даже при силе тока в 145% номинала = 91,35А он гарантированно продержит несколько минут, а для раскрута асинхронника и выхода на номинальный режим достаточно нескольких секунд, как правило от 5 до 20 секунд. За это время тепловой расцепитель автомата тупо не успеет разогрется и отключить нагрузку.
Конечно, умные дяди мне сейчас напомнят, что у автомата есть еще электромагнитный расцепитель, и уж он то, ну уж он то точно отрубит при превышении 63А несчастный двигатель. Хахаха, хрен вам и горе умное.

Буковки B,C,D, и некоторые другие в наименовании автомата как раз характеризуют кратность уставки электромагнитного расцепителя, и равна она

В — 3. 5
С — 5. 10
D — по ГОСТ Р — 10. 50, большинство производителей заявляет диапазон 10. 20.

Есть более редко встречающиеся
G — 6,4. 9,6 (КЭАЗ ВМ40)
K — 8. 14
L — 3,2. 4,8 (КЭАЗ ВМ40)
Z — 2. 3

То есть автомат категории С на 63А гарантированно отключится электромагнитным расцепителем только в диапазоне 315-630А и выше, чего при запуске исправного асинхронника на 30 квт никогда все равно не будет.
Второй законный вопрос- какой провод положить на наш двигатель. Ответ- кабель 4х16 миллиметров квадратных, с лихвой хватит, при длине до 50 метров, при большей длине лучше 25мм выбирать, ибо потери.

Все цифры проверены многократно, лично мной, и экспериментально. Проверены и по выбранным автоматам и по многократным замерам реальной силы тока токовыми клещами.

*-Единственное примечание и уточнение: У старых двигателей советского производства, вновь вводимых в эксплуатацию могут быть меньшие значения косинуса фи и КПД, тогда сила тока может быть чуть выше чем значение грубого расчета. Просто выбирается следующий по номиналу автомат на 80А. Не ошибётесь!

Второе примечание:
Для грубого расчета силы тока двигателя подключенного треугольником к сети 220 через конденсатор, можно взять мощность двигателя в Киловаттах, ну например теже 30 КВТ и умножить примерно на 3,9 и так: 30*3,9=117А
А для расчета конденсатора можно воспользоваться сайтом http://www.skrutka.ru/sk/tekst.php?id=13

и посмотреть что приведенный расчет тока не сильно грешит

Источник

Онлайн расчет характеристик трехфазных электродвигателей

1. Расчет мощности электродвигателя

Расчет мощности электродвигателя по току можно произвести с помощью нашего онлайн калькулятора:

Полученный результат можно округлить до ближайшего стандартного значения мощности.

Стандартные значения мощностей электродвигателей: 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75 кВт и т.д.

Расчет мощности двигателя производится по следующей формуле:

P=√3UIcosφη

  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

2. Расчет тока электродвигателя

Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:

Расчет номинального тока двигателя производится по следующей формуле:

Iном=P/√3Ucosφη

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);
Читайте также:  Трансформаторы тока для пку 10

Расчет пускового тока электродвигателя производится по формуле:

Iпуск=Iном*K

  • К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторе кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).

3. Расчет коэффициента мощности электродвигателя

Онлайн расчет коэффициента мощности (cosφ) электродвигателя

Расчет cosφ (косинуса фи) двигателя производится по следующей формуле:

cosφ=P/√3UIη

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

4. Расчет КПД электродвигателя

Онлайн расчет КПД (коэффициента полезного действия) электродвигателя

Расчет коэффициента полезного действия электродвигателя производится по следующей формуле:

η=P/√3UIcosφ

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);

Оказались ли полезны для Вас данные онлайн калькуляторы? Или может быть у Вас остались вопросы? Напишите нам в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Источник

Рабочие характеристики трехфазного асинхронного двигателя

Рабочими характеристиками называются зависимости мощ­ности Р1скольжения s, тока в фазе статора I1, КПД η и cosφ1 от полезной мощности Р2при U1= const и f1 = const.

Характеристики строятся для зоны практически устойчи­вой работы двигателя, т.е. до значений скольжений(1,1. 1,2)%. Опытным путем характеристики получают путем изменения нагрузки на валу двигателя при помощи вспомогательного нагрузочного устройства, из которых предпочтительным являет­ся генератор постоянного тока независимого возбуждения. Непосредственно измеряют момент, скорость вращения, ток ста­тора, мощность, потребляемую из сети. Скольжение, КПД и ко­эффициент мощности определяют расчетным путем по соот­ношениям, приведенным выше.

Рабочие характеристики, построенные в относительных единицах, представлены на рис. 3.16.

Рис. 3.16. Рабочие характеристики трехфазного асинхронного двигателя

Зависимость s(P2) практически линейна и кривая слабо наклонена к оси абсцисс, поскольку sH (0,08. 0,1) и момент практически линейно зависит от скольжения.

Зависимость Р1 2) также близка к линейной, как и зависи­мость I12). Это свидетельствует о том, что активная состав­ляющая тока пропорциональна полезной мощности Р2. Реак­тивная составляющая тока в диапазоне рабочих нагрузок ме­няется мало, поскольку она определяется током холостого хода I, который составляет 20. 40% от номинального тока. Поэтому зависимость I1(P2) выходит не из начала координат.

Зависимость cosφ1 = f(P2) показывает, что при малых на­грузках cosφ1 имеет низкие значения (0,1. 0,3). С увеличением нагрузки cosφ1 увеличивается, достигая максимума (0,75. 0,9) при нагрузке, близкой к номинальной. С ростом нагрузки и мощности активная составляющая мало изменяется по срав­нению с режимом холостого хода. При дальнейшем росте нагрузки cosφ1 снижается из-за роста потоков рассеяния об­моток.

Зависимость η2) имеет такой же характер, как и у транс­форматора. Максимум КПД имеет место при нагрузках, немно­го меньших, чем номинальное значение. При дальнейшем уве­личении нагрузки КПД снижается из-за роста электрических потерь, которые пропорциональны квадратам токов статора и ротора.

Из анализа рабочих характеристик следует, что при малых нагрузках работа двигателя неэффективна, он имеет малые значения КПД и коэффициента мощности. С другой стороны, если двигатель перегружен, то эффективность его работы также снижается, но сверх того, он испытывает повышенный нагрев, а условия охлаждения, напротив, ухудшаются, поскольку интенсивность охлаждения зависит от куба скорости враще­ния вентилятора на валу двигателя. Поэтому, выбирая двига­тель для конкретного механизма, следует как можно точнее рассчитывать его мощность.

Способы пуска и регулирования

Частоты вращения АД.

Пусковые свойства асинхронных двигателей в основном определяются следующими величинами: пусковым током, пус­ковым моментом, плавностью и экономичностью процесса пус­ка, длительностью пуска. В каталогах обычно указывается кратность пускового тока IП/IН и пускового момента МПН.Кроме того, пусковые свойства асинхронного двигателя опре­деляются особенностями его конструкции, в частности устрой­ством ротора, который может быть с обычной короткозамкнутой обмоткой, с глубокопазной короткозамкнутой обмоткой, с фазным ротором.

Различают три вида пуска: прямой, пуск с пониженным напряжением на статоре, реостатный пуск (для двигате­лей с фазным ротором).

Прямой пуск наиболее простой и чаще всего применяет­ся для пуска двигателей с короткозамкнутым ротором. Необ­ходим лишь коммутирующий аппарат — рубильник или маг­нитный пускатель, а для двигателя высокого напряжения — масляный выключатель. Пуск происходит путем непосредствен­ного подключения обмотки статора к сети. При прямом пуске двигателя кратность пускового тока велика и составляет при­мерно 5,5. 7 (для двигателей мощностью 0,6. 100 кВт при синхронной скорости 750. 3000 об/мин). Кратковременный толчок пускового тока относительно безопасен для двигате­ля, но вызывает увеличение потери напряжения в сети и может неблагоприятно сказаться на других потребителях энергии, присоединенных к той же сети. Поэтому допустимая номи­нальная мощность асинхронных двигателей при прямом пуске зависит от мощности распределительной сети. В мощных се­тях допускается прямой пуск двигателей с короткозамкнутым ротором мощностью и до 1000 кВт, но в большинстве случаев эта мощность не превышает 100 кВт.

У двигателей общепромышленного исполнения с короткозамкнутой обмоткой ротора кратность пускового момента лежит в пределах 1,2. 2,5. Таким образом, двигатель при пуске имеет большую силу тока, а развивает относительно не­большой пусковой момент.

Пуск с пониженным напряжением на статоре. Ис­пользуется для мощных двигателей с целью ограничения пус­кового тока. Используют для этой цели реакторы (трехфаз­ные катушки индуктивности), автотрансформаторы (рис. 3.17).

Рис. 3.17. Схема пуска короткозамкнутого двигателя: а — с помощью реактора; б — при помощи автотрансформатора

Для уменьшения пускового тока можно на начальном эта­пе пуска понизить напряжение на зажимах статора, включив последовательно с обмоткой статора трехфазное индуктив­ное сопротивление — реактор Р (рис. 3.17,а). При пуске за­мыкается выключатель В1, и, таким образом, осуществляется последовательное соединение реактора и двигателя МА. Когда скорость двигателя приближается к номинальной, замыкается выключатель В2, который закорачивает катушку и подает на­пряжение сети непосредственно на статор МА. Уменьшение пускового тока, создаваемое понижением напряжения на стато­ре, вызывает уменьшение пускового момента, пропорциональ­ного квадрату напряжения на статоре. Например, при таком пуске уменьшение пускового тока в 2 раза будет сопровож­даться уменьшением пускового момента в 4 раза. Во многих случаях при пуске двигателя под нагрузкой такое понижение момента недопустимо, двигатель не сможет преодолеть ме­ханический момент торможения на валу.

Еще менее выгодно применение вместо реактора активно­го сопротивления поскольку это связано с дополнительными потерями энергии в реостате.

Для мощных двигателей часто применяется пуск при помо­щи автотрансформатора (рис. 3,17,б). Пуск происходит в два этапа: на первом этапе переключатели П1-ПЗ находятся в по­ложении 1. На двигатель МА подается пониженное фазное напряжение, и пусковой ток уменьшается пропорционально коэффициенту трансформации, но пусковой ток в сети меньше пускового тока двигателя в k раз. Следовательно, понижение напряжения автотрансформатором в к раз уменьшает пуско­вой ток в сети в k 2 раз. В то же время пусковой момент, пропорциональный квадрату напряжения, уменьшается в k 2 раз. Таким образом, пусковой момент уменьшается пропорциональ­но линейному пусковому току, тогда как при реостатном пуске момент уменьшается пропорционально квадрату пускового тока. Например, при понижении напряжения автотрансфор­матором вполовину пусковой ток сети понизится в 2 раза и в 2 раза понизится и пусковой момент. На втором этапе пере­ключатели П1-ПЗ переводятся в положение 2 и к статору подводится полное напряжение сети.

Понижение напряжения на статоре на время пуска можно осуществить также посредством переключения на время пуска обмотки статора, нормально работающей при соединении «треугольником», на соединение «звездой». Такое переключе­ние применяется только для пуска в ход короткозамкнутых двигателей относительно малой мощности, примерно до 20 кВт, работающих нормально при соединении обмоток статора «треугольником». При пуске обмотка статора соединяется «звездой», благодаря чему фазное напряжение уменьшается в √3 раз, примерно во столько же раз уменьшается и фазный пусковой ток. Переключение с «треугольника» на «звезду» используется также для того, чтобы дать возможность приме­нять одни и те же двигатели при двух различных линейных напряжениях, например 220/380 В. Для упрощения переклю­чения, а также для использования стандартных перемычек, за­жимы обмоток статора на присоединительном щитке двигате­ля располагаются соответствующим образом (рис. 3.18).

Рис. 3.18. Расположение на щитке зажимов начал и концов обмотки

Следует отметить, что для машин переменного тока, раз­работанных после 1 января 1987 г., установлена система обо­значений выводов обмоток (ГОСТ 26772-85), соответствующая международным стандартам: фаза A: U1w U2, фаза В: V1 и V2, фаза С: W1 и W2. При соединении обмотки в «звезду» внут­ри двигателя используют обозначения выводов: U, V, W (N — если нейтраль выведена); при соединении обмотки в «тре­угольник»: U, V, W. Линейные провода на схеме обозначаются соответственно: L1, L2w L3.

Хорошими пусковыми свойствами обладает асинхронный двигатель с двойной беличьей клеткой. В таком двигателе короткозамкнутая обмотка ротора выполнена в виде двойной беличьей клетки, т. е. короткозамкнутый ротор снабжается двумя клетками, лежащими в теле ротора одна над другой: нижней — рабочей / и верхней — пусковой 2 (рис. 3.19,а). Стержни нижней клетки имеют обычно большее сечение (рис. 3.19,б). Таким образом, активное сопротивление верхней клетки значительно больше активного сопротивления нижней клетки (в 4—5 раз). Обе клетки

снабжены с торцевых сторон замыкающими кольцами.

Рис. 3.19. Ротор с двойной беличьей клеткой (а) и сечения верхнего и нижнего стержней (б)

В первый момент пуска двигателя (пока g = 1) частота токов в роторе равна частоте сети; в этих условиях полное сопротивление внутренней клетки обусловливается главным образом ее большим индуктивным сопротивлением. Таким образом, при пуске двигателя в роторе имеет место явление вытеснения тока из внутренней беличьей клетки. В то же время полное сопротивление наружной клетки является пре­имущественно активным сопротивлением и создает большой пусковой момент, как это имеет место и у двигателя с контактными кольцам при включении пускового активного со­противления. Отношение токов верхней и нижней клеток за­висит от отношения полных сопротивлений этих клеток; обыч­но при пуске ток нижней клетки значительно меньше тока верхней клетки.

По мере разгона ротора частота токов в нем уменьшается, уменьшается и влияние индуктивного сопротивления на рас­пределение токов. При номинальной скорости вращении час­тота токов ротора имеет значение порядка 1 Гц; в этих усло­виях индуктивные сопротивления весьма малы и распределе­ние токов между клетками ротора определяется отношением активных сопротивлений клеток, поэтому большая часть тока проходит по нижней, рабочей клетке, а результирующее актив­ное и полное сопротивления ротора в таких условиях малы, как у обычного двигателя с короткозамкнутым ротором.

Таким образом, у двигателей с двойной беличьей клеткой активное сопротивление обмотки ротора в целом изменяется в зависимости от изменения скольжения — оно велико при пуске и мало при номинальной скорости. Благодаря этому двигатель с двойной беличьей клеткой, по сравнению с обыч­ным двигателем, имеющим короткозамкнутый ротор, развивает повышенный пусковой вращающий момент при пониженном пусковом токе.

Двигатель с глубоким пазом ротора также обладает повы­шенным пусковым моментом. Это обусловлено также явлени­ем вытеснения тока и представляет собой упрощенный вариант двигателя с двойной клеткой. Обмотка ротора этого дви­гателя изготовляется из прямоугольных стержней малой ши­рины и большой высоты, которые помещаются в соответствующие глубокие пазы в стали ротора или заливаются в них.

Рис. 3.20. Стержень ротора и распределение магнитного

поля в глубокопазном ротаре

Переменный ток распределя­ется по сечению проводника в об­щем случае неравномерно; это явление использовано в данном двигателе. На рис. 3.20 показа­но поле рассеяния, замыкающее­ся поперек глубокого паза, когда по стержню обмотки проходит ток.

Часть стержня, лежащая в глубине паза, сцеплена с боль­шим потоком рассеяния, чем верх­няя часть того же стержня. Вслед­ствие этого при пуске двигателя в повышенное реактивное сопротивление нижней части стерж­ня вызывает вытеснение тока ротора в верхнюю часть сечения стержня. Это эквивалентно уменьшению сечения стержня и увеличению активного сопротивления обмотки ротора, благо­даря чему повышается пусковой момент двигателя и уменьша­ется пусковой ток.

При рабочей скорости двигателя индуктивное сопротивле­ние становится незначительным благодаря уменьшению часто­ты, ток распределяется по сечению стержня почти разномерно и двигатель работает, как обычный короткозамкнутый.

Двигатель с глубоким пазом ротора в конструктивном от­ношении проще двигателя с двойной клеткой и получил широ­кое применение.

Лучшие пусковые условия обеспечивает асинхронный дви­гатель с фазным ротором (рис. 3.21,а). При включении в цепь ротора пускорегулирующего сопротивления можно получить семейство механических характеристик с пусковыми момента­ми от минимального значения Мп, соответствующего есте­ственной характеристике, до Мп1, равного критическому мо­менту двигателя Мкр. При этом пропорционально будет умень­шаться ток двигателя, поскольку R3>R2>R1.

Рис. 3.21. Схема соединения обмоток статора и ротора

асинхронного двигателя с фазным ротором (а)

и механические характеристики двигателя при увеличении

пускорегулирующего сопротивления от 0 до R3 (б)

При изменении добавочного сопротивления в цепи ротора максимальный момент двигателя не изменяется, поскольку он не зависит от активного сопротивления ротора, увеличение сопротивления только смещает его в сторону большего сколь­жения. Выключение ступеней пускового реостата заставляет двигатель переходить с одной характеристики на другую.

Сопротивления реостата обычно выводят на контакты, бла­годаря чему при пуске момент двигателя и ток изменяются по ступенчатой кривой (рис. 3.21,б), число ступеней которой определяется числом контактов пускового реостата. Чем бли­же пусковой момент к максимальному моменту, тем больше будет и пусковой ток. По этой причине лишь для особо тяже­лых условий пуска реостат подбирается так, чтобы пусковой момент был равен максимальному.

Пусковой реостат должен в течение времени пуска, не перегреваясь, поглощать мощность, примерно равную мощно­сти двигателя. Следовательно, размеры пускового реостата определяются частотой пусков. В ряде случаев пусковые рео­статы выполняются с масляным охлаждением.

Таким образом, применение пускового реостата значитель­но улучшает пусковые условия асинхронного двигателя, повы­шая пусковой момент и уменьшая толчок тока. Однако, с дру­гой стороны, двигатель с фазной обмоткой ротора дороже двигателя с короткозамкнутой обмоткой, усложняется его об­служивание, что следует иметь в виду при подборе двигателя для конкретных механизмов.

Источник