Меню

Зависимость электропроводности от частоты переменного тока



Сравнительная характеристика электропроводности тканей и жидкостей организма

Проводники – это вещества, которые имеют свободные заряды, способные перемещаться под действием электрического поля. Примеры: плазма крови, лимфа, межклеточная жидкость, спинномозговая жидкость, цитоплазма.

Диэлектрики (изоляторы) – это вещества, которые не имеют свободных зарядов, поэтому не проводят электрический ток. Примеры: сухая кожа, связки, сухожилия, костная ткань, клеточная мембрана.

Зависимость электропроводности тканей от частоты переменного тока в норме и при патологии

В норме:
С увеличением частоты переменного тока емкостное сопротивление, обеспечиваемое мембранами клеток, уменьшается и при высоких значениях исчезает.
При матологии(воспаление, отек):
Зависимость от частоты отличается от нормы.
При гибели клетки электропроводность не зависит от частоты переменного тока.

Кондуктометрия. Сущность кондуктометрических методов исследования.

Кондуктометрия – совокупность физико-химических способов исследования, основанных на измерении электропроводностей. С ее помощью можно измерять:
а) концентрацию электролитов

Б) ионное произведение воды

В) растворимость и произведение растворимости малорастворимых электролитов

Г) степень и константу диссоциации
д) константу гидролиза солей

Прямая кондуктометрия – единичное измерение электропроводности раствора и дальнейшее вычисление по формуле или с помощью графика

Кондуктометрическое титрование – титрование, при котором точку эквивалентности определяют по изменению электропроводности титруемой смеси по мере добавления титранта.

Устройство кондуктометрической ячейки, определение ее константы

Для определения электролитической проводимости может использоваться кондуктометрическая ячейка-стеклянный сосуд без дна с двумя электродами известной площади, прочно укрепленными на фиксированном расстоянии друг от друга. Электроды выполнены из платиновой черни.

Использование кондуктометрии в медико-биологических исследованиях

В биологических системах ток проводят лучше всего жидкости (кровь, лимфа, пунция, желчь, слюна)

Низкая электропроводность – жир, костная ткань, нервная система.

Акупунктурные точки – в них электропроводность больше, чем на соседних участках

Если электропроводность в моче уменьшается, то это говорит о развитии диабета или заболевании почек
Используется в стоматологии

Кондуктометрическое определение степени и константы диссоциации слабого электролита.

1) Измерение электропроводности

24. Кондуктометрическое определение растворимости труднорастворимых солей.

Дата добавления: 2020-04-25 ; просмотров: 292 ; Мы поможем в написании вашей работы!

Источник

Зависимость электропроводности от частоты

На высоких частотах плотность тока изменяется по сечению проводника. Она максимальна на поверхности и убывает по мере проникновения вглубь провод­ника. Это явление называется поверхностным эффектом.

Неравномерное распределение тока объясняется действием магнитного поля тока, протекающего по проводнику. Магнитный поток, сцепленный с проводом, про­порционален току:

где L — индуктивность проводника.

Если ток изменяется по синусоидальному закону i = Im*sin( ), то изменение маг­нитного потока вызывает появление ЭДС самоиндукции:

Эта ЭДС имеет направление, противоположное току в проводе, и тормозит его изменение в соответствии с законом Ленца.

При прохождении переменного тока переменное магнитное поле возникает как вокруг проводника, так и внутри него. При этом потокосцепление максимально для внутренних слоев и минимально для внешних слоев. Поэтому ЭДС самоин­дукции оказывается максимальной в центре проводника и уменьшается в направ­лении к поверхности. Соответственно, и плотность тока наиболее значительно ослабляется в центральной части проводника и в меньшей степени — у поверхно­сти, иначе говоря, происходит вытеснение тока к поверхности проводника. Оно тем сильнее, чем выше частота.

Распределение плотности тока по сечению проводника подчиняется экспоненци­альному закону:

где — плотность тока на поверхности;

z — расстояние, измеряемое от поверхности;

Δ — глубина проникновения тока.

Глубина проникновения тока, выраженная в миллиметрах, равна расстоянию, на котором плотность тока уменьшается в е = 2,72 раз по отношению к своему значе­нию на поверхности проводника. Она пропорциональна удельному сопротивлению ρ [Ом-м] и обратно пропорциональна частоте f [МГц]:

В случае сильно выраженного поверхностного эффекта, когда ток протекает по тонкому поверхностному слою, толщина которого много меньше диаметра про­вода d, экспоненциальное распределение тока может быть заменено однородным распределением с постоянной плотностью тока в пределах тонкого слоя толщи­ной Δ, на основании чего можно ввести понятие эквивалентной площади сечения проводника, занятой током:

Поскольку площадь сечения, через которое протекает ток, уменьшилась, то сопро­тивление провода переменному току R

стало больше, чем его сопротивление по­стоянному току Ro, что учитывают коэффициентом увеличения сопротивления:

Полученная формула справедлива при Δ

Источник

ЭЛЕКТРОПРОВОДНОСТЬ БИОЛОГИЧЕСКИХ СИСТЕМ

ЭЛЕКТРОПРОВОДНОСТЬ БИОЛОГИЧЕСКИХ СИСТЕМ — количественная характеристика способности живых объектов (тканей) проводить электрический ток. Электропроводность обратно пропорциональна величине электрического сопротивления системы.

Измерение электропроводимости биологических систем используют для получения информации о функциональном состоянии биол, тканей, для выявления воспалительных процессов, изменения проницаемости клеточных мембран и стенок сосудов при патологии или действии на организм физических, химических и других факторов (см. Проницаемость). Измерение электропроводимости биологических систем лежит в основе многих методов оценки кровенаполнения сосудов органов и тканей (см. Реография).

При подаче разности потенциалов (U) через объект течет электрический ток силой (I), величина которой пропорциональна электропроводности (G): I=GU. Величина электропроводности зависит от количества свободных электрических зарядов и их подвижности. Чем больше количество зарядов и их подвижность, тем больше электропроводность. В клетке основными свободными зарядами являются ионы калия и органические анноны, а снаружи клетки, в межклеточных пространствах и тканевых жидкостях — ионы натрия и хлора. В биологических жидкостях (кровь, спинномозговая жидкость, моча и т. д.) электропроводность пропорциональна содержанию в них свободных ионов. Связанные заряды (ионогенные группы белков, липидов, углеводов), перемещение которых ограничено, и крупные ионы с малой подвижностью не оказывают существенного влияния на величину электропроводимости биологических систем.

Читайте также:  Как найти сопротивление якоря двигателя постоянного тока

Электропроводность или сопротивление клеток, тканей, органов и целых организмов измеряют при пропускании через них постоянного или переменного синусоидальной формы тока, частота которого может изменяться от долей герца до 10 10 гц. При измерениях на переменном токе с круговой частотой ω (ω = 2πf, где f — частота в гц) общее сопротивление системы, или импеданс (см.), зависит от наличия границ раздела в системе, на которых может происходить накопление зарядов — поляризация (см.). Свойства границ раздела (в биологическом объекте это главным образом различные мембраны) могут быть описаны, если ввести понятие емкости С, сопротивление которой Хс (реактивное сопротивление в отличие от R — активного сопротивления) зависит от частоты, на которой производится измерение: Xс = 1/(ωC).

Общее сопротивление (Z) равно сумме сопротивлений реактивного Хc и активного R, если R и С соединены последовательно; при параллельном соединении R и С общее сопротивление рассчитывается по формуле:

El provod form.png

Для измерения электрических характеристик биол. объекта применяют металлические или угольные электроды (см.), которые прикладывают к объекту с помощью жидкостного контакта — тонкого слоя хорошо проводящей жидкости, чаще всего — физиологического раствора. В ряде случаев, напр. при измерении электропроводности цитоплазматических мембран, один из электродов вводится внутрь клетки, а другой подводится к клетке снаружи (см. Микроэлектродный метод исследования). При измерении электропроводимости биологических систем на постоянном и переменном токах низкой частоты важно учитывать величину поляризации электродов, поскольку за счет электродной поляризации истинные электрические параметры биол, объекта могут значительно отличаться от измеренных. Величина поляризации электродов определяется плотностью тока, которая зависит от приложенной к системе разности потенциалов, сопротивления системы, площади измерительных электродов. Чем больше площадь электродов, тем меньше плотность тока и тем меньше искажения, вносимые в измерения электродами. Поэтому для уменьшения плотности тока используют электроды с большой эффективной поверхностью, в частности платиновые электроды, покрытые платиновой чернью (их губчатое покрытие увеличивает эффективную поверхность электродов в 100 — 1000 раз). Возможно применение и так называемых неполяризующихся электродов (например, каломельных, хлорсеребряных).

Для облегчения интерпретации получаемых результатов биологическую систему (ткани, суспензии клеток) часто представляют в виде модели — электрической схемы, состоящей из набора активных сопротивлений и емкостей, являющихся как бы эквивалентами биологических структур клеток или тканей, участвующих в проведении электрического тока.

Измерение электропроводимости биологических систем на постоянном токе из-за высокой степени поляризации мембран и электродов крайне затруднено. На низких частотах переменного тока большая часть тока протекает по межклеточным промежуткам. При увеличении частоты электрического тока реактивное сопротивление емкости падает, поляризационные явления уменьшаются. Зависимость сопротивления и емкости объекта от частоты получила название дисперсии (см.). На высоких частотах общее сопротивление системы зависит только от активных сопротивлений межклеточных пространств и цитоплазмы.

В медицине и биологии электропроводимость биологических систем чаще всего исследуют в области так называемой β-дисперсии, которая наблюдается в диапазоне частот 10 2 —10 8 гц и определяется поляризацией границ раздела и неоднородностью структуры объекта. Измерения электропроводимости биологических систем показали, что по мере повышения частоты электропроводность возрастает, достигая предельной величины. При переживании и отмирании ткани возрастает электропроводимость биологических систем на низких частотах. Это связано с тем, что при отмирании ткани растет проницаемость мембран для ионов, и они уже не являются границей, на которой может происходить поляризация. Основываясь на способности живой ткани к поляризации, Б. Н. Тарусов предложил в качестве критерия оценки жизнеспособности ткани использовать коэффициент К, численно равный отношению Rн/Rв где Rн и Rв — сопротивления ткани, измеренные соответственно на низкой и высокой частотах; при отмирании ткани он стремится к единице. Выбор частот для расчета К определяется диапазоном β-дисперсии: низкой частоте соответствует частота начала β-дисперсии, высокой — частота, при которой электропроводимость биологических систем достигает максимальной величины. Например, для мышечной ткани — это 10 3 и 10 6 гц, клеток крови и жировой ткани — 10 4 и 10 7 гц, кожи — 10 2 и 10 4 гц и т. д. На высоких частотах, когда активное и общее сопротивления не зависят от частоты, возможно исследование относительных изменений числа ионов в биол. системе, связанных с нарушением водно-солевого обмена.

Читайте также:  Определить работу сторонних сил внутри источника тока

Сопоставляя Данные, полученные при измерении на низких и высоких частотах, можно вычислить объем и ионную проводимость межклеточных пространств и цитоплазмы клеток, проницаемость мембран для ионов, емкостные характеристики мембраны. Если измерения проводятся в системе, где межклеточные пространства занимают достаточно большой объем (более 20—30%), например при измерениях электропроводности крови, то для вычисления параметров дисперсной фазы (эритроцитов) используют специальные формулы. Частоты, на которых наблюдается дисперсия, зависят от величины клеток и объема межклеточных пространств. Так, дисперсия электропроводимости биологических систем для клеток крови начинается на частотах порядка нескольких десятков килогерц, для мышечной ткани — несколько килогерц, жировой — сотен килогерц. При исследовании электрических характеристик плазматических мембран клеток дисперсия обнаруживается на частотах порядка нескольких десятков герц. Электрические характеристики тканей и органов на низких частотах зависят от неоднородности расположения клеток и межклеточных пространств и соотношения их объемов. Этот факт используется в реографии и реоэнцефалографии (см.) при исследовании изменений кровенаполнения ткани и эластических свойств стенок сосудов. Измерение электропроводимости биологических систем на низких частотах позволяет оценить изменения объема межклеточных пространств, в частности при развитии воспаления (см.). Так, на первых стадиях воспалительного процесса структура клеток изменяется незначительно, и импеданс клеток сохраняет свою величину. По мере набухания клеток и уменьшения объема межклеточных пространств происходит увеличение общего сопротивления системы. На более поздних стадиях развития воспаления импеданс системы уменьшается за счет возрастания проницаемости мембран для различных ионов.

Таким образом, измерение электропроводимости биологических систем или импеданса, особенно в широком диапазоне частот, может быть использовано при исследовании проницаемости клеточных мембран и других границ раздела в клетках, тканях, органах, а стандартизация (измерение удельных величин) дает возможность сравнивать данные, полученные разными исследователями. Возбуждение, изменение интенсивности метаболизма и других функций клеток приводят к изменению электропроводимости биологических систем. Методы измерения электропроводимости биологических систем используют для исследования влияния на биологические объекты различных факторов: работы (увеличение интенсивности метаболизма приводит к увеличению проницаемости мембран); психогенных (изменяется проницаемость кожи за счет работы потовых желез); физических (радиация, ультрафиолетовое излучение, температура и др.) и химических (кислоты, щелочи, спирты и др.), обычно сопровождаемых ростом проницаемости. Изменение проницаемости мембран часто зависит от дозы или концентрации действующего вещества. Так, соли меди в малых концентрациях уменьшают проницаемость мембран мышечных клеток кожи лягушки, а в концентрациях более 10 -3 М — увеличивают. Исследование электрических свойств возбудимых тканей способствовало изучению механизма проведения возбуждения по нерву п мышце. На основании измерений активного сопротивления, емкости и их дисперсии была вычислена статическая емкость клеточной мембраны (около 1 мкф/см 2 ) и впервые определена толщина ее липидного бислоя. Было найдено, что удельное сопротивление аксоплазмы и миоплазмы всего в 2—3 раза выше сопротивления внеклеточной жидкости, тогда как сопротивление мембраны выше в десятки тысяч раз. Эти данные послужили основанием для возникновения представления о «кабельной» структуре волокна. Установлены временные соотношения между изменением проницаемости мембраны для ионов и развитием потенциала действия — «импедансный спайк» (см. Биоэлектрические потенциалы, Нервный импульс). Исследование электропроводимости биологических систем может быть использовано для оценки состояния тканей при их консервации, а также эффективности действия биологически активных веществ на модельные системы. В ряде случаев проницаемость биол. мембран для ионов сопряжена с их проницаемостью для незаряженных частиц— сахаров, аминокислот и других соединений. Поэтому измерение электропроводимости биологических систем может оказаться полезным при изучении проницаемости мембран и для неэлектролитов. Исследование электпроводимости биологических систем может найти применение и в биотехнологии для оценки оптимальности среды и условий культивирования клеток.

Библиогр.: Андреев В. С. Кондуктометрические методы и приборы в биологии и медицине, М., 1973; Биофизика, под ред. Б. Н. Тарусова и О. Р. Колье, с. 186, М., 1968; Гречин В. Б. и Боровикова В. Н. Медленные неэлектрические процессы в оценке функционального состояния мозга человека, с. 22, Л, 1982; Гуревич М. И. и др. Импедансная реоплетизмография, Киев, 1982; Егоров Ю. В. и Кузнецова Г. Д. Мозг как объемный проводник, М., 1976; Слынько П. П. Основы низкочастотной кондуктометрии в биологии, М., 1972; Хассет Дж. Введение в психофизиологию, пер. с англ., с. 53, М., 1981; Электроника и кибернетика в биологии и медицине, пер. с англ., под ред. П. К. Анохина, с. 71, М., 1963; Schwan Н. P. Electrical properties of tissue and cell suspensions, Advanc, biol. med. Phys., v. 5, p. 147, 1957.

Источник

Проводимость биологических объектов для переменного тока

date image2014-02-03
views image7301

facebook icon vkontakte icon twitter icon odnoklasniki icon

Таким образом, действие постоянного электрического тока на биологические объекты всегда сопровождается явлением поляризации. Это, с одной стороны, вносит дополнительные трудности при определении их сопротивления, а с другой – повышает вероятность повреждающего действия тока на клетки. Эти недостатки менее выражены при действии переменного тока. Используемый впервые Кольраушем (Kohlrausch) для измерениия сопротивления электролитов, переменный ток широко используется в настоящее время для изучения омических и емкостных свойств тканей. Было установлено, что:

Читайте также:  Трансформаторы тока для выжигателя

А. Сопротивление биологических объектов переменному току ниже, чем постоянному.

Б. Сопротивление не зависит от величины тока, если эта величина ниже физиологической нормы.

В.Сопротивление биологических объектов при данной частоте постоянно, если не меняется их физиологическое состояние.

Г.Сопротивление биологических объектов при данной частоте падает, если изменяетя физиологическое состояние в сторону отмирания тканей.

Дисперсия электропроводности. При исследовании биологических объектов было установлено, что с увеличением частоты тока их электропроводность растет. Зависимость электропроводности от частоты переменного тока получила название дисперсии электропроводности. Диапазон частот проявляющейся дисперсии располагается в интервале 10 2 – 10 8 Гц, и характерна эта зависимость для всех тканей (Рис.14).

Рис.14. Зависимость электропроводности от частоты переменного тока. По оси абсцисс круговая частота переменного тока; По оси ординат – сопротивление биологического объекта

Рост электропроводности связан с тем, что при малых частотах проявляются эффекты поляризации, которые по мере увеличения частот переменного тока сказываются меньше.

Коэффициент жизнеспособности (поляризации) Б.Н.Тарусова. Дисперсия электропроводности характерна только для живых объектов (она отсутствует у растворов электролитов). По мере отмирания тканей резко увеличивается низкочастотная (при той же высокочастотной) компонента. Для оценки жизнеспособности тканей Б.Н.Тарусовым был предложен коэффициент:

R10 4 -сопротивление при частоте тока 10 4 Гц

R10 6 -сопротивление при частоте тока 10 6 Гц.

При отмирании тканей К стремится к 1.

Импеданс – суммарное сопротивление тканей. Сопротивление биологических объектов определяется прохождением тока через активную (омическую) и реактивную (емкостную) составляющие. Эквивалентные электрические схемы биологических объектов (последовательное и параллельное соединение и т.д.) были представлены ранее (см. Рис.13). Для оценки представленных значений требуется знать суммарное сопротивление тканей, которое получило название импеданса (Z). Под импедансом биологических объектов понимают геометрическую сумму омического и емкостного сопротивлений.

При последовательном соединении емкостного и омического сопротивления ток, идущий через емкость, равен току, идущему через омическое сопротивление:

а падение напряжения различно:

где: R – омическое сопротивление, а

где: w – круговая частота переменного тока в Гц, w=2pn (n- частота переменного тока), С – емкость

Общее приложенное напряжение будет векторной суммой емкостного и омической составляющей сопротивления:

По правилу сложения векторов: , а в этом случае импеданс (Z) будет равен:

При параллельном соединении емкостного и омического сопротивления падение напряжения, прилагаемое к омическому сопротивлению и емкости, одинаково:

а ток складывается из суммы векторов:

В этом случае импеданс будет равен:

Как видно из представленных расчетов импеданса емкостная составляющая обратно пропорциональна частоте тока. Поэтому явление дисперсии электропроводности клеток и тканей есть результат уменьшения емкостного сопротивления при увеличении частоты переменного тока.

Метод измерения импеданса. Общепринятым методом измерения импеданса является мостовая схема (Рис.15).

Рис.15. Мостовая схема измерения сопротивления объекта (Rоб)

Параллельное включение в компенсирующее плечо переменного сопротивления и емкости достаточно хорошо моделирует живые клетки. Это позволяет, при всей приблизительности, получать достаточно хорошую компенсацию значений импеданса биологических.

Диэлектрическая проницаемость /ДЭП/ биологических объектов. ДЭП (e) показывает во сколько раз взаимодействие между зарядами в неограниченной однородной среде (e 1 ) меньше, чем в ваккуме (e):

Дисперсия ДЭП. Дисперсией ДЭП называется ее зависимость от частоты переменного тока. С увеличением частоты тока ДЭП биологических объектов снижается (Рис.16).

Рис.16. Дисперсия диэлектрической проницаемости биологических объектов. По оси абсцисс логарифм круговой частоты переменного тока; по оси ординат – диэлектрическая проницаемости биологических объектов

Можно выделить следующие области дисперсии ДЭП:

a – дисперсия занимает область низких частот звукового диапазона. В этой области происходит сильная поляризация электродов и начинает проявляться поверхностная поляризация клеток, их органоидов, макромолекул.

b – дисперсия занимает область частот 10 6 – 10 8 Гц. Она в большей степени зависит от вида объекта и наряду с развитием поверхностной поляризации высокополимерных соединений (макромолекул) и поляризуются молекулы и с меньшими размерами.

g – дисперсия занимает область частот выше 10 9 Гц. В этой области ДЭП зависит главным образом от содержания воды в тканях. Показана зависимость характера дисперсии в этой области от полярных свойств молекул воды.

Снижение ДЭП при увеличении частоты тока происходит по общим механизмам. Так, если время релаксации t (см. стр.) меньше значений 1/w, то молекулы успевают за изменением знака и ДЭП остается неизменной При более высоких частотах тока, когда t становится больше значений 1/w, молекулы не успевают за изменением знака и ДЭП снижается.

Источник