Меню

Защита от токов высокой частоты



Высокочастотные защиты ЛЭП

date image2015-02-04
views image3783

facebook icon vkontakte icon twitter icon odnoklasniki icon

На линиях электропередачи напряжением 110 кВ и выше средней и большой длины (несколько десятков и даже сотен километров) продольные дифференциальные защиты с соединительными проводами не могут быть применены вследствие высокой стоимости и недопустимого увеличения сопротивления соединительного кабеля. В связи с этим на таких линиях в качестве быстродействующих защит, обеспечивающих отключение без замедления повреждений на всем протяжении линии, используются высокочастотные защиты. В этих защитах обмен информацией между комплектами, установленными по концам защищаемой линии, осуществляется с помощью организованного по ней специального высокочастотного канала.

На рис. 49 показана схема организации высокочастотного канала по линии электропередачи. Ток высокой частоты в этой схеме передайся по одной из фаз линии и возвращается через землю. На каждом конце линии устанавливается высокочастотный аппарат (ВЧА) 1, состоящий из передатчика (генератора) сигналов высокой частоты ГВЧ и принимающего их приемника ПВЧ. Выходные цепи ВЧА подключаются одним зажимом к земле, а вторым — к линии электропередачи через кабель 2, фильтр присоединения 3 и конденсатор связи 4.

Сопротивление конденсатора связи, через который ВЧА подключается к линии электропередачи, зависит от частоты проходя­щего через него тока. Для токов промышленной частоты 50 Гц оно велико (больше 1 МОм) и поэтому ток утечки весьма мал. При высоких частотах (больших 10 кГц) сопротивление конденсатора резко уменьшается. В результате ток высокой частоты, проходящий по линии, будет ответвляться в конденсатор и дальше через фильтр присоединения проходить в ВЧА.

Для того чтобы токи высокой частоты не выходили за пределы защищаемой линии, по концам ее устанавливаются специальные заградители 5. Заградитель представляет собой резонансный контур, состоящий из силовой индуктивной катушки L и элемента настройки (регулируемой емкости Ск). Значение емко­сти подбирается так, чтобы контур заградителя был настроен в резонанс (тока) на частоту настройки ВЧА. Такой заградитель называется резонансным, или одночастотным. При резонансной частоте сопротивление контура имеет максимальное значение, благодаря чему предотвращается растекание тока высокой частоты. Резонансное сопротивление заградителя должно быть не меньше 1000 Ом. Для защиты конденсатора Ск от грозовых и коммутацион­ных перенапряжений предусматривается разрядник FV.

В качестве высокочастотного кабеля 2 используется кордельный кабель типа ФКБ, входное сопротивление которого близко к 100 Ом.

Рис. 49. Принципиальная схема высокочастотного канала

С помощью фильтра присоединения согласовывается (уравнивается) входное сопротивление высокочастотного кабеля и линии. Фильтр присоединения образует замкнутый контур для токов высокой частоты и компенсирует емкость конденсатора связи, что позволяет уменьшить до минимума сопротивление конденсатора для токов высокой частоты. Фильтр присоединения представляет собой воздушный трансформатор с отпайками, позволяющими менять самоиндукцию его обмоток и взаимную индуктивность между ними.

Высокочастотными защитами оснащено большинство линий напряжением 220 кВ и выше, а также большое число линий 110 кВ. Наибольшее распространение получили дифференциально-фазные высокочастотные защиты.

Принцип действия дифференциально-фазной высокочастотной защиты (ДФЗ) основана на сравнении фаз токов по концам защищаемой линии. На рис.50 показаны схемы токораспределения при внешнем КЗ (точка К.1 на рис.50а) и при повреждении на защищаемой линии (точка К2 на рис.50б). Считая положительными токи, направленные от шин в линию, можно сказать, что при внешнем КЗ токи и сдвинуты на 180° (имеют противоположные знаки), а при КЗ в зоне — совпадают. Последнее утверждение справедливо, если пренебречь сдвигом по фазе между векторами ЭДС и по концам электропередачи и различием углов полных сопротивлений и .

Таким образом, сравнивая фазы токов по концам защищаемой линии, можно определить место повреждения. В отличие от обычных дифференциальных защит, в которых значения токов сравниваются непосредственно в реле, в дифференциально-фазной защите для передачи информации о фазе токов, проходящих по концам защищаемой линии, используется канал высокой частоты.

Структурная схема защиты показана на рис.51. Защита состоит из высокочастотного аппарата ВЧА, включающего в себя ГВЧ и ПВЧ, реле отключения РО, питающегося током приемника, и пусковых реле ПО1 и П02, первое из которых пускает ГВЧ, а второе замыкает цепь отключения.

Особенность ДФЗ как высокочастотной защиты состоит в том, что ГВЧ управляется непосредственно током промышленной частоты. Генератор высокочастотных колебаний включен так, что при положительной полуволне промышленного тока он работает, посылая в канал ток высокой частоты, а при отрицательной — запирается, прекращая выдачу высокочастотных сигналов. Приемник ВЧА выполнен таким образом, что при наличии токов высокой частоты, поступающих в его входной контур, выходной ток, питающий реле РО, равен нулю, а при отсутствии высокоча­стотного сигнала появляется выходной ток, поступающий в реле РО.

При внешнем КЗ (рис.50а), когда фазы первич­ных токов по концам линии противоположны, ГВЧ на конце т линии работает в течение первого полупе­риода промышленного тока, а на конце п — в течение следующего полупериода. В результате по линии не­прерывно проходит ток вы­сокой частоты, питая прием­ники, установленные на обе­их сторонах защищаемой ли­нии. При этом в выходных цепях ПВЧ ток отсутствует, реле РО не работает и защита на отклю­чение не действует. При КЗ в зоне (рис.50б) ГВЧ на обоих концах линии работают одновременно, поскольку фазы токов промышленной частоты совпадают. Высокочастотный ток, поступающий при этом в приемники, будет иметь прерывистый характер с интервалами, рав­ными полупериоду промышленного тока. В этом случае приемник рабо­тает в промежутки времени, когда ток высокой частоты отсутствует и заперт во время его прохождения. В выходной цепи приемника появляется прерывистый ток, который сглаживается и поступает в реле РО, последнее срабатывает и замыкает цепь вклю­чения. Таким образом, сдвиг фаз токов промышленной частоты, проходящих по обоим концам защищаемой линии, определяется по характеру высокочастотных сигналов, принимаемых ПВЧ (сплош­ные или прерывистые). По принципу действия ДФЗ не реагирует на нагрузку и качания, так как в этих режимах фазы сравниваемых токов по концам защищаемой линии противоположны.

Рис.50. Диаграмма токов ДФЗ

Правильное поведение защиты при внешних КЗ будет обеспечено лишь в случае работы ГВЧ на обоих концах защищаемой линии. Если один из ГВЧ не будет за­пущен или окажется неисправным, защита подействует неправильно и отключит неповрежденную линию, так как ПВЧ будут принимать прерывистый ток только одного передатчика. Для предотвращения этого в схеме защиты (см. рис.51) имеются два пусковых органа разной чувствительности: П01 — более чувствительный, осуществ­ляющий пуск ГВЧ, и П02 — более грубый, замыкающий цепьотключения.

Рис.51. Структурная схема ДФЗ

Достоинства высокочастотных защит:

— возможность использования в сетях любой конфигурации;

Основной недостаток высокочастотных защит – высокая стоимость.

Источник

Защита от электромагнитных полей

Источниками электромагнитных полей (ЭМП) являются: атмосферное электричество, радиоизлучения, электрические и магнитные поля Земли, искусственные источники (установки ТВЧ, радиовещание и телевидение, радиолокация, радионавигация и др.). Источниками излучения электромагнитной энергии являются мощные телевизионные и радиовещательные станции, промышленные установки высокочастотного нагрева, а также многие измерительные, лабораторные приборы. Источниками излучения могут быть любые элементы, включенные в высокочастотную цепь.

Источники электромагнитных полей радиочастот и их характеристика

Токи высокой частоты применяют для плавления металлов, термической обработки металлов, диэлектриков и полупроводников и для многих других целей. Для научных исследований в медицине применяют токи ультравысокой частоты, в радиотехнике-токи ультравысокой и сверхвысокой частоты. Возникающие при использовании токов высокой частоты электромагнитные поля представляют определенную профессиональную вредность, поэтому необходимо принимать меры защиты от их воздействия на организм. Токи высокой частоты создают в воздухе излучения, имеющие ту же электромагнитную природу, что и инфра­красное, видимое, рентгеновское и гамма-излучение.

Различие между этими видами энергии — в длине волны и частоте колебаний, а значит, и в величине энергии кванта, составляющего электромагнитное поле. Электромагнитные волны, возникающие при колебании электрических зарядов (при прохождении переменных токов), называются радиоволнами. Интенсивность электромагнитного поля в какой-либо точке пространства зависит от мощности генаратора и расстояния от него. На характер распределения поля в помещении влияет наличие металлических предметов и конструкций, которые являются проводниками, а также диэлектриков, находящихся в ЭМП.

Воздействие электромагнитных полей на организм человека

Промышленная электротермия, в которой применяются токи радиочастот для электротермической обработки материалов и изделий (сварка, плавка, ковка, закалка, пайка металлов; сушка, спекание и склеивание неметаллов), широкое внедрение радиоэлектроники в народное хозяйство позволяют значительно улучшить условия труда, снизить трудоемкость работ, добиться высокой экономичности процессов производства. Однако электромагнитные излучения радиочастотных установок, воздействуя на организм человека в дозах, превышающих допустимые, могут явиться причиной профессиональных заболеваний. В результате возможны изменения нервной, сердечно-сосудистой, эндокринной и других систем организма человека.

Действие электромагнитных полей на организм человека проявляется в функциональном расстройстве центральной нервной системы; субъективные ощущения при этом-повышенная утомляемость, головные боли и т. п. Первичным проявлением действия электромагнитной энергии является нагрев, который может привести к изменениям и даже к повреждениям тканей и органов. Механизм поглощения энергии достаточно сложен. Возможны также перегрев организма, изменение частоты пульса, сосудистых реакций. Поля сверхвысоких частот могут оказывать воздействие на глаза, приводящее к возникновению катаракты (помутнению хрусталика). Многократные повторные облучения малой интенсивности могут приводить к стойким функциональным расстройствам центральной нервной системы. Степень биологического воздействия электромагнитных полей на организм человека зависит от частоты колебаний, напряженности и интенсивности поля, длительности его воздействия. Биологическое воздействие полей разных диапазонов неодинаково. Изменения, возникающие в организме под воздействием электромагнитных полей, чаще всего обратимы.

Читайте также:  Что такое электрическая цепь переменного тока с индуктивностью

В результате длительного пребывания в зоне действия электромагнитных полей наступают преждевремен­ная утомляемость, сонливость или нарушение сна, появляются частые головные боли, наступает расстройство нервной системы и др. При систематическом облучении наблюдаются стойкие нервно-психические заболевания, изменение кровяного давления, замедление пульса, трофические явления (выпадение волос, ломкость ногтей и т. п.). Аналогичное воздействие на организм человека оказывает электромагнитное поле промышленной частоты в электроустановках сверхвысокого напряжения. Интенсивные электромагнитные поля вызывают у работающих нарушение функционального состояния центральной нервной системы, сердечно-сосудистой системы и периферической крови. При этом наблюдаются повышенная утомляемость, вялость, снижение точности рабочих движений, изменение кровяного давления и пульса, возникновение болей в сердце (обычно сопровождается аритмией) , головные боли.

Предполагается, что нарушение регуляции физиологических функций организма обусловлено воздействием поля на различные отделы нервной системы. При этом повышение возбудимости центральной нервной системы происходит за счет рефлекторного действия поля, а тормозной эффект-за счет прямого воздействия поля на структуры головного и спинного мозга. Считается, что кора головного мозга, а также промежуточный мозг особенно чуствительны к воздействию поля. Наряду с биологическим действием электрическое поле обусловливает возникновение разрядов между человеком и металлическим предметом, имеющим иной, чем человек, потенциал. Если человек стоит непосредственно на земле или на токопроводящем заземленном основании, то потенциал его тела практически равен нулю, а если он изолирован от земли, то тело оказывается под некоторым потенциалом, достигающим иногда нескольких киловольт.

Очевидно, что прикосновение человека, изолированного от земли, к заземленному металлическому предмету, равно как и прикосновение человека, имеющего контакт с землей, к металлическому предмету, изолированному от земли, сопровождается прохождением через человека в землю разрядного тока, который может вызывать болезненные ощущения, особенно в первый момент. Часто прикосновение сопровождается искровым разрядом. В случае прикосновения к изолированному от земли металлическому предмету большой протяженности (трубопровод, проволочная ограда на деревянных стойках и т. п. или большого размера металлическая крыша деревянного здания и пр.) сила тока, проходящего через человека, может достигать значений, опасных для жизни.

Методы защиты от электромагнитных полей

Основные меры защиты от воздействия электромагнитных излучений: уменьшение излучения непосредственно у источника (достигается увеличением расстояния между источником направленного действия и рабочим местом, уменьшением мощности излучения генератора); рациональное размещение СВЧ и УВЧ установок (действующие установки мощностью более 10 Вт следует размещать в помещениях с капитальными стенами и перекрытиями, покрытыми радиопоглощающими материалами-кирпичом, шлакобетоном, а также материалами, обладающими отражающей способностью-масляными красками и др.); дистанционный контроль и управление передатчиками в экранированном помещении (для визуального наблюдения за передатчиками оборудуются смотровые окна, защищенные металлической сеткой); экранирование источников излучения и рабочих мест (применение отражающих заземленных экранов в виде листа или сетки из металла, обладающего высокой электропроводностью- алюминия, меди, латуни, стали); организационные меры (проведение дозиметрического контроля интенсивности электромагнитных излучений — не реже одного раза в 6 месяцев; медосмотр — не реже одного раза в год; дополнительный отпуск, сокращенный рабочий день, допуск лиц не моложе 18 лет и не имеющих заболеваний центральной нервной системы, сердца, глаз); применение средств индивидуальной защиты (спец­одежда, защитные очки и др.).

У индукционных плавильных печей и нагревательных индукторов (высокие частоты) допускается напряженность поля до 20 В/м. Предел для магнитной составляющей напряженности поля должен быть 5 А/м. Напряженность ультравысокочастотных электромагнитных полей (средние и длинные волны) на рабочих местах не должна превышать 5 В/м. Каждая промышленная установка снабжается техническим паспортом, в котором указаны электрическая схема, защитные приспособления, место применения, диапазон волн, допустимая мощность и т. д. По каждой установке ведут эксплуатационный журнал, в котором фиксируют состояние установки, режим работы, исправления, замену деталей, изменения напряженности поля. Пребывание персонала в зоне воздействия электромагнитных полей ограничивается минимально необходимым для проведения операций временем.

Новые установки вводят в эксплуатацию после приемки их, при которой устанавливают выполнение требований и норм охраны труда, норм по ограничению полей и радиопомех, а также регистрации их в государственных контролирующих органах. Генераторы токов высокой частоты устанавливают в отдельных огнестойких помещениях, машинные генераторы-в звуконепроницаемых кабинах. Для установок мощностью до 30 кВт отводят площадь не менее 40 кв. метров, большей мощности-не менее 70 кв.метров. Расстояние между установками должно быть не менее 2 м, помещения экранируют, в общих помещениях установки размещают в экранированных боксах. Обязательна общая вентиляция помещений, а при наличии вредных выделений и местная. Помещения высокочастотных установок запрещается загромождать металлическими предметами. Наиболее простым и эффективным методом защиты от электромагнитных полей является «защита расстоянием».

Экранирование — наиболее эффективный способ защиты. Электромагнитное поле ослабляется экраном вследствие создания в толще его поля противоположного направления. Степень ослабления электромагнитного поля зависит от глубины проникновения высокочастотного тока в толщу экрана. Чем больше магнитная проницаемость экрана и выше частота экранируемого поля, тем меньше глубина проникновения и необходимая толщина экрана. Экранируют либо источник излучений, либо рабочее место. Экраны бывают отражающие и поглощающие. Для защиты работающих от электромагнитных излучений применяют заземленные экраны, кожухи, защитные козырьки, устанавливаемые на пути излучения. Средства защиты (экраны, кожухи) из радиопоглощающих материалов выполняют в виде тонких резиновых ковриков, гибких или жестких листов поролона, ферромагнитных пластин.

Для защиты от электрических полей сверхвысокого напряжения (50 Гц) необходимо увеличивать высоту подвеса фазных проводов ЛЭП. Для открытых распределительных устройств рекомендуются заземленные экраны (стационарные или временные) в виде козырьков, навесов и перегородок из металлической сетки возле коммутационных аппаратов, шкафов управления и контроля. К средствам индивидуальной защиты от электромагнитных излучений относят переносные зонты, комбинезоны и халаты из металлизированной ткани, осуществляющие защиту организма человека по принципу заземленного сетчатого экрана.

Источник

Воздействие токов высокой частоты и индукционного нагрева на здоровье.

14 октября 2013

По утверждению Теслы, год, проведенный им в Питсбурге, был потерян для исследовательских работ в области многофазных токов. Возможно, что это утверждение близко к истине, но возможно и то, что именно этот год стал началом дальнейших творческих успехов изобретателя. Дискуссия с инженерами завода Вестингауза не прошла бесследно. Обоснование предложенной им частоты переменного тока в 60 периодов требовало более тщательного анализа экономической эффективности применения как меньших, так и более высоких частот. Научная добросовестность Теслы не позволяла ему оставить этот вопрос без тщательной проверки.

Возвратившись в 1889 году из Европы, он принялся за конструирование генератора переменного тока большой частоты и вскоре создал машину, статор которой состоял из 348 магнитных полюсов. Этот генератор давал возможность получать переменный ток с частотой в 10 тысяч периодов в секунду (10 кГц). Вскоре ему удалось создать и еще более высокочастотный генератор и начать изучение различных явлений при частоте 20 тысяч периодов в секунду.

Исследования показали, что по мере увеличения частоты переменного тока можно значительно уменьшить объем железа в электромагнитных электродвигателях, а начиная с определенной частоты, можно создавать электромагниты, состоящие из одних только обмоток, вообще без железа в катушках. Двигатели, созданные из таких электромагнитов без железа, были бы чрезвычайно легкими, но во многих других отношениях неэкономичны, и уменьшение затрат металла не окупалось бы из-за значительного увеличения потребления электроэнергии.

Исследуя широкий диапазон частот переменного тока первоначально в пределах, которые могли бы быть применены в многофазной системе (25-200 периодов в секунду), Тесла вскоре перешел к изучению свойств и возможностей практического использования токов повышенных (10-20 тысяч периодов в секунду) и высоких (20-100 тысяч периодов в секунду) частот. Для получения значительно большего числа периодов и значительно более высоких напряжений, чем это могло быть достигнуто созданными им генераторами токов высокой частоты, необходимо было найти и опереться на иные принципы. Хорошо знакомый с мировой литературой по электрофизике и электротехнике, Тесла изучил работу знаменитого американского физика Джозефа Генри, высказавшего еще в 1842 году предположение, что при некоторых электрических разрядах (в том числе и разряде лейденской банки) имеются не только «главные разряды», но и встречные, причем каждый последующий несколько слабее предыдущего. Так было впервые замечено существование затухающего двухстороннего электрического разряда.

Тесла знал и о том, что спустя одиннадцать лет после Генри английский физик лорд Кельвин экспериментально доказал, что электрический разряд конденсатора есть процесс двухсторонний, продолжающийся до тех пор, пока энергия его не будет израсходована на преодоление сопротивления среды. Частота этого двухстороннего процесса достигает 100 миллионов колебаний в секунду. Искра между шариками разрядника, кажущаяся однородной, в действительности состоит из нескольких миллионов искр, проходящих в короткий промежуток времени в обе стороны.

Кельвин дал математическое выражение процесса двухстороннего разряда конденсатора. Позднее Феддерсон, Шиллер, Кирхгоф, Гельмгольц и другие исследователи не только проверили правильность этого математического выражения, но и значительно дополнили теорию электрического разряда. Знаком был Тесла и с работами Антона Обербанка, наблюдавшего явление электрического резонанса, то есть процесс резкого возрастания амплитуды (размаха) колебаний при приближении частоты внешнего колебания к частоте собственные внутренних колебаний системы.

Хорошо известны были ему и опыты Герца и Лоджа, занимавшихся изучением электромагнитных волн. Особенно большое впечатление на Теслу произвели эксперименты Генриха Герца, подтвердившие теоретические предположения Джемса К. Максвелла о волновой природе электромагнитных явлений. Надо заметить, что в работах Герца Тесла впервые нашел указание на явление так называемых «стоячих электромагнитных волн», то есть волн, накладывающихся одна на другую так, что они в одних местах усиливают друг друга, создавая «пучности», а в других уменьшают до нуля, создавая «узлы».

Читайте также:  Что может быть драйвером тока для led

Зная все это, Никола Тесла в 1891 году закончил конструирование прибора, сыгравшего исключительную роль в дальнейшем развитии самых различных отраслей электротехники и особенно радиотехники. Для создания токов высокой частоты и высокого напряжения он решил воспользоваться известным свойством резонанса, то есть явлением резкого возрастания амплитуды собственных колебаний какой-либо системы (механической или электрической) при наложении на них внешних колебаний с той же частотой. На основании этого известного явления Тесла создал свой резонансный трансформатор.

Действие резонансного трансформатора основано на настройке в резонанс его первичного и вторичного контуров. Первичный контур, содержащий как конденсатор, так и индукционную катушку, позволяет получить переменные токи весьма высокого напряжения с частотами в несколько миллионов периодов в секунду. Искра между шариками разрядника вызывает быстрые изменения магнитного поля вокруг первичной катушки вибратора. Эти изменения магнитного поля вызывают возникновение соответствующего высокого напряжения в обмотке вторичной катушки, состоящей из большого числа витков тонкой проволоки, причем частота переменного тока в ней соответственно количеству искровых разрядов достигает нескольких миллионов перемен в секунду.

Наибольшей величины частота достигает в момент, когда периоды первичной и вторичной цепи совпадают, то есть когда наблюдается явление резонанса в этих цепях.

Тесла разработал очень простые методы автоматической зарядки конденсатора от источника тока низкого напряжения и разрядки его через трансформатор с воздушным сердечником. Теоретические расчеты изобретателя показали, что даже при самых незначительных величинах емкости и индукции в созданном им резонансном трансформаторе при соответствующей настройке можно получить путем резонанса весьма высокие напряжения и частоты.

Открытые им в 1890 году принципы электрической настройки резонансного трансформатора и возможность изменять емкость для изменения длины волны электромагнитных колебаний, создаваемых трансформатором, стали одним из наиболее важных оснований радиотехники, а мысли Теслы об огромной роли конденсатора и вообще емкости и самоиндукции в развитии электротехники оправдались.

При создании резонансного трансформатора пришлось решить еще одну практическую задачу: найти изоляцию для катушек сверхвысокого напряжения. Тесла занялся вопросами теории пробоя изоляции и на основании этой теории нашел лучший способ изолировать витки катушек — погружать их в парафиновое, льняное или минеральное масло, называемое теперь трансформаторным. Позднее Тесла еще раз возвратился к разработке вопросов электрической изоляции и сделал весьма важные выводы из своей теории.

Едва начав опыты с токами высокой частоты, Никола Тесла ясно представил себе огромные перспективы, открывавшиеся перед человечеством при широком использовании токов высокой частоты. Направление работ Теслы свидетельствует о необычайно разносторонних выводах, которые он сделал из своего открытия.

Прежде всего, он пришел к убеждению, что электромагнитные волны играют исключительно важную роль в большинстве явлений природы. Взаимодействуя друг с другом, они либо усиливаются, либо ослабляются, либо вызывают новые явления, происхождение которых мы иногда приписываем совершенно другим причинам. Но не только электромагнитные излучения играют огромную роль в самых различных явлениях природы. Тесла интуицией большого ученого понял значение различных излучений еще до замечательных открытий радиоактивных элементов. Когда позднее, в 1896 году, Анри Беккерель, а затем Пьер и Мария Кюри открыли это явление, Тесла нашел в этом подтверждение своих предвидений, высказанных им еще в 1890 году.

Огромное значение переменных токов в развитии промышленности, получившей, наконец, необходимый ей электродвигатель, стало ясно Николе Тесле при первом же знакомстве с преимуществами трехфазного тока, требующего для его передачи всего лишь три провода. Для Теслы уже в то время было несомненно, что должен быть открыт способ передачи электроэнергии и вовсе без проводов, с помощью электромагнитных волн. Эта проблема привлекла внимание Теслы, стала предметом его занятий еще в конце 1889 года.

Однако практическое применение токов высокой частоты для самых разнообразных целей требовало изучения на первый взгляд самых различных, не связанных между собой вопросов. Эти-то эксперименты в широком масштабе и начал проводить в своей лаборатории Никола Тесла.

Начав систематические опыты с токами высокой частоты и высокого напряжения, Тесла должен был прежде всего разработать меры защиты от опасности поражения электрическим током. Эта частная, вспомогательная, но весьма важная задача привела его к открытиям, заложившим основу электротерапии — обширной области современной медицины.

Ход мыслей Николы Теслы был чрезвычайно оригинален. Известно, рассуждал он, что постоянный ток низкого напряжения (до 36 вольт) не оказывает вредных действий на человека. По мере повышения напряжения возможность поражения быстро возрастает.

С увеличением напряжения, поскольку сопротивление тела человека практически неизменно, сила тока так же увеличивается и достигает при 120 вольтах угрожающей величины. Более высокое напряжение становится опасным для здоровья и жизни людей.

Иное дело ток переменный. Для него предел опасного напряжения значительно выше, чем для постоянного, и этот предел отодвигается с повышением частоты. Известно, что электромагнитные волны очень высокой частоты не оказывают никакого болезненного действия на человека10. Пример тому свет, воспринимаемый при нормальной яркости здоровым глазом без всяких болезненных ощущений. В пределах каких же частот и напряжений переменный ток опасен? Где начинается зона безопасного тока?

Шаг за шагом исследовал Тесла действие переменного электрического тока на человека при разных частотах и напряжениях. Опыты он проводил на самом себе. Сначала через пальцы одной руки, затем через обе руки, наконец, через все тело пропускал он токи высокого напряжения и высокой частоты. Исследования показали, что действие электрического тока на человеческий организм складывается из двух составляющих: воздействия тока на ткани и клетки нагревом и непосредственного воздействия тока на нервные клетки.

Оказалось, что нагревание далеко не всегда вызывает разрушительные и болезненные последствия, а воздействие тока на нервные клетки прекращается при частоте свыше 700 периодов, аналогично тому, как слух человека не реагирует на колебания свыше 2 тысяч в секунду, а глаз — на колебания за пределами видимых цветов спектра.

Так была установлена безопасность токов высоких частот даже при высоких напряжениях. Более того, тепловые действия этих токов могли быть использованы в медицине, и это открытие Николы Теслы нашло широкое применение; диатермия, лечение УВЧ и другие методы электротерапии есть прямое следствие его исследований. Тесла сам разработал ряд электротермических аппаратов и приборов для медицины, получивших большое распространение как в США, так и в Европе. Его открытие было затем развито другими выдающимися электриками и врачами.

Однажды, занимаясь опытами с токами высокой частоты и доведя напряжение их до 2 миллионов вольт, Тесла случайно приблизил к аппаратуре медный диск, окрашенный черной краской. В то же мгновение густое черное облако окутало диск и тотчас поднялось вверх, а сам диск заблестел, словно чья-то невидимая рука соскоблила всю краску и отполировала его.

Удивленный Тесла повторил опыт, и снова краска исчезла, а диск сиял, поддразнивая ученого. Повторив десятки раз опыты с разными металлами, Тесла понял, что он открыл способ их очистки токами высокой частоты.

«Любопытно, — подумал он, — а не подействуют ли эти токи и на кожу человека, не удастся ли с их помощью снимать с нее различные, трудно поддающиеся удалению краски».

И этот опыт удался. Кожа руки, окрашенная краской, мгновенно стала чистой, как только Тесла внес ее в поле токов высокой частоты. Оказалось, что этими токами можно удалять с кожи лица мелкую сыпь, очищать поры, убивать микробы, всегда в изобилии покрывающие поверхность тела человека. Тесла считал, что его лампы оказывают особое благотворное действие не только на сетчатку глаза, но и на всю нервную систему человека. К тому же лампы Теслы вызывают озонирование воздуха, что также может быть использовано в лечении многих болезней. Продолжая заниматься электротерапией, Тесла в 1898 году сделал обстоятельное сообщение о своих работах в этой области на очередном конгрессе Американской электротерапевтической ассоциации в Буффало.

В лаборатории Тесла пропускал через свое тело токи напряжением в 1 миллион вольт при частоте 100 тысяч периодов в секунду (ток достигал при этом величины в 0,8 ампера). Но, оперируя с токами высокой частоты и высокого напряжения, Тесла был очень осторожен и требовал от своих помощников соблюдения всех им самим выработанных правил безопасности. Так, при работе с напряжением в 110- 50 тысяч вольт при частоте в 60-200 периодов он приучил их работать одной рукой, чтобы предотвратить возможность протекания тока через сердце. Многие другие правила, впервые установленные Теслой, прочно вошли в современную технику безопасности при работе с высоким напряжением.

Создав разнообразную аппаратуру для производства опытов, Тесла в своей лаборатории начал исследование огромного круга вопросов, относящихся к совершенно новой области науки, в которой его больше всего интересовали возможности практического использования токов высокой частоты и высокого напряжения. Работы его охватывали все многообразие явлений, начиная от вопросов генерирования (создания) токов высокой частоты и кончая детальным изучением различных возможностей их практического использования. С каждым новым открытием возникали все новые и новые проблемы.

Читайте также:  Для чего измеряют ток холостого хода трансформатора

Как одна из частных задач Теслу заинтересовала возможность использовать открытие Максвеллом и Герцем электромагнитной природы света. У него возникла мысль: если свет представляет собой электромагнитные колебания с определенной длиной волны, нельзя ли искусственно получить его не путем нагрева нити электрической лампы накаливания (что дает возможность использовать лишь 5 процентов энергии, превращающейся в световой поток), а путем создания таких колебаний, которые вызвали бы появление световых волн? Эта задача и стала предметом исследований в лаборатории Теслы в начале 1890 года.

Вскоре он накопил огромное количество фактов, позволивших перейти к обобщениям. Однако осторожность Теслы заставила его проверять десятки и сотни раз каждое свое утверждение. Он повторял сотни раз каждый опыт, прежде чем делал из него какие-либо выводы. Необычайность всех открытий Николы Теслы и огромный авторитет его привлекли внимание руководителей Американского института электроинженеров, вновь, как и три года назад, пригласивших Теслу прочесть лекцию о своих работах. Тесла избрал тему: «Опыты с переменными токами весьма высокой частоты и их использование для искусственного освещения».

По традиции, установившейся с первых лет существования института, было разослано ограниченное число приглашений лишь самым выдающимся электротехникам. Перед такой избранной аудиторией 20 мая 1892 года Тесла и прочел одну из своих самых вдохновенных лекций и продемонстрировал опыты, уже осуществленные им в своей лаборатории.

— Нет ничего, что в большей степени могло бы привлечь внимание человека и заслужило бы быть предметом изучения, чем природа. Понять ее огромный механизм, открыть ее созидательные силы и познать законы, управляющие ею, — величайшая цель человеческого разума, — этими словами начал Тесла свое выступление.

И вот он уже демонстрирует перед слушателями результаты своих исследований в новой, еще никем не изученной области токов высокой частоты.

— Рассеяние электромагнитной энергии в пространстве, окружающем источник токов высокой частоты, позволяет использовать эту энергию для самых различных целей, — убежденно говорит ученый и тут же показывает замечательный опыт. Он выдвигает гениальное положение о возможности передачи электроэнергии без проводов и в доказательство заставляет как обычные лампы накаливания, так и специально им созданные лампы без нитей внутри светиться, внося их в переменное электромагнитное поле высокой частоты. — Освещение лампами подобного рода, — говорит Тесла, — где свет возникает не под действием нагрева нитей протекающим током, а вследствие особых колебаний молекул и атомов газа, будет проще, чем освещение современными лампами накаливания. Освещение будущего, — подчеркивал ученый, — это освещение токами высокой частоты.

Особенно подробно остановился Тесла на описании своего резонансного трансформатора как источника волн весьма высокой частоты и снова подчеркнул значение разряда конденсатора в создании таких колебаний. Тесла правильно оценил большое будущее этой важнейшей детали современных радиотехнических средств. Он выразил эту мысль следующими словами:

— Я думаю, что разряд конденсатора будет в будущем играть важную роль, так как он не только предоставит возможность получать свет более простым способом в том смысле, какой указывает изложенная мною теория, но окажется важным и во многих других отношениях.

Подробно изложив результаты экспериментов с токами высокой частоты, получаемыми с помощью резонансного трансформатора, Тесла завершил лекцию словами, свидетельствующими о его ясном представлении значения дальнейшего изучения явлений, над которыми его работы едва приоткрыли завесу тайны:

— Мы проходим с непостижимой скоростью через бесконечное пространство; все окружающее нас находится в движении, и энергия есть повсюду. Должен найтись более прямой способ утилизировать эту энергию, чем известные в настоящее время. И когда свет получится из окружающей нас среды и когда таким же образом без усилий будут получаться все формы энергии из своего неисчерпаемого источника, человечество пойдет вперед гигантскими шагами.

Одно созерцание этой великолепной перспективы подымает наш дух, укрепляет нашу надежду и наполняет наши сердца величайшей радостью.

Под бурные аплодисменты Тесла закончил свое замечательное выступление. Необычайность всего показанного и особенно смелые выводы ученого, видевшего революционные последствия своих открытий, поразили слушателей, хотя далеко не все поняли содержание лекции так глубоко, как того хотелось бы Николе Тесле.

Источник

Защита от токов высокой частоты

Высокочастотные (ВЧ) РЗ являются быстродействующими и предназначаются для ЛЭП 110, 220 кВ и линий СВН. Они применяются для быстрого отключения линии при КЗ в любой ее точке с целью обеспечения устойчивости параллельной работы электрических станций и энергосистем в целом, а также в связи с ростом требований со стороны потребителей для сохранения устойчивости технологического процесса.

Высокочастотные РЗ (ВЧЗ) состоят из двух комплектов, расположенных по концам защищаемой ЛЭП. Особенность ВЧЗ заключается в том, что для их селективного действия необходима связь между комплектами защиты, осуществляемая посредством токов ВЧ, которые передаются по проводам защищаемой ЛЭП. По принципу своего действия ВЧЗ не реагируют на КЗ вне защищаемой ЛЭП и поэтому, так же как дифференциальные РЗ, не имеют выдержки времени. Применяются три вида ВЧЗ : направленные РЗ с ВЧ-блокировкой, основанные на сравнении направления знаков мощности по концам защищаемой ЛЭП; дифференциально-фазные ВЧЗ, основанные на сравнении фаз токов КЗ по концам ЛЭП; комбинированные направленные и дифференциально-фазные ВЧЗ, сочетающие оба упомянутые выше принципа. В связи с указанными особенностями перечисленные РЗ состоят из двух частей — релейной и высокочастотной.

3 Октябрь, 2011 Комментариев: 5 Прочесть

ПРИНЦИП ДЕЙСТВИЯ НАПРАВЛЕННОЙ ЗАЩИТЫ С ВЧ-БЛОКИРОВКОЙ

Направленная ВЧЗ реагирует на направление (знак) мощности КЗ по концам защищаемой ЛЭП. Как видно из рис. 13.1, о, при КЗ на защищаемой ЛЗП (в точке К1) мощности КЗ на обоихконцах поврежденного участка АВ имеют одинаковое направление от шин в ЛЭП.

В случае же внешнего КЗ (точка К2) направления мощности по концам защищаемой ЛЭП различны. На ближайшем к месту повреждения конце (В) ЛЭП мощность КЗ SB отрицательна (направлена к шинам), а на удаленном (конец А) — положительна (направлена от шин в ЛЭП).

3 Октябрь, 2011 : 0 Прочесть

ПРИНЦИП ДЕЙСТВИЯ ДИФФЕРЕНЦИАЛЬНО-ФАЗНОЙ ВЫСОКОЧАСТОТНОЙ ЗАЩИТЫ

Принцип действия. Дифференциально-фазная ВЧЗ (ДФЗ) основана на сравнении фаз тока по концам защищаемой ЛЭП. Считая положительными токи, направленные от шин в ЛЭП, находим, что при внешнем КЗ в К1 (рис. 13.3, а) токи Im и In по концам защищаемой ЛЭП имеют различные знаки и, следовательно, их можно считать сдвинутыми по фазе на 180°. В случае же КЗ на защищаемой ЛЭП (рис. 13.3,6) токи на ее концах имеют одинаковые знаки и их можно принять совпадающими по фазе, если пренебречь сдвигом векторов ЭДС Еm и En по концам электропередачи и различием углов полных сопротивлений Zm и Zn [28].

3 Октябрь, 2011 Комментариев: 4 Прочесть

ПРИНЦИПЫ ВЫПОЛНЕНИЯ И РАБОТЫ ВЫСОКОЧАСТОТНОЙ ЧАСТИ ЗАЩИТЫ

Канал токов высокой частоты. Высокочастотный канал представляет собой электрическую цепь, по которой проходят сигналы ВЧ. На рис. 13.6 показан ВЧ-канал по схеме фаза-земля, при котором ток ВЧ проходит по одному из проводов ЛЭП и возвращается по земле. На каждом конце ЛЭП устанавливаются высокочастотные аппараты (ВЧА) 1, состоящие из передатчика ГВЧ, генерирующего сигналы ВЧ, и принимающего их приемника ПВЧ. Выходная цепь ВЧА подключается одним зажимом к земле, а вторым к проводу ЛЭП через ВЧ кабель 2 фильтр присоединения 3 и высоковольтный конденсатор связи 4. По концам ЛЭП, используемой для передачи токов ВЧ, устанавливаются заградители 5, запирающие выход токам ВЧ за пределы ЛЭП.

3 Октябрь, 2011 : 0 Прочесть

СХЕМЫ НАПРАВЛЕННЫХ ЗАЩИТ С ВЫСОКОЧАСТОТНОЙ БЛОКИРОВКОЙ

Основные функциональные элементы ВЧЗ. Упрощенная схема, поясняющая принцип выполнения и структурные элементы ВЧЗ, показана на рис. 13.11. Релейная часть РЗ состоит из трех основных элементов: пускового органа (ПО), органа направления мощности (OHM) KW и блокирующего реле КБ.

3 Октябрь, 2011 : 0 Прочесть

СХЕМА ДИФФЕРЕНЦИАЛЬНО-ФАЗНОЙ ВЧ-ЗАЩИТЫ

Основные органы дифференциально-фазной защиты и особенности их выполнения. Диффазная защита (рис. 13.16) со- состоит из следующих основных органов: пусковых органов тока П01 (1.KAZ1) и П02 (1.KAZ2), пускающих передатчик и разрешающих РЗ действовать при КЗ; органа манипуляции, управляющего (с помощью 2-ТМ) ВЧ-передатчиком в зависимости от знака сравниваемых токов, и органа сравнения фаз токов, действующего на отключение при совпадении фаз токов, проходящих по концам ЛЭП. ДФЗ не реагирует на нагрузку, поэтому ПО в схемах этой защиты не является обязательным. Однако при его отсутствии любое нарушение непрерывной циркуляции токов ВЧ будет приводить к срабатыванию РО и ложному отключению ЛЭП. Поэтому во всех схемах ДФЗ применяются ПО, отстроенные от токов нагрузки.

3 Октябрь, 2011 : 0 Прочесть

НОВАЯ НАПРАВЛЕННАЯ ЗАЩИТА С ВЧ-БЛОКИРОВКОЙ ПДЭ-2802 НА ИНТЕГРАЛЬНЫХ МИКРОСХЕМАХ

Защита предназначена для ЛЭП 110-330 кВ, не имеющих ОАПВ, в качестве основной быстродействующей РЗ от всех видов КЗ.

Защита может применяться и на ЛЭП с ответвлениями с выполнением мероприятий, исключающих ее неселективное действие при КЗ за трансформаторами ответвлений. При маломощных ответвлениях ВЧЗ ЛЭП удается отстроить от таких КЗ с помощью дополнительного комплекта ПО, предусмотренного в ВЧЗ. При мощных присоединениях отстройка с помощью ПО невыполнима. В таких случаях для обеспечения селективности на ответвлении устанавливается дополнительно упрощенная ВЧЗ типа ПДЭ-2802. Она срабатывает при КЗ за трансформаторами и посылает токи ВЧ на оба конца основной ЛЭП, блокируя действие установленной на ней ВЧЗ ПДЭ-2802.

Источник