Меню

Законы параллельного соединения потребителей тока



Последовательное и параллельное соединение. Применение и схемы

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Posledovatelnoe soedinenie

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой. Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка. Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Parallelnoe soedinenie

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно. Если их соединить последовательно, то при включении одной лампочки мы включим все остальные. При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Работа тока

Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:

А = I х U х t, где А – работа тока, t – время течения по проводнику.

Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:

А=I х (U1 + U2) х t

Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:

Р=U х I

После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:

Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

Parallelnoe soedinenie girliandy

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

Posledovatelno kondensatory

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

qобщ= q1 = q2 = q3

Для определения напряжения на любом конденсаторе, необходима формула:

U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

С= q/(U1 + U2 + U3)

Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:

1/С= 1/С1 + 1/С2 + 1/C3

Немного иначе рассчитывается параллельное соединение конденсаторов.

Parallelno kondensatory

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

С= (q1 + q2 + q3)/U

Это значение рассчитывается как сумма каждого прибора в схеме:

С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Читайте также:  Эксплуатация источников постоянного тока

Smeshannoe soedinenie

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:
  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов. Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

Источник

Параллельное и последовательное соединение проводников в электрической цепи

При монтаже электрических цепей в электротехнике применяют последовательное и параллельное соединение проводников. От выбранного способа соединения источников и потребителей в значительной мере зависят рабочие параметры подключенного оборудования. Поэтому особенности обоих методов построения схемы обязательно должны учитываться при проектировании электроцепей.

Параллельное и последовательное подключение проводов в электроцепи: обложка

Что такое параллельное соединение проводников

При данном способе в составе схемы в крайних точках соединяются начала и концы всех нагрузок, подключенных к источнику электротока. Сами же нагрузки размещаются параллельно по отношению друг к другу. Количество подключенных по такой схеме компонентов не ограничивается. Схема используется во многих сферах, позволяя решать разные задачи компоновки сетей. Например, часто задействуют параллельное соединение аккумуляторов.

Включение параллельной цепи

При контрольном измерении значения вольтажа электроприборов вольтметр будет показывать одинаковые величины. Это означает, что электронапряжение на каждой нагрузке будет равняться общей величине вольтажа, действующего в электрической цепи.

Схема и формулы параллельного соединения приборов

Особенностью схемы параллельного соединения можно назвать разветвление цепи. В месте разветвления происходит деление заряда с направлением его частей по отдельной линии к соответствующему проводнику. Поэтому общая величина тока будет равна суммарному значению токов на каждой из включенных нагрузок.

Совокупное электрическое сопротивление всей электроцепи имеет меньшее абсолютное значение, по сравнению с каждым из приборов.

Что такое последовательное соединение проводников

Суть этого способа заключается в том, что компоненты цепи подключаются друг к другу поочередно. Первый проводник одним проводом подключается к источнику питания. Второй его провод соединяется со вторым проводником, от которого идет конец на третий проводник и т.д., пока цепь не будет замкнута. Классическим примером последовательной электроцепи можно назвать подключение лампочек в гирлянде.

Выключенное последовательное соединение

Ток проходит по цепи приборов, состоящей из резисторов, ламп или других нагрузок, протекая через каждый включенный в электроцепь прибор. В собранной таким способом цепи отсутствует эффект деления и накопления заряда на разных ее участках. Соответственно, физическая величина ампеража будет на всех участках одинаковой.

Схема последовательного соединения

Совокупное электросопротивление всех последовательно соединенных нагрузок, приборов и устройств любого типа равняется сумме их индивидуальных сопротивлений. Таким образом, его значение прямо зависит от количества подключенных приборов и их параметров.

Аналогично рассчитывается и совокупный вольтаж. Он равняется сумме напряжений, действующих на каждом отдельном электроприборе.

Разница между последовательным и параллельным соединением, преимущества и недостатки

Принципиальные отличия между последовательным и параллельным соединение проводников по ключевым электротехническим параметрам приведены в таблице:

Параметр/тип соединения Последовательное Параллельное
Электросопротивление Равняется сумме электросопротивлений всех электропотребителей. Меньше значения электросопротивления каждого отдельного из подключенных электроприборов.
Напряжение Равняется совокупному вольтажу всех электропотребителей. Одинаковая величина на всех участках электроцепи.
Сила тока Одинаковая величина на всех участках электроцепи. Равняется совокупному значению токов на каждом из приборов.

Сравнение свечения ламп при разном соединении

Плюсы и минусы последовательного соединения

Основными преимуществам электроцепей из последовательно соединенных приборов являются их следующие особенности:

  • простота проектирования и построения схемы;
  • низкая стоимость комплектации;
  • возможность подключения приборов, рассчитанных на меньшее рабочее напряжение, по сравнению с номинальным напряжением сети;
  • выполнение функции регулирования тока – обеспечивает равномерные нагрузки на все приборы.

Аккумуляторы соединенные последовательно

Однако у этого способа компоновки электросхемы есть и серьезные недостатки. Главным из них является ненадежность цепи из последовательно соединенных проводников. При выходе из строя любого из подключенных приборов, происходит отключение всей цепи.

Лампочки соединенные в цепь. Одна перегорела

Кроме того, минусом является снижение напряжения при увеличении количества подключенных потребителей. Примером может служить последовательное соединение нескольких ламп. Чем больше осветительных приборов подключено таким способом к источнику электропитания, тем менее яркий свет они будут давать.

Плюсы и минусы параллельного соединения

При использовании параллельного соединения проводников обеспечиваются такой набор преимуществ:

  • стабильность напряжения на электроприборах, вне зависимости от их числа;
  • возможность включения или отключения отдельных участков в нужный момент без нарушения работы всей электроцепи;
  • надежность – при выходе одного или нескольких компонентов из строя сама электроцепь продолжает сохранять работоспособность.

Аккумуляторы подключенные параллельно

Недостатком является более сложный расчет и сложная схема, использование которой повышает стоимость комплектации электросети.

Закон Ома для участка цепи

Одним из ключевых электротехнических законов можно назвать закон Ома для участка цепи. Именно этим законом объясняются отличия, которые существуют для параллельного и последовательного соединения проводников.

Формулируется он таким образом:

Записывается он следующей формулой:

I = U/R, где

I – сила тока, (А);

U – вольтаж, (В);

R – электросопротивление, (Ом).

Закон Ома. Человечки толкают, сопротивление сжимает

Смешанное соединение проводников в электрической цепи

На практике сборку электроцепей, как правило, проводят таким метод, который предусматривает смешанное соединение проводников. Это комбинированное решение, которое сочетает оба способа. Обычно для монтажа основной сети используют параллель, а отдельные потребители при необходимости объединяют в последовательную сеть.

Смешанное соединение, резисторы и формулы расчета

При расчете и сборке смешанных соединений сопротивлений обязательно должны учитываться особенности, преимущества и недостатки обоих методов подключения. В ходе проектирования, схему целесообразно разбить на отдельные части и выполнить расчет в по физическим законам, которые справедливы для последовательного и параллельного соединения. После этого, составные части объединяют в единую схему.

Как соединить вольтметр и амперметр в цепь

К числу основных электротехнических параметров относятся сила тока и вольтаж. Для контроля этих величин используют приборы – амперметры и вольтметры. Требования по подключению этих приборов в цепь определяются, исходя из законов, которые действуют для последовательного и параллельного соединения.

Схема подключенного вольтметра и амперметра

Для измерения величины тока производится включение амперметра в цепь строго последовательно с рабочей нагрузкой. Важно, чтобы сопротивление самого прибора было минимальным, чтобы не допустить его влияние на работу электрооборудования. Если амперметр подключить параллельно, это приведет к выходу амперметра из строя.

Читайте также:  Рубильник для постоянного тока

Для измерения напряжения вольтметр в цепь подключается строго параллельно источнику или приемнику тока. Сам измерительный прибор должен иметь довольно высокое собственное сопротивление. Это требуется, чтобы при измерении можно было пренебречь величиной тока, который отбирается через вольтметр.

Применение параллельного и последовательного соединения в электротехнике

Параллельное соединение активно применяется для монтажа проводки и цепей в различных видах электрического оборудования и приборов. Оно дает возможность подключить электрические устройства к электросети независимо друг от друга.

Подключенные электроприборы и лампочки в квартире по разной схеме подключения

Последовательное соединение используют, когда нужно обеспечить включение и отключение определенных приборов. Именно по этой схеме подсоединяются выключатели и тумблеры. Также схема хорошо подходит в тех случаях, когда необходимо сформировать электроцепь из потребителей с малым значением номинального напряжения.

Простая схема подключения с тумблером

При параллельном соединении конденсаторов совокупная емкость равняется сумме емкостей каждого полупроводника. В случае применения последовательного соединения конденсаторов, результирующая емкость уменьшается вдвое. Это свойство также используется при формировании электроцепей.

Последовательное соединение проводников: видео

Параллельное соединение проводников: видео

Способы соединения резисторов, решение задачи смешанного соединения проводников: видео

Источник

Параллельная электрическая цепь

Для работы электрических приборов их необходимо подсоединить к источнику питания. Ток в таком случае должен перетекать от источника к приемнику и возвращаться к источнику, то есть, электрическая цепь должна замыкаться.

Подключить по отдельности каждый из приборов к источнику возможно лишь в лабораториях с целью проведения испытаний и экспериментов, в реальных же условиях обычно к одному источнику питания подключают много потребителей.

Поэтому на практике используются целые системы подключений, которые дают возможность подсоединить к одному источнику много нагрузок. Такие системы бывают разнообразной конфигурации и сложности, но в любом случае они основаны на двух разновидностях соединений: параллельном и последовательном.

Различные соединения потребителей электроэнергии

При одновременном подключении нескольких приемников электрической энергии в одну электрическую цепь, их рассматривают как компоненты одной цепи со своими сопротивлениями.
В некоторых случаях данный подход будет верным, к примеру, если лампы накаливания рассматривать в качестве резисторов. При этом электрические приборы замещаются соответствующими сопротивлениями, и осуществляется определение необходимых параметров.

При последовательном подключении в электроцепи нет разветвлений. К примеру, так соединяют две лампы накаливания, несколько электродвигателей или прочие приборы.

Не нашли что искали?

Просто напиши и мы поможем

При этом общее напряжение цепи будет определяться суммой падений напряжений на каждом ее элементе:

А общее сопротивление по закону Ома будет определяться суммой всех сопротивлений цепи:

Недостатком такого соединения является то, что при нарушении работоспособности одного элемента, вся цепь разрывается и все остальные потребители остаются без питания.

При параллельном соединении поломка одного из потребителей абсолютно не влияет на работу прочих приборов. Но недостатком при этом является то, что все они должны работать при одном значении напряжения.

Смешанное соединение являет собой сочетание двух предыдущих типов подключения.

Электроцепи с параллельным соединением потребителей

При параллельном включении все приемники электрической энергии подключены под одним общим напряжением. Они подсоединены между двумя узлами. По первому закону Кирхгофа, общая сила тока в узле соединения определяется суммой токов каждого ответвления:

При этом эквивалентное сопротивление двух параллельно подключенных приборов будет рассчитываться по следующей формуле:

А эквивалентная проводимость будет определяться суммой проводимостей параллельных ответвлений цепи:

При росте количества приборов, подключенных параллельным способом, растет эквивалентная проводимость цепи g_экв, а общее сопротивление R_экв падает.

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Напряжение в электрической цепи при параллельном соединении потребителей рассчитывается так:

Параллельное и последовательное подключения в сравнении

Для последовательного включения потребителей характерны такие признаки:

  • при смене величины сопротивления одного из потребителей, напряжение на остальных меняется;
  • при поломке одного из потребителей, все остальные остаются обесточены.

Из-за вышеперечисленных признаков последовательное соединение практически применяется крайне редко, и обычно его используют, когда напряжение сети выше номинального напряжения потребителей.

Источник

Параллельное соединение потребителей

Параллельным соединением участков электрической цепи называют соединение, при котором все участки цепи присоединяются к одной паре узлов, т. е. находятся под действием одного и того же напряжения (рис. 3.8). Токи параллельно включенных участков обратно пропорциональны сопротивлениям этих участков.

При параллельном соединении сопротивлений R1, R2 и R3 токи потребителей соответственно равны

Воспользовавшись первым законом Кирхгофа, можно определить ток I в неразветвленной части цепи

Таким образом, обратная величина общего (эквивалентного) сопротивления R параллельно включенных потребителей равна сумме обратных величин сопротивлений этих потребителей.

Величина, обратная сопротивлению, определяет проводимость потребителя g. Тогда общая (эквивалентная) проводимость цепи при параллельном соединении потребителей определяется суммой проводимостей потребителей

Если параллельно включены n одинаковых потребителей с сопротивлением R / каждый, то эквивалентное сопротивление этих потребителей . Если параллельно включены два потребителя с сопротивлениями R1 и R2, то их общее (эквивалентное) сопротивление в соответствии с (1.30) равно

Если параллельно включены три потребителя с сопротивлениями R1, R2, R3, то общее их сопротивление (см. (1.30))

Изменение сопротивления какого-либо из параллельно соединенных потребителей не влияет на режим работы (напряжение) других потребителей, включая изменяемое. Поэтому параллельное единение нашло широкое практическое применение.

При параллельном соединении потребителей на большем сопротивлении тратится меньшая мощность:

При изучении и расчете некоторых электрических цепей необходимо определить потенциалы отдельных точек цепи и построить потенциальную диаграмму. Для этого можно использовать выражение (3.4) (рис. 3.1а).

На участке АВ точка В имеет положительный потенциал , точка А — отрицательный потенциал , поэтому , так как источник работает в режиме генератора, т. е.

На участке ВС точка В имеет положительный потенциал , точка С — отрицательный , поэтому , источник с ЭДС Е2 работает в режиме потребителя, т. е.

Таким образом, потенциал точки D можно записать

если обходить цепь по направлению тока, или

если обходить цепь против направления тока.

Отсюда можно сделать следующий вывод (правило): если обходить цепь или участок цепи по направлению тока, то потенциал в каждой точке определяется потенциалом предыдущей точки плюс ЭДС источника, работающего в режиме генератора, минус ЭДС источника, работающего в режиме потребителя, и минус падение напряжения на участке между точками цепи.

При обходе контура против направления тока знаки ЭДС и падения напряжения изменяются на противоположные.

Это правило особенно удобно применять в тех случаях, когда в цепи имеются участки с несколькими источниками.

Потенциальная диаграмма представляет собой график зависимости потенциалов точек цепи от величины сопротивлений участков между этими точками.

Для построения потенциальной диаграммы одну из точек электрической цепи условно заземляют, (потенциал ее принимают равным нулю), а потенциалы остальных точек равны напряжению между ними и заземленной точкой.

Потенциальная диаграмма представляет собой ломаную линию (рис. 3.3).

Пример 3.2

Для цепи, изображенной на рис. 3.2, дано:

Читайте также:  Клещи тока утечки постоянного тока

Е1 = 8 В; Е2 = 24В; Е3 = 9,5 В; R1 = 0,5 Ом; R2 = 1 Ом; R3 = 1,5 Ом; R01 = 0,15 Ом; R02 = 0,1 Ом; R03 = 0 Ом.

1. Определить величину и направление тока в цепи.

2. Определить потенциал точек В, С, D, Е, G, приняв потенциал точки А равным нулю, .

3. Построить потенциальную диаграмму.

4. Составить и проверить баланс мощностей для цепи.

Решение

1. Выбираем направление обхода контура по часовой стрелке, тогда величина тока

Знак «минус», полученный в результате вычислений, указывает на то, что ток направлен против выбранного направления обхода, как показано на рис. 3.2. В дальнейших расчетах знак «минус» не учитывается. Таким образом, источник ЭДС Е2 работает в режиме генератора, а Е1 и Е3 — потребителей.

2. Для определения потенциалов указанных точек обходим контур по направлению тока. При этом получаем

3. Для построения потенциальной диаграммы по оси ординат в масштабе откладываются потенциалы точек, а по оси абсцисс — сопротивления участков. Потенциальная диаграмма изображена на рис. 3.3.

4. Баланс мощностей в электрической цепи с несколькими источниками соблюдается при условии, что сумма мощностей источников, работающих в режиме генераторов, равна сумме мощностей источников, работающих в режиме потребителей, и потерям мощностей на всех сопротивлениях цепи, включая внутренние сопротивления источников:

Пример 2.

Рассчитать и построить потенциальную диаграмму для электрической цепи постоянного тока (рис. 1.19, а), если дано: ЭДС источников питания Е1 = 16 В; Е2 = 14 В, внутреннее сопротивление R01 = 3 Ом; R02 = 2 Ом, сопротивления резисторов R1 = 20 Ом; R2 = 15 Ом; R3 = 10 Ом. Определить положение движка потенциометра, в котором вольтметр V покажет нуль, составить баланс мощностей для цепи. Как повлияет на вид потенциальной диаграммы выбор другой точки с нулевым потенциалом?

Решение. Ток в цепи определяют по уравнению, составленному по второму закону Кирхгофа, приведенному к виду:

Потенциальную диаграмму строят в прямоугольной системе координат. При этом по оси абсцисс откладывают в соответствующем масштабе сопротивления всех участков цепи, а по оси ординат — потенциалы соответствующих точек. При построении потенциальной диаграммы одна из точек цепи условно заземляется, т. е. принимается, что потенциал ее φ = 0. На диаграмме эта точка помещается в начале координат.

В соответствии с условием задачи определяют потенциалы точек 1 — 5 электрической цепи, при этом принимают потенциал φ1 точки 1 цепи равным нулю.

Потенциал φ2 точки 2 находят из выражения, записанного по второму закону Кирхгофа для участка 1 — 2 цепи:

Координаты точки 2: R = 20 Ом; φ2 = -12 В.

По второму закону Кирхгофа для участка цепи 1 — 3 справедливо уравнение:

откуда потенциал точки 3 цепи: .

Координаты точки 3 цепи: R = 20 + 3 = 23 Ом; φ3 = 2,2 В. Аналогично определяют потенциал точки 4 цепи:

Координаты точки 4 цепи: R = 23 + 15 = 38 Ом; φ4 = — 6,8В.

Потенциал φ5 точки 5 цепи находят из уравнения, записанного по второму закону Кирхгофа для участка 4 — 5 цепи:

Координаты точки 5 цепи: R = 38 + 2 = 40 Ом; φ5 = 6 В. Потенциал φ1 точки 1 цепи находят из уравнения, составленного по второму закону Кирхгофа для участка 4 — 5 цепи: ; . Координаты точки 1 цепи: R = 40 + 10 = 50 Ом; φ1 = 0.

Для рассматриваемой электрической цепи по результатам расчетов на рис. 1.19, б приведена потенциальная диаграмма.

Из этой диаграммы следует, что положение движка потенциометра в точке 6 цепи соответствует показанию вольтметра, равному нулю, так как потенциалы точек 1 и 6 цепи равны.

При выборе другой точки электрической цепи с нулевым потенциалом разности потенциалов на соответствующих участках цепи не изменяются, так как они определяются величиной тока и величиной сопротивления. Если принять потенциал точки 3 цепи φ3 = 0, то ось абсцисс переместится в точку 3 потенциальной диаграммы (пунктирная линия), т. е. потенциалы всех точек цепи уменьшаются на величину потенциала φ, равного отрезку 0К = 2,3 В.

Баланс мощностей соответствует следующему уравнению:

16 ∙ 0,6 + 14 ∙ 0,6 = 0,6 2 (20 + 3 + 15 + 2 + 10).

Пример 3.

Составить схему электрической цепи постоянного тока исходя из данных потенциальной диаграммы, приведенной на рис. 1.20,а.

Решение. Построение электрической цепи целесообразно начать с точки 1, которая совпадает с началом координат и, следовательно, имеет потенциал φ = 0 (точка заземлена).

Так как на потенциальной диаграмме сопротивления отдельных участков цепи откладываются в определенном масштабе по оси абсцисс, а по оси ординат — потенциалы, то каждой точке цепи соответствует точка на потенциальной диаграмме.

Из приведенной потенциальной диаграммы следует, что при переходе от точки 1 к точке 2 цепи потенциал линейно возрастает. При этом тангенс угла α1 наклона прямой 0 — 2 к оси абсцисс пропорционален потенциалу точки 2. Следовательно, согласно диаграмме, на участке цепи 1 — 2 должен быть включен резистор с сопротивлением R1 = 2 Ом.

Так как при переходе от точки 1 к точке 2 цепи потенциал увеличивается, то ток цепи направлен от точки 2 к точке 1 цепи:

На участке 2 — 3 диаграммы потенциал растет скачком. Это свидетельствует о том, что между соответствующими точками цепи включен источник ЭДС, направление которой встречно току (источник работает в режиме потребителя электроэнергии).

Согласно потенциальной диаграмме ЭДС, Е23 = 40 В.

На участке 3 — 4 цепи, согласно диаграмме, должен быть включен резистор, имеющий сопротивление R2 = 1 Ом. На этом участке . При этом .

На участке 4 — 5 цепи, согласно диаграмме, должен быть включен источник ЭДС Е45 =75 В. Так как при переходе от точки 4 к точке 5 цепи потенциал понижается, то ЭДС должна быть направлена от точки 5 к точке 4 цепи.

На участке 5 — 6 цепи потенциал повышается на величину , поэтому здесь должен быть включен резистор с сопротивлением R3 = 1 Ом.

На участке 6 — 7 цепи потенциал резко возрастает. Здесь, согласно диаграмме, должен быть включен источник ЭДС Е67 = 45 В, который работает в схеме в режиме потребителя.

При переходе от точки 7 к точке 8 цепи потенциал возрастает на величину, равную произведению , так как здесь должен быть включен резистор с сопротивлением R4 = 3 Ом.

На участке 8 — 9 цепи потенциал уменьшается скачком вследствие того, что источник ЭДС Е89 = 55 В подключен положительным полюсом к точке 8, а отрицательным — к точке 9. В данном случае источник ЭДС Е89 работает в цепи в качестве источника питания.

На участке 9 — 1 цепи потенциал повышается на величину, равную произведению . Поэтому здесь должен быть включен резистор с сопротивлением R5 = 2 Ом.

Результаты определения потенциалов рассматриваемой электрической цепи приведены в табл. 1.2.

Участок электрической цепи Сопротивление участка, Ом Потенциалы точек, В
— 1 – 2 2 – 3 3 – 4 4 – 5 5 – 6 6 – 7 7 – 8 8 – 9 9 — 1

По результатам анализа представленной потенциальной диаграммы составлена схема неразветвленной электрической цепи постоянного тока (рис. 1.20, 6).

Проверка. Пользуясь вторым законом Кирхгофа, составляем уравнение электрического равновесия для полученной в результате расчета электрической цепи:

откуда ток в цепи

На всех участках цепи углы α одинаковы, следовательно:

Источник