Меню

Закон ома для конденсатора в цепи переменного тока формула



Закон Ома для переменного тока

Чтобы правильно подключить нагрузку, создать защитную схему и решить другие задачи в электротехнике применяют закон Ома для переменного тока. Созданные на основе базовых правил формулы удобны для быстрого вычисления основных параметров: силы тока, напряжения, сопротивления. В данной публикации рассматриваются переменные сигналаы, поэтому особыми дополнениями учтены частотные зависимости.

Корректность теоретических знаний можно подтвердить опытным путем

Закон Ома для участка цепи

По классической формулировке зависимость электрических параметров описывают следующим образом: ток на участке цепи (I) прямо пропорционален разнице потенциалов между контрольными точками (напряжению, U) и обратно – сопротивлению (R). Записать приведенное определение можно с применением типовых обозначений:

«Магический» треугольник поможет запомнить основные формулы

К сведению. Для расчета берут значения величин в стандартных единицах измерения: напряжение – вольты (В), электрическое сопротивление – омы (Ом), сила тока – амперы (А).

Эти выражения действительны для любого токопроводящего участка схемы. Пример с резистором, через который пропускается постоянный ток, можно использовать для демонстрации элементарного алгоритма вычислений:

  • исходные данные: R = 25 Ом, U = 8 B;
  • для расчета тока используют приведенную формулу: I = U/ R = 8/ 25 = 0,32 А;
  • если известен ток (I = 1,5 А) и сопротивление (R = 15 Ом), без вольтметра можно узнать напряжение на выводах резистора: U = I *R = 1,5 * 15 = 22,5 В.

Рассмотренные сведения применяют для коррекции электрических параметров. Так, если нужно увеличить напряжение, выбирают сопротивление с большим номиналом. Одновременно обеспечивают стабилизацию тока. Если построить диаграмму с измеренными значениями тока и напряжения по вертикальной и горизонтальной оси, график получится в виде прямой линии. Эта форма подтверждает отсутствие активных составляющих процесса.

Вольтамперная характеристика

В приведенном на рисунке примере R1>R2. Для прохождения сильного тока приходится увеличивать напряжение либо уменьшать сопротивление контрольного участка.

Закон Ома для полной цепи

В реальных условиях нужно учитывать сопротивление источника тока (Rи). В этой ситуации действуют рассмотренные выше принципы. Однако базовую формулу нужно изменить следующим образом:

I = E/ (R + Rи), где E – это электродвижущая сила (ЭДС) аккумулятора. После преобразования можно получить выражение:

Закон Ома для цепи переменного тока

При подключении нагрузки к такому источнику следует учитывать наличие в цепи компонентов с реактивными составляющими электрического сопротивления, конденсаторов и катушек индукции. Закон Ома для цепей переменного тока действует исключительно для амплитудных и эффективных значений напряжения и тока.

Распределение фаз в цепи с активным сопротивлением

В представленной на рисунке схеме реактивные составляющие отсутствуют. Для этого случая векторы тока и напряжения совпадают по фазе. Расчеты с активным сопротивлением можно выполнять с применением рассмотренных выше формул.

Индуктивная и емкостная нагрузки

При подключении элементов с реактивными характеристиками угол между векторами составляет 90°. В схеме с индуктивностью (емкостью) ток будет отставать от напряжения по фазе либо опережать соответственно. Для расчета напряжения можно применять следующие формулы (w – циклическая частота):

  • UL = I * w*L;
  • UC = I/ (w*C);
  • ХL = w*L;
  • XC = 1/(w*C).

Для полной цепи надо учесть суммарное значение сопротивления – Z. В следующем перечне приведены методы вычислений при наличии в цепи типовых комбинаций пассивных компонентов:

  • резистор и катушка индуктивности (последовательное соединение): I = U/ √(R2 + (w*L)2);
  • конденсатор с емкостью С и резистор: I = U/√(R2 + (1/w*C)2);
  • цепочка RLC: I = U/√(R2 + (w*L + 1/w*L)2).

Сдвиг фаз можно представить следующими выражениями:

  • tg ϕ = (UL — UC)/ UR = (ХL — XC)/R;
  • cos ϕ = UR/U = R/ Z.

Для расчета активной мощности (Pа) в нагрузке применяют действующие значения тока (Iд) и напряжения (Uд):

Pа = Iд * Uд * cos ϕ.

Последний множитель фактически определяет количество потребляемой электроэнергии. Остаток расходуется на обменные процессы, нагрев соединительных проводов.

К сведению. Производители трансформаторов, электродвигателей и других мощных нагрузок с выраженными реактивными характеристиками приводят значение cos ϕ в сопроводительной документации. По этому коэффициенту можно сделать правильный вывод об энергетической эффективности оборудования. Соответствующую поправку делают при расчете цепей питания, чтобы обеспечить достаточное поперечное сечение проводников для предотвращения чрезмерного повышения температуры и возникновения аварийных ситуаций.

Отдельно следует рассмотреть резонанс. Это явление сопровождается резким увеличением силы тока в цепи при совпадении частоты сигнала (wc) с частотой созданного колебательного контура (wк). В подобной ситуации не исключено повреждение компонентов схемы и проводников.

Обозначенные условия создает увеличение сопротивления в цепи, которое обеспечивается равенством реактивных составляющих:

ХL = w*L = XC = 1/(w*C).

Частоты совпадают в следующем случае (последовательное соединение):

Напряжения на конденсаторе и катушке становятся равными по амплитуде, но противоположными по фазе. Ток определяется с учетом базовых определений закона Ома:

I = U/Z = U/ √ R2 + (2π * w * L — 1/2π * w * C)2.

Трактовка и пределы применимости закона Ома

Для корректных расчетов следует учесть ограниченность действия рассмотренных методик. Законом Ома установлены базовые зависимости, которые сохраняются в сравнительно узком частотном диапазоне. Подразумевается применение компонентов с «идеальными» параметрами. Паразитные характеристики, взаимное влияние и отдельные внешние воздействия не учитываются.

Сверхпроводимость

В следующем списке приведены примеры, когда формулы закона Ома не описывают физические процессы с достаточной точностью:

  • При значительном понижении температуры уменьшается амплитуда колебаний компонентов молекулярной решетки металлов. Это улучшает условия для прохождения заряженных частиц. На определенном уровне возникает сверхпроводимость, которая характеризуется минимальными потерями энергии в проводнике.
  • В диапазоне сверхвысоких частот следует учитывать инерционные характеристики заряженных частиц. Определенное значение приобретают поверхностные токи.
  • По мере нагрева на определенном уровне проводимость материала изменяется нелинейно, что исключает возможность применения представленных формул.
  • Высоковольтное напряжение провоцирует пробой диэлектрика.
Читайте также:  Найти линейный ток по схеме треугольник

Нелинейные элементы и цепи

Как отмечено в предыдущем разделе, калькулятор и элементарные технологии расчета в отдельных ситуациях непригодны.

График изменения сопротивления

На рисунке приведены результаты эксперимента с типовой лампой накаливания. Видно, что при увеличении напряжения сопротивление изменяется нелинейно. Данное явление сопряжено с нагревом вольфрамовой нити. Для подобных ситуаций необходимы сведения о значениях проводимости в отдельных точках графика. Например, можно использовать тангенс угла α по отношению к горизонтальной оси. В этом случае статическое электрическое сопротивление для определенного места (Rст) рассчитывают по формуле:

Rст = Uα/Iα = tg α.

Также применяют значение, эквивалентное минимальному изменению тока и напряжения (ΔI и ΔU соответственно). По этой методике Rст = ΔU / ΔI = tg ϕ, где ϕ – угол между касательной в контрольной точке и осью абсцисс.

Нелинейные элементы

На первом рисунке показана вольтамперная характеристика серийного диода. График подтверждает смещение полупроводникового перехода в зависимости от приложенного напряжения. Хорошо видно, как на горизонтальном участке существенное изменение потенциала сопровождается незначительной реакцией силы тока.

Второй рисунок демонстрирует зависимость характеристик от уровня светового потока (Ф). Стандартный фотодиод функционирует в области обратного смещения p-n перехода. Это наглядный пример двухполюсного радиотехнического компонента с нелинейными параметрами.

На последнем рисунке изображена вольтамперная характеристика тиристора. Работой этого устройства управляют с помощью дополнительной области, созданной в полупроводниковом переходе. Аналогичные по сути решения применяют в транзисторах.

Цепи, которые будут содержать подобные компоненты, называют нелинейными. При расчетах учитывают особенности ВАХ, время переключения. Определенное значение имеет класс изделия. К безынерционным относят элементы с быстрой реакцией на управляющие воздействия.

Видео

Источник

Закон Ома для переменного тока

Приветствую всех на нашем сайте! В этот раз речь пойдёт про закон Ома для переменного тока.

Когда-то люди жили без электричества. Потом научились делать батарейки, и так появился постоянный электрический ток. Есть у электриков шутка: «Что такое переменный ток? Это нет-нет, да шарахнет…» А вот тут возникает логичный вопрос: «Почему не остановились на постоянном токе, раз он безопаснее»? Исключительно с экономической точки зрения. Переменный ток гораздо удобнее и дешевле преобразовывать, то есть повышать или понижать. Точнее не сам ток, а напряжение. Когда протекает ток, он совершает работу, работа сопровождается выделением тепла. Мощность, это произведение тока и напряжения, а значит, повышая напряжение и понижая ток мы передадим ту же мощность, но с меньшим тепловыделением, а значит и с меньшими потерями. А ещё, чем выше напряжение, тем меньше сопротивление проводов, по которым протекает ток, это оказывает влияние на потери напряжения. Как-нибудь поговорим более подробно об этом. А пока обратимся к школьному курсу физики – ток протекает только по замкнутому контуру и возможен только при условии, что к этому контуру будет приложено напряжение и контур будет иметь какое-то сопротивление. Подробно об этом вы можете прочитать в статье Закон Ома для замкнутой цепи. А мы двинемся дальше.

Сейчас вы поймете, почему так важен и что даёт закон Ома для цепи переменного тока. В современной жизни без этого закона никак не обойтись. Поскольку ток, это работа, а работа есть выделение тепла, то существенная задача электротехники в том, чтобы соблюдался термический режим, проще говоря, чтобы не произошло перегрева электроцепей. Итак, закон Ома гласит, что:

Определение закона Ома

Измерить напряжение довольно просто, для этого понадобится вольтметр, в нашем случае для переменного напряжения. В цепях постоянного тока измерить сопротивление тоже не составляет сложности, для этого потребуется омметр. Почему же возникают сложности с переменным током? А проблема, именно, в его переменности, а точнее понятиях емкости и индукции , которые ведут себя при переменном токе несколько иначе, нежели при постоянном.

Формула Закона Ома для переменного тока:

Формула закона Ома с расшифровкой значений

Кому-то эта формула может показаться неожиданной, потому что все привыкли видеть другую формулу:

Классическая формула Ома

Теперь давайте разберёмся, что такое полное сопротивление цепи и всё сразу встанет на свои места. В цепях постоянного тока конденсаторы могут только накапливать заряд, а катушки индуктивности становятся обычным проводом, но в цепях переменного тока они становятся сопротивлениями. Поэтому в переменном токе существует две составляющие: активный ток и реактивный. Как это происходит, сейчас увидите.

формула емкостного сопротивления

Ёмкостное сопротивление. При подаче напряжения на конденсатор сначала возникает сильный ток и потом поднимается напряжение, то есть в идеальных условиях ток опережает напряжение на угол 90. Другими словами, ток совершает работу из-за наличия сопротивления в цепи, которое можно посчитать по формуле:

Таким образом, чем выше частота переменного тока и чем выше емкость конденсатора, тем меньше ёмкостное сопротивление.

Индуктивное сопротивление. Здесь все происходит наоборот, сначала возникает напряжение, затем запускается индукционный процесс который препятствует возрастанию тока. Подробнее об этом читайте в статьях про индукцию.

формула индуктивного сопротивления

Поэтому здесь мы видим уже обратную картину – чем выше частота и чем больше индуктивность катушки, тем больше индуктивное сопротивление переменному току.

Почему эти понятия не встречаются в цепях постоянного тока? Ответ можно узнать, посмотрев на формулы. Если ток постоянный, то f=0. То есть, емкостное сопротивление станет бесконечно большим, а это значит, что конденсатор в цепи постоянного тока становится похож на выключатель, который размыкает цепь и ток по ней не идёт, но при этом, конденсатор будет пропускать переменный ток. А индуктивное сопротивление станет равно нулю, значит, у нас останется просто провод, который имеет свое собственное сопротивление, которое еще называется активным, и его можно измерить обычным омметром. В отличие от конденсатора, у которого нет активного сопротивления, сопротивление катушки, если оно довольно большое, должно приниматься в расчёт. Как правило, активное сопротивление катушки очень маленькое по сравнению с индуктивным, поэтому его в расчёт не берут, но всё же правильно формула сопротивления катушки выглядит так:

Читайте также:  Ток в одной любой из трех фаз

Формула сопротивления катушки

По такому принципу в электронике изготавливают фильтры, которые должны отсечь переменный ток от постоянного, то есть пропускать только переменный ток или наоборот заглушить переменный ток, оставив только постоянный, или даже заглушить токи какой-то одной или нескольких частот.

А сейчас совсем вас запутаю… И катушка может иметь ёмкостные свойства и конденсатор – индуктивные, но как правило они слишком малы и носят паразитический характер.

Ну а сейчас мы рассмотрим закон Ома для электрической цепи переменного тока наглядно.

закон ома для электрической цепи

Допустим, у нас есть цепь из последовательно включенных резистора (активное сопротивление), конденсатора (реактивное ёмкостное сопротивление) и катушка (активно-реактивное индуктивное сопротивление). Теперь, чтобы узнать силу тока в цепи нам нужно правильно посчитать полное сопротивление цепи.

полное сопротивление цепи схема

Осталось применить всё изложенное выше.

Реактивное сопротивление Х это разница между индуктивным сопротивлением XL и ёмкостным сопротивлением XC. Ну а дальше векторным сложением можем узнать полное реактивное сопротивление

формула полное реактивное сопротивление

формула расчет сопротивления

дальнейший расчет сопротивления по формуле

polnoe reaktivnoe soprotivlenie raschet3

Что можно сказать в заключении. Как вы можете видеть, закон Ома для переменного тока точно такой же, как и для постоянного. Разница лишь в том, как считать сопротивление. Если в постоянном токе мы имеем только активное сопротивление, то в переменном токе добавляется еще и реактивное, а именно индуктивное и емкостное. И, кстати говоря, реактивный ток – явление, с которым в электротехнике стараются бороться различными методами, поскольку эти токи паразитные и не несут полезной нагрузки. Об этом мы поговорим в других статьях. Пока сообщу лишь, что идеальный вариант, к которому пока никто не смог приблизиться, чтобы нагрузка была исключительно активной.

Источник

Закон ома для конденсатора в цепи переменного тока формула

Эти соотношения во виду напоминают закон Ома для участка цепи постоянного тока, но только теперь в них входят не значения постоянных токов и напряжений на участке цепи, а амплитудные значения переменных токов и напряжений .

Соотношения (*) выражают закон Ома для участка цепи переменного тока , содержащего один из элементов , и . Физические величины , и ω называются активным сопротивлением резистора , емкостным сопротивлением конденсатора и индуктивным сопротивлением катушки .

При протекании переменного тока по участку цепи электромагнитное поле совершает работу, и в цепи выделяется джоулево тепло. Мгновенная мощность в цепи переменного тока равна произведению мгновенных значений тока и напряжения: . Практический интерес представляет среднее за период переменного тока значение мощности

Если участок цепи содержит только конденсатор емкости , то фазовый сдвиг между током и напряжением Поэтому

Аналогично можно показать, что .

Таким образом, мощность в цепи переменного тока выделяется только на активном сопротивлении. Средняя мощность переменного тока на конденсаторе и катушке индуктивности равна нулю.

Рассмотрим теперь электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки. Цепь подключена к источнику переменного тока частоты ω. На всех последовательно соединенных участках цепи протекает один и тот же ток. Между напряжением внешнего источника и током возникает фазовый сдвиг на некоторый угол φ. Поэтому можно записать

.

Как видно из векторной диаграммы, , поэтому Следовательно, вся мощность, развиваемая источником, выделяется в виде джоулева тепла на резисторе, что подтверждает сделанный ранее вывод.

В § 2.3 было выведено соотношение между амплитудами тока и напряжения для последовательной -цепи:

Это соотношение называют законом Ома для цепи переменного тока . Формулы (*), приведенные в начале этого параграфа, выражают частные случаи закона Ома (**).

Понятие полного сопротивления играет важную роль при расчетах цепей переменного тока. Для определения полного сопротивления цепи во многих случаях удобно использовать наглядный метод векторных диаграмм. Рассмотрим в качестве примера параллельный -контур, подключенный к внешнему источнику переменного тока (рис. 2.4.1).

При построении векторной диаграммы следует учесть, что при параллельном соединении напряжение на всех элементах , и одно и то же и равно напряжению внешнего источника. Токи, текущие в разных ветвях цепи, отличаются не только по значениям амплитуд, но и по фазовым сдвигам относительно приложенного напряжения. Поэтому полное сопротивление цепи нельзя вычислить по законам параллельного соединения цепей постоянного тока . Векторная диаграмма для параллельного -контура изображена на рис. 2.4.2.

Из диаграммы следует:

Поэтому полное сопротивление параллельного -контура выражается соотношением

При параллельном резонансе () полное сопротивление цепи принимает максимальное значение, равное активному сопротивлению резистора:

.

Фазовый сдвиг φ между током и напряжением при параллельном резонансе равен нулю.

Источник

Закон Ома для переменного тока

Мы с вами знаем формулировку закона Ома для цепей постоянного тока, которая гласит, что ток в такой цепи прямо пропорционален напряжению на элементе цепи и обратно пропорционален сопротивлению этого элемента постоянному току, протекающему через него.

Читайте также:  Экспериментальные задачи постоянный ток

Однако при изучении цепей переменного тока стало известно, что оказывается кроме элементов цепей с активным сопротивлением, есть элементы цепи с так называемым реактивным сопротивлением, то есть индуктивности и емкости (катушки и конденсаторы).

В цепи, содержащей только активное сопротивление, фаза тока всегда совпадает с фазой напряжения (рис 1.), т. е. сдвиг фаз тока и напряжения в цепи с чисто активным сопротивлением равен нулю.

Закон Ома для переменного тока при активном сопторилвении

Рисунок 1. Напряжение и ток в цепи с чисто активным сопротивлением. Сдвиг фаз между током и напряжение в цепи переменного тока с чисто активным сопротивлением всегда равен нулю

Отсюда следует, что угол между радиус-векторами тока и напряжения также равен нулю.

Тогда, падение напряжения на активном сопротивлении определяется по формуле:

zakon-oma-formula1 (1)

где, U-напряжение на элементе цепи,

I – ток через элемент цепи

R – активное сопротивление элемента

Формула (1) применима как для амплитудных, так и для эффективных значений тока и напряжения:

zakon-oma-formula-2

где, Um-амплитудное значение напряжения на элементе цепи,

Im – амплитудное значение тока через элемент цепи

R – активное сопротивление элемента

В цепи, содержащей чисто реактивное сопротивление — индуктивное или емкостное, — фазы тока и напряжения сдвинуты друг относительно друга на четверть периода, причем в чисто индуктивной цепи фаза тока отстает от фазы напряжения (рис. 2), а в чисто емкостной цепи фаза тока опережает фазу напряжения (рис. 3).

Закон ома для переменного тока в индуктивной цепи

Рисунок 2. Напряжение и ток в цепи с чисто индуктивным сопротивлением. Фаза тока отстает от фазы напряжения на 90 градусов.

Закон Ома для переменного тока в емкостной цепи

Рисунок 3. Напряжение и ток в цепи с чисто емкостным сопротивлением. Фаза тока опережает фазу напряжения на угол 90 градусов.

Отсюда следует, что в чисто реактивной цепи угол между радиус-векторами тока и напряжения всегда равен 90°, причем в чисто индуктивной цепи радиус-вектор тока при вращении движется позади радиус-вектора напряжения, а в чисто емкостной цепи он движется впереди радиус-вектора напряжения.

Падения напряжения на индуктивном и емкостном сопротивлениях определяются соответственно по формулам:

Закон Ома для индуктивной цепи

Закон Ома для емкостной цепи

где — UL-падение напряжение на чисто индуктивном сопротивлении ;

UС—падение напряжения на чисто емкостном сопротивлении;

I— значение тока в через реактивное сопротивление;

L— индуктивность реактивного элемента;

C— емкость реактивного элемента;

ω— циклическая частота.

Эти формулы применимы как для амплитудных, так и для эффективных значений тока и напряжения синусоидальной формы. Однако здесь следует отметить, что они ни в коем случае не применимы для мгновенных значений тока и напряжения, а также и для несинусоидальных токов.

Приведенные выше формулы являются частными случаями закона Ома для переменного тока.

Следовательно, полный закон Ома для переменного тока будет иметь вид:

zakon-oma-dlya-peremennogo-toka

Где Z – полное сопротивление цепи переменного тока.

Теперь остается только вычистислить полное сопротивление цепи, а оно зависит непосредсвенно от какие активные и реактивные элементы присутсвуют в цепи и как они соединены.

Закон Ома для различных типовых цепей переменного тока

Давайте выясним, как будет выглядеть закон Ома для цепи переменного тока, состоящей из активного и индуктивного сопротивлений, соединенных последовательно (рис. 4.)

Активно-индуктивная цепь

Рисунок 4. Цепь переменного тока с последовательным соединением активного и индуктивного сопротивления.

Закон Ома для переменного синусоидального тока в случае последовательного соединения активного и индуктивного сопротивлений выражается следующей формулой:

zakon-oma-aktivno-induktivnay-cep

где —эффективное значение силы тока в А;

U—эффективное значение напряжения в В;

R—активное сопротивление в Ом;

ωL—индуктивное сопротивление в ом.

Формула (6) будет также действительной, если в нее подставить амплитудные значения тока и напряжения.

В цепи, изображенной на рис. 5, соединены последовательно активное и емкостное сопротивления.

Рачет закона Ома в активно - емкостной цепи

Рисунок 5. Цепь переменного тока с последовательным соединением активного и емкосного сопротивления.

А закон Ома для такой цепи принимает вид:

zakon-oma-formula-aktivnj-emkost

В общем случае, когда цепь содержит все три вида сопротивлений (рис. 6),

aktivno-emkostnaya-induktivnay-cep

Рисунок 6. Цепь переменного тока с последовательным соединением активного, индуктивного и емкосного сопротивления.

Закон Ома при последовательном соединении активного, индуктивного и емкостного сопротивлений будет выглядеть так:

zakon-oma-formula-3

где I-сила тока в А;

U-напряжение в В;

R-активное сопротивление в Ом;

ωL-индуктивное сопротивление в Ом;

1/ωС-емкостное сопротивление в Ом.

Формула (8) верна только для эффективных и амплитудных значений синусоидального тока и напряжения.

Для того, что бы определить ток в цепях с параллельным соединением элементов (рисунок 7), то необходимо так же вычислить полное сопротивление цепи, как это делать можно прсмотреть здесь, зтем подставить значение полного сопротивления в общую формулу для закона Ома (5).

parallelnoe-soedinenie

Рисунок 7. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов. а) — параллельное соединение R и L; б) — параллельное соединение R и C .

Тоже самое касается и вычисления тока в колебательном контуре изображенном на рисунке 8.

kolebatelnyj-kontur

Рисунок 8. Эквивалентная схема колебательного контура.

Таким образом закон Ома для переменного тока можно сформулировать следующим образом.

Значение тока в цепи переменного тока прямо пропорционально напряжению в цепи (или на участке цепи) и обратно пропорционально полному сопротивлению цепи (участка цепи)

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник