Меню

Закон джоуля ленца описывает выделение тепла в проводнике при прохождении тока закон можно q 392



Закон джоуля ленца описывает выделение тепла в проводнике при прохождении тока закон можно q 392

Раздел ОГЭ по физике: 3.9.Закон Джоуля-Ленца
Раздел ЕГЭ по физике: 3.2.8. Работа электрического тока. Закон Джоуля–Ленца

Рассмотрим Закон Джоуля-Ленца и его применение.

При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию. Таким образом, при совершении током работы увеличивается внутренняя энергия проводника, в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: Q = А или Q = IUt . Учитывая, что U = IR, в результате получаем формулу:

Q = I 2 Rt , где

Q — количество выделяемой теплоты (в Джоулях)
I — сила тока (в Амперах)
R — сопротивление проводника (в Омах)
t — время прохождения (в секундах)

♦ Закон Джоуля–Ленца : количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока.

В XIX в. независимо друг от друга англичанин Д. Джоуль и россиянин Э. Ленц изучали нагревание проводников при прохождении электрического тока и опытным путём обнаружили закономерность: количество теплоты, выделяющееся при прохождении тока по проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени: Q = I 2 Rt (в случае постоянных силы тока и сопротивления). Эту закономерность называют законом Джоуля-Ленца. Данный закон дает количественную оценку теплового действия электрического тока.

Применяя закон Ома, можно получить эквивалентные формулы: Q = IUt , Q= U 2 t/R

Где применяется закон Джоуля-Ленца ?

1. Например, в лампах накаливания и в электронагревательных приборах применяется закон Джоуля-Ленца. В них используют нагревательный элемент, который является проводником с высоким сопротивлением. За счет этого элемента можно добиться локализованного выделения тепла на определенном участке. Выделение тепла будет появляться при повышении сопротивления, увеличении длины проводника, выбором определенного сплава.

2. Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии. Тепловое действие силы тока ведет к потерям энергии. При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно. Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.

3. Также закон Джоуля-Ленца влияет на выбор проводов для цепей. Потому что при неправильном подборе проводов возможен сильный нагрев проводника, а также его возгорание. Это происходит когда сила тока превышает предельно допустимые значения и выделяется слишком много энергии.

Нагревание проводов является вредным, поскольку приводит к потерям электроэнергии при передаче ее от источника к потребителю. Для уменьшения этих потерь силу тока уменьшают, повышая напряжение источника с тем, чтобы передаваемая мощность осталась прежней. Чтобы избежать электрического пробоя изоляции проводов, их поднимают на большую высоту на мачтах высоковольтных линий электропередач, связывающих крупные электростанции с городами и поселками, отстоящими от них на десятки и сотни километров.

закон джоуля-ленца

Вы смотрели конспект урока физики в 8 классе «Закон Джоуля-Ленца и его применение».
Выберите дальнейшие действия:

Источник

Закон джоуля ленца описывает выделение тепла в проводнике при прохождении тока закон можно q 392

Рекомендуем! Лучшие курсы ЕГЭ и ОГЭ

Задание 12. Закон Джоуля-Ленца можно записать в виде , где Q — количество теплоты (в джоулях), I — сила тока (в амперах), R — сопротивление цепи (в омах), a t — время (в секундах). Пользуясь этой формулой, найдите сопротивление цепи R (в омах), если Q = 1296 Дж, I = 9 А, t = 2 с.

Выразим сопротивление из закона Джоуля-Ленца:

И вычислим его, подставив в полученное выражение числовые значения:

Онлайн курсы ЕГЭ и ОГЭ

  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • Вариант 1
  • Вариант 1. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 2
  • Вариант 2. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 3
  • Вариант 3. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 4
  • Вариант 4. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 5
  • Вариант 5. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
  • Задания 1-5 полностью совпадают с ОГЭ 2020, вариант 7

    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 6
  • Вариант 6. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам

    Задания 1-5 полностью совпадают с ОГЭ 2020, вариант 8

    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Внимание! Нумерация заданий в сборнике 2021 отличается от сборника 2020

  • Вариант 7
  • Задания 1-5 полностью совпадают с Вариант 5. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 1. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 8
  • Задания 1-5 полностью совпадают с Вариант 5. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 2. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 9
  • Задания 1-5 полностью совпадают с Вариант 19. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 3. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 10
  • Задания 1-5 полностью совпадают с Вариант 20. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 4. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 11
  • Задания 1-5 полностью совпадают с Вариант 13. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 5. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 12
  • Задания 1-5 полностью совпадают с Вариант 14. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 6. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 13
  • Задания 1-5 полностью совпадают с Вариант 11. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 7. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 14
  • Задания 1-5 полностью совпадают с Вариант 12. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 8. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 15
  • Задания 1-5 полностью совпадают с Вариант 35. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 9. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 16
  • Задания 1-5 полностью совпадают с Вариант 36. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 10. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 17
  • Задания 6-25 полностью совпадают с Вариант 11. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 1-5
    • 14
  • Вариант 18
  • Задания 6-25 полностью совпадают с Вариант 12. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 1-5
    • 14
  • Вариант 19
  • Задания 1-5 полностью совпадают с Вариант 15. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 13. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 20
  • Задания 1-5 полностью совпадают с Вариант 16. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 14. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 21
  • Задания 1-5 полностью совпадают с Вариант 29. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 15. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 22
  • Задания 1-5 полностью совпадают с Вариант 30. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 16. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 23
  • Задания 1-5 полностью совпадают с Вариант 31. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 17. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 24
  • Задания 1-5 полностью совпадают с Вариант 32. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 18. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 25
  • Задания 1-5 полностью совпадают с Вариант 27. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 19. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 26
  • Задания 1-5 полностью совпадают с Вариант 28. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 20. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 27
  • Задания 1-5 полностью совпадают с Вариант 1. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 21. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 28
  • Задания 1-5 полностью совпадают с Вариант 2. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 22. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 29
  • Задания 6-25 полностью совпадают с Вариант 23. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 1-5
    • 8
    • 14
  • Вариант 30
  • Задания 6-25 полностью совпадают с Вариант 24. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 1-5
    • 8
    • 14
  • Вариант 31
  • Задания 1-5 полностью совпадают с Вариант 23. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 25. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 32
  • Задания 1-5 полностью совпадают с Вариант 24. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 26. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 33
  • Задания 1-5 полностью совпадают с Вариант 4. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 31. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 34
  • Задания 1-5 полностью совпадают с Вариант 21. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 32. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 35
  • Задания 1-5 полностью совпадают с Вариант 17. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 33. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 36
  • Задания 1-5 полностью совпадают с Вариант 18. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 34. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
Читайте также:  В каком случае в кольце возникает индукционный ток ответ обоснуйте 1

Для наших пользователей доступны следующие материалы:

  • Инструменты ЕГЭиста
  • Наш канал

Источник

Закон Джоуля-Ленца: определение, формулы

Мы ежедневно пользуемся электронагревательными приборами, не задумываясь, откуда берётся тепло. Разумеется, вы знаете, что тепловую энергию вырабатывает электричество. Но как это происходит, а тем более, как оценить количество выделяемого тепла, знают не все. На данный вопрос отвечает закон Джоуля-Ленца, обнародованный в позапрошлом столетии.

В 1841 году усилия английского физика Джоуля, а в 1842 г. исследования русского учёного Ленца увенчались открытием закона, применение которого позволяет количественно оценить результаты теплового действия электрического тока [ 1 ]. С тех пор изобретено множество приборов, в основе которых лежит тепловое действие тока. Некоторые из них, изображены на рис. 1.

Тепловые приборы

Рис. 1. Тепловые приборы

Определение и формула

Тепловой закон можно сформулировать и записать в следующей редакции: «Количество тепла, выработанного током, прямо пропорционально квадрату приложенного к данному участку цепи тока, сопротивления проводника и промежутка времени, в течение которого электричество действовало на проводник».

Обозначим символом Q количество выделяемого тепла, а символами I, R и Δt – силу тока, сопротивление и промежуток времени, соответственно. Тогда формула закона Джоуля-Ленца будет иметь вид: Q = I 2 *R*Δt

Согласно законам Ома I=U/R, откуда R = U/I. Подставляя выражения в формулу Джоуля-Ленца получим: Q = U 2 /R * Δt ⇒ Q = U*I*Δt.

Выведенные нами формулы – различные формы записи закона Джоуля-Ленца. Зная такие параметры как напряжение или силу тока, можно легко рассчитать количество тепла, выделяемого на участке цепи, обладающем сопротивлением R.

Дифференциальная форма

Чтобы перейти к дифференциальной форме закона, проанализируем утверждение Джоуля-Ленца применительно к электронной теории. Приращение энергии электрона ΔW за счёт работы электрических сил поля равно разности энергий электрона в конце пробега (m/2)*(u=υmax) 2 и в начале пробега (mu 2 )/2 , то есть

Читайте также:  Построение обмотки машины постоянного тока

формула приращение энергии электрона

Здесь u скорость хаотического движение (векторная величина), а υmax – максимальная скорость электрического заряда в данный момент времени.

Поскольку установлено, что скорость хаотического движения с одинаковой вероятностью совпадает с максимальной (по направлению и в противоположном направлении), то выражение 2*u*υmax в среднем равно нулю. Тогда полная энергия, выделяющаяся при столкновениях электронов с атомами, образующими узлы кристаллической решётки, составляет:

Формула полной энергии

Это и есть закон Джоуля-Ленца, записанный в дифференциальной форме. Здесь γ – согласующий коэффициент, E – напряжённость поля.

Интегральная форма

Предположим, что проводник имеет цилиндрическую форму с сечением S. Пусть длина этого проводника составляет l. Тогда мощность P, выделяемая в объёме V= lS составляет:

Формула мощности P выделяемой в объеме

гдеR – полное сопротивление проводника.

Учитывая, чтоU = I×R, из последней формулы имеем:

  • P = U×I;
  • P = I 2 R;
  • P = U 2 /R.

Если величина тока со временем меняется, то количество теплоты вычисляется по формуле:

Формула количества теплоты

Данное выражение, а также вышеперечисленные формулы, которые можно переписать в таком же виде, принято называть интегральной формой закона Джоуля-Ленца.

Формулы очень удобны при вычислении мощности тока в нагревательных элементах. Если известно сопротивление такого элемента, то зная напряжение бытовой сети легко определить мощность прибора, например, электрочайника или паяльника.

Физический смысл

Вспомним, как электрический ток протекает по металлическому проводнику. Как только электрическая цепь замкнётся, то под действием ЭДС движение свободных электронов упорядочивается, и они устремляются к положительному полюсу источника питания. Однако на их пути встречаются стройные ряды кристаллических решёток, атомы которых создают препятствия упорядоченному движению, то есть оказывают сопротивление.

На преодоление сопротивления уходит часть энергии движущихся электронов. В соответствии с фундаментальным законом сохранения энергии, она не может бесследно исчезнуть. Она-то и превращается в тепло, вызывающее нагревание проводника. Накапливаемая тепловая энергия излучается в окружающее пространство или нагревает другие предметы, соприкасающиеся с проводником.

На рисунке 2 изображёна схема опыта, демонстрирующего закон теплового действия тока, разогревающего участок провода в электрической цепи.

Тепловое действие тока

Рис. 2. Тепловое действие тока

Явление нагревания проводников было известно практически с момента получения электротока, но исследователи не могли тогда объяснить его природу, и тем более, предложить способ оценки количества выделяемого тепла. Эту проблему решает закон Джоуля-Ленца, которым мы пользуемся по сегодняшний день.

Практическая польза закона Джоуля-Ленца

При сильном нагревании можно наблюдать излучение видимого спектра света, что происходит, например, в лампочке накаливания. Слабо нагретые тела тоже излучают тепловую энергию, но в диапазоне инфракрасного излучения, которого мы не видим, но можем ощутить своими тепловыми рецепторами.

Допускать сильное нагревание проводников нельзя, так как чрезмерная температура разрушает структуру металла, проще говоря – плавит его. Это может привести к выводу из строя электрооборудования, а также стать причиной пожара. Для того, чтобы не допустить критических параметров нагревания необходимо делать расчёты тепловых элементов, пользуясь формулами, описывающими закон Джоуля-Ленца.

Проанализировав выражение U 2 /R убеждаемся, что когда сопротивление стремится к нулю, то количество выделенного тепла стремится к бесконечности. Такая ситуация возникает при коротких замыканиях. В это основная опасность КЗ.

В борьбе с короткими замыканиями используют:

  • автоматические выключатели:
  • электронные защитные блоки;
  • плавкие предохранители;
  • другие защитные устройства.

Применение и практический смысл

Непосредственное превращение электричества в тепловую энергию нельзя назвать экономически выгодным. Однако, с точки зрения удобства и доступности современного человечества к источникам электроэнергии различные нагревательные приборы продолжают массово применяться как в быту, так и на производстве.

Перечислим некоторые из них:

  • электрочайники;
  • утюги;
  • фены;
  • варочные плиты;
  • паяльники;
  • сварочные аппараты и многое другое.

На рисунке 3 изображены бытовые нагревательные приборы, которыми мы часто пользуемся.

Бытовые нагревательные приборы

Рис. 3. Бытовые нагревательные приборы

Использование тепловых мощностей в химической, металлургической и в других промышленных отраслях тесно связно с использованием электрической энергии.

Без знания физического закона Джоуля-Ленца было бы невозможно сконструировать безопасный нагревательный прибор. Для этого нужны расчёты, которые невозможно сделать без применения рассмотренных нами формул. На основе расчётов происходит выбор материалов с нужным удельным сопротивлением, влияющим на нагревательную способность устройств.

Закон Джоуля-Ленца без преувеличения можно назвать гениальным. Это один из тех законов, которые повлияли на развитие электротехники.

Источник

Работа электрического тока. Закон Джоуля-Ленца.

Работа электрического тока Закон ДжоуляЛенца

Для определения работы, которая совершается током, проходящим по некоторому участку цепи, нужно воспользоваться определением напряжения: . Значит,

где А — работа тока; q — электрический заряд, который прошел за определенное время через исследуемый участок цепи. Подставив в последнее равенство формулу q = It, имеем:

Работа электрического тока на участке цепи является произведением напряжения на концах это­го участка на силу тока и на время, на протяжении которого совершалась работа.

Закон Джоуля-Ленца .

Закон Джоуля — Ленца гласит: количество теплоты, которое выделяется в проводнике на участке электрической цепи с сопротивлением R при протекании по нему постоянного тока I в течение времени t равно произведению квадрата тока на сопротивление и время:

Закон был установлен в 1841 г. английским физиком Дж. П. Джоулем, а в 1842 г. подтверж­ден точными опытами русского ученого Э. X. Ленца. Само же явление нагрева проводника при прохождении по нему тока было открыто еще в 1800 г. французским ученым А. Фуркруа, которо­му удалось раскалить железную спираль, пропустив через нее электрический ток.

Из закона Джоуля — Ленца видно, что при последовательном соединении проводников, поскольку ток в цепи всюду одинаков, максимальное количество тепла будет выделяться на про­воднике с наибольшим сопротивлением. Это применяется в технике, например, для распыления металлов.

Читайте также:  Как спасать человека от поражением током

Работа электрического тока Закон ДжоуляЛенца

При параллельном соединении каждый проводник находятся под одинаковым напряжением, но токи в них разные. Из формулы (Q = I 2 Rt) видно, что, так как, согласно закону Ома , то

Работа электрического тока Закон ДжоуляЛенца

Следовательно, на проводнике с меньшим сопротивлением будет выделяться больше тепла.

Если в формуле (А = IUt) выразить U через IR, воспользовавшись законом Ома, получим Закон Джоуля — Ленца. Это лишний раз подтверждает тот факт, что работа тока расходуется на выделение тепла на активном сопротивлении в цепи.

Источник

Закон Джоуля-Ленца

Закон Джоуля — Ленца (по имени английского физика Джеймса Джоуля и русского физика Эмилия Ленца, одновременно, но независимо друг от друга открывших его в 1840г) — закон, дающий количественную оценку теплового действия электрического тока.

При протекании тока по проводнику происходит превращение электрической энергии в тепловую, причём количество выделенного тепла будет равно работе электрических сил:

Закон Джоуля — Ленца: количество тепла, выделяемого в проводнике, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени его прохождения.

Содержание

Практическое значение

Снижение потерь энергии

При передаче электроэнергии тепловое действие тока является нежелательным, поскольку ведёт к потерям энергии. Поскольку передаваемая мощность линейно зависит как от напряжения, так и от силы тока, а мощность нагрева зависит от силы тока квадратично, то выгодно повышать напряжение перед передачей электроэнергии, понижая в результате силу тока. Повышение напряжения снижает электробезопасность линий электропередачи. В случае применения высокого напряжения в цепи для сохранения прежней мощности потребителя придется увеличить сопротивление потребителя (квадратичная зависимость. 10В , 1 Ом = 20В, 4 Ом). Подводящие провода и потребитель соединены последовательно. Сопротивление проводов ( Rw ) постоянное. А вот сопротивление потребителя ( Rc ) растет при выборе более высокого напряжения в сети. Также растет соотношение сопротивления потребителя и сопротивления проводов. При последовательном включении сопротивлений (провод — потребитель — провод) распределение выделяемой мощности ( Q ) пропорционально сопротивлению подключенных сопротивлений. Q_w = R_w \cdot I^2; Q_c = R_c \cdot I^2; Q_w = R_w \cdot I^2; ток в сети для всех сопротивлений постоянен. Следовательно имеем соотношение Qc / Qw = Rc / Rw ; Qc и Rw это константы (для каждой конкретной задачи). Определим, что Q_w = Q_c \times R_w / R_c. Следовательно, мощность выделяемая на проводах обратно пропорциональна сопротивлению потребителя, то есть уменьшается с ростом напряжения. так как R_c = V_c^2 / Q_c. ( Qc — константа); Объеденим две последние формулы и выведем, что Q_w = Q_c^2 \times R_c / V_c^2; для каждой конкретной задачи Q_c^2 \cdot R_c— это константа. Следовательно, тепло выделяемое на проводе обратно пропорционально квадрату напряжения на потребителе.Ток проходит равномерно.

Выбор проводов для цепей

Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при сборке электрических цепей достаточно следовать принятым нормативным документам, которые регламентируют, в частности, выбор сечения проводников.

Электронагревательные приборы

Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.

За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы. В них используется нагревательный элемент — проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром, константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.

Плавкие предохранители

Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.

Wikimedia Foundation . 2010 .

Смотреть что такое «Закон Джоуля-Ленца» в других словарях:

Закон Джоуля — Ленца — Закон Джоуля Ленца физический закон, дающий количественную оценку теплового действия электрического тока. Открыт в 1840 году независимо Джеймса Джоуля и Эмилия Ленца. В словесной формулировке звучит следующим образом[1] Мощность тепла … Википедия

Закон Джоуля — Ленца — (по имени английского физика Джеймса Джоуля и русского физика Эмилия Ленца, одновременно, но независимо друг от друга открывших его в 1840г) закон, дающий количественную оценку теплового действия электрического тока. При протекании тока по… … Википедия

ЗАКОН ДЖОУЛЯ-ЛЕНЦА — закон, определяющий тепловое действие электрического тока; согласно этому закону количество теплоты Q, выделяющееся в проводнике при прохождении по нему постоянного электрического тока, равно произведению квадрата силы тока I, сопротивления… … Большая политехническая энциклопедия

закон Джоуля-Ленца — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Joule Lenz s lawJoule s law … Справочник технического переводчика

закон Джоуля-Ленца — Džaulio dėsnis statusas T sritis fizika atitikmenys: angl. Joule law vok. Joule Lentzsches Gesetz, n; Joulesches Gesetz, n rus. закон Джоуля, m; закон Джоуля Ленца, m pranc. loi de Joule, f … Fizikos terminų žodynas

закон Джоуля-Ленца — Joule o dėsnis statusas T sritis automatika atitikmenys: angl. Joule s law vok. Joulesches Gesetz, n rus. закон Джоуля Ленца, m pranc. loi de Joule, f ryšiai: sinonimas – Džaulio dėsnis … Automatikos terminų žodynas

Закон Джоуля–Ленца — количество теплоты Q, выделяющейся в единицу времени на участке электрической цепи с сопротивлением R при протекании по нему постоянного тока I, равно Q = RI2. Закон установлен в 1841 Дж. П. Джоулем (1818 1889) и подтверждён в 1842 точными… … Концепции современного естествознания. Словарь основных терминов

закон Джоуля — Džaulio dėsnis statusas T sritis fizika atitikmenys: angl. Joule law vok. Joule Lentzsches Gesetz, n; Joulesches Gesetz, n rus. закон Джоуля, m; закон Джоуля Ленца, m pranc. loi de Joule, f … Fizikos terminų žodynas

ДЖОУЛЯ — ЛЕНЦА ЗАКОН — определяет кол во теплоты Q, выделяющееся в проводнике с сопротивлением Л за время t при прохождении через него тока I: Q=aI2Rt. Коэфф. пропорциональности а зависит от выбора ед. измерений: если I измеряется в амперах, R в омах, t в секундах, то… … Физическая энциклопедия

ДЖОУЛЯ — ЛЕНЦА ЗАКОН — ДЖОУЛЯ ЛЕНЦА ЗАКОН, определяет количество теплоты Q, выделяемой в проводнике при прохождении через него электрического тока: Q прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока. Открыт Дж. Джоулем и Э.… … Энциклопедический словарь

Источник