Меню

Закон био савара лапласа для элементов токов



Закон Био — Савара — Лапласа и его применение к расчету магнитного поля

date image2014-02-09
views image26571

facebook icon vkontakte icon twitter icon odnoklasniki icon

Магнитное поле постоянных токов различ­ной формы изучалось французскими уче­ными Ж. Био (1774—1862) и Ф. Саваром (1791 —1841). Результаты этих опытов бы­ли обобщены выдающимся французским математиком и физиком П. Лапласом.

Закон Био — Савара — Лапласа для проводника с током I, элемент которого dlсоздает в некоторой точке А (рис. 164) индукцию поля dB, записывается в виде

где dl — вектор, по модулю равный длине dl элемента проводника и совпадающий по направлению с током, r — радиус-вектор,

проведенный из элемента dl проводника в точку А поля, r — модуль радиуса-векто­ра г. Направление dB перпендикулярно dl и r, т. е. перпендикулярно плоскости, в ко­торой они лежат, и совпадает с каса­тельной к линии магнитной индукции. Это направление может быть найдено по пра­вилу нахождения линий магнитной индук­ции (правилу правого винта): направле­ние вращения головки винта дает направ­ление dB, если поступательное движение винта соответствует направлению тока в элементе.

Модуль вектора dB определяется вы­ражением:

где а — угол между векторами dl и г.

Для магнитного поля, как и для элек­трического, справедлив принцип суперпо­зиции: магнитная индукция результирую­щего поля, создаваемого несколькими то­ками или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каж­дым током или движущимся зарядом в от­дельности:

Расчет характеристик магнитного поля (В и Н) по приведенным формулам в об­щем случае довольно сложен. Однако если распределение тока имеет определенную симметрию, то применение закона Био — Савара — Лапласа совместно с принци­пом суперпозиции позволяет довольно просто рассчитать конкретные поля. Рас­смотрим два примера.

1. Магнитное поле прямого тока — тока, текущего по тонкому прямому про-

воду бесконечной длины (рис. 165). В произвольной точке А, удаленной от оси проводника на расстояние R, векторы dB от всех элементов тока имеют одина­ковое направление, перпендикулярное плоскости чертежа («к нам»). Поэтому сложение векторов dB можно заменить сложением их модулей. В качестве по­стоянной интегрирования выберем угол а (угол между векторами dl и r), выразив через него все остальные величины. Из рис. 165 следует, что

(радиус дуги CD вследствие малости dlравен r, и угол FDC по этой же причине можно считать прямым). Подставив эти выражения в (110.2), получим, что маг­нитная индукция, создаваемая одним эле­ментом проводника, равна

Так как угол а для всех элементов прямо­го тока изменяется в пределах от 0 до я, то, согласно (110.3) и (110.4),

Следовательно, магнитная индукция поля прямого тока

2. Магнитное поле в центре кругового проводника с током (рис. 166). Как следу­ет из рисунка, все элементы кругового проводника с током создают в центре магнитное поле одинакового направления — вдоль нормали от витка.

Поэтому сложе­ние векторов dB можно заменить сложени­ем их модулей. Так как все элементы проводника перпендикулярны радиусу-вектору (sina=1) и расстояние всех эле­ментов проводника до центра кругового тока одинаково и равно R, то, согласно (110.2),

Следовательно, магнитная индукция поля в центре кругового проводника с током

Источник

Закон Био-Савара. Теорема о циркуляции

Французские ученые Ж. Био и Ф. Савар в 1820 -м году проводили эксперименты над магнитным полем постоянных токов. Физики доказали, что индукция магнитного поля проходящих по проводнику токов зависит от совместного действия всех участков данного проводника. Работа магнитного поля основана на принципе суперпозиции.

Принцип суперпозиции: если магнитное поле работает за счет нескольких проводников с током, тогда индукция результативного поля – это совокупность индукций полей, которые создаются каждым проводником по отдельности.

Индукция B → проводника с током представлена, как векторная сумма элементарных индукций ∆ B → вырабатываемых отдельными участками проводника. На практике нельзя отделить один участок проводника с током, поскольку постоянные токи всегда замкнутые. Возможно лишь измерить совокупную индукцию магнитного поля, которое создают все элементы тока. Как найти индукцию магнитного поля?

Закон Био–Савара

Закон Био-Савара определил вклад ∆ B → в магнитную индукцию B → результативного магнитного поля, образуемый маленьким участком Δ l проводника с током I .

∆ B = μ 0 · I · ∆ l · sin α 4 π r 2 .

В формуле r – это расстояние от заданного участка Δ l до точки наблюдения, α – это угол между направлением на точку наблюдения и направлением тока на заданном участке, μ 0 – это магнитная постоянная.

Используя правило буравчика, определим направление вектора ∆ B → : оно указывает на ту сторону, в которую вращается рукоятка буравчика при его поступательном движении вдоль тока. Рисунок 1 . 17 . 1 наглядно показывает закон Био-Савара с применением магнитного поля прямолинейного проводника с током. Если сложить (интегрировать) вклады в магнитное поле всех участков проводника с током, тогда получим формулу для магнитной индукции поля прямого тока:

Читайте также:  Примеры использования магнитного действия тока

Рисунок 1 . 17 . 1 . Иллюстрация закона Био–Савара.

С помощью этого закона можно определять магнитные поля токов с различными конфигурациями. Запросто рассчитать магнитное поле в центре кругового витка с током. Вычисления приводят к соотношению:

где R – это радиус кругового проводника.

Чтобы определить направление вектора B → тоже используется правило буравчика, только в этом случае рукоятка вращается по направлению кругового тока, а поступательное движение буравчика указывает, куда направлен вектор магнитной индукции.

Теорема о циркуляции вектора магнитной индукции

Вычисления магнитного поля зачастую упрощаются с учетом симметрии в конфигурации токов. В этом помогает теорема о циркуляции вектора магнитной индукции.

Объясним, что означает циркуляция вектора B → . Допустим, в пространстве с магнитным полем существует какой-то условный замкнутый контур, а также положительное направление его обхода. Тогда, на каждом отдельном маленьком участке Δ l данного контура определяется касательная составляющая B l вектора B → в этом месте, то есть определяется проекция вектора B → на направление касательной к заданному участку контура. Рисунок 1 . 17 . 2 наглядно демонстрирует это.

Рисунок 1 . 17 . 2 . Замкнутый контур ( L ) с заданным направлением обхода. Изображение токов I 1 , I 2 и
I 3 ,
создающих магнитное поле.

Циркуляция вектора B → – это сумма произведений B l ∆ l , взятая по целому контуру L : B → = ∑ ( L ) B l ∆ l.

Некоторые токи, при которых магнитное поле создается, пропускают выбранный контур L тем временем, как остальные токи находятся в стороне от контура.

Согласно теореме о циркуляции, циркуляция вектора B → магнитного поля постоянных токов по любому из контуров L все время определяется, как произведение магнитной постоянной μ 0 на сумму всех токов:

∑ ( L ) B l ∆ l = μ 0 ∑ l i.

На рисунке 1 . 17 . 2 продемонстрирован пример с несколькими проводниками с токами, образующими магнитное поле. Ток I 2 и ток I 3 пронзают контур L в противоположных направлениях, им приписываются различные знаки. Положительным является ток, который связан с заданным направлением обхода контура по правилу буравчика.

Значит, I 3 > 0 , а I 2 0 . Ток I 1 не пронзает контур L .

Теорема о циркуляции в этом примере математически выражается следующей формулой:

∑ ( L ) B l ∆ l = μ 0 ( I 3 — I 2 ) .

Общий вид теоремы о циркуляции можно вывести из принципа суперпозиции и закона Био-Савара.

Самый простой пример использования теоремы о циркуляции – это вывод формулы магнитного поля прямолинейного проводника с током. С учетом симметрии в этой задаче контуром L лучше выбрать окружность какого-то радиуса R , лежащую в перпендикулярной проводнику плоскости. Центр окружности задан в какой-то точке проводника. Из-за симметрии вектор B → направляется по касательной ( B l = B ) , а его модуль имеет одинаковое значение по всей окружности. Использование теоремы о циркуляции приводит к выражению:

∑ ( L ) B l ∆ l = 2 π R B = μ 0 I ,

отсюда можно вывести формулу для модуля магнитной индукции поля прямолинейного проводника с током, приведенную раньше.

Из данного примера видно, что теорема о циркуляции вектора магнитной индукции B → можно использовать для вычисления магнитных полей, которые создаются симметричным распределением токов, когда можно наугад определить общую структуру поля.

Существует много примеров определения магнитных полей при помощи теоремы о циркуляции.

Рассмотрим одну из них – это задачу расчета поля тороидальной катушки (рисунок 1 . 17 . 3 ).

Рисунок 1 . 17 . 3 . Использование теоремы о циркуляции к тороидальной катушке.

Предположим, что катушка намотана виток к витку на ненамагниченный тороидальный сердечник. В ней линии магнитной индукции сходятся внутри катушки и выступают концентрическими окружностями. Они имеет такое направление, что, смотря вдоль них, наблюдатель увидел бы ток в витках, циркулирующих по часовой стрелке.

Одна линия индукции какого-то радиуса r 1 ≤ r r 2 представлена на рисунке 1 . 17 . 3 . Используем теорему о циркуляции для контура L в виде окружности, которая совпадает с линией индукции магнитного поля, изображенной на рисунке 1 . 17 . 3 . Опираясь на соображения о симметрии, делаем вывод, что модуль вектора B → имеет одинаковое значение по всей линии. Исходя из теоремы о циркуляции, запишем:

B · 2 π r = μ 0 I N ,

где N – это полное количество витков, а I – это ток, протекающий по виткам катушки. Значит, B = μ 0 I N 2 π r .

Так, модуль вектора магнитной индукции в тороидальной катушке находится в зависимости от радиуса r . При условии, что сердечник катушки тонкий, то есть r 2 – r 1 ≪ r , тогда магнитное поле внутри катушки почти однородное.

Величина n = N 2 π r – это количество витков на единицу длины катушки. Следовательно, B = μ 0 I n .

Сюда не относится радиус тора, потому оно действует и в предельном случае r → ∞ .

Однако в пределе каждая часть тороидальной катушки при необходимости рассматривается в качестве длинной прямолинейной катушки, которая называется соленоид. Вдали торцов такой катушки модуль магнитной индукции определяется, как соотношение в случае с тороидальной катушкой.

Читайте также:  Максимальный зарядный ток акб это

На рисунке 1 . 17 . 4 представлено магнитное поле катушки конечной длины. Обращаем внимание, что в центре катушки магнитное поле почти однородное и намного сильнее, чем снаружи. Это объясняется густотой линий магнитной индукции. В предельном случае бесконечно длинного соленоида однородное магнитное поле полностью находится внутри него.

Рисунок 1 . 17 . 4 . Магнитное поле катушки конечной длины. В центральной части соленоида магнитное поле почти однородное и существенно больше по модулю поля вне катушки.

В случае с бесконечно длинным соленоидом соотношение для модуля магнитной индукции получаем прямо из теоремы о циркуляции, применяя ее к прямоугольному контуру, изображенному на рисунке 1 . 17 . 5 .

Рисунок 1 . 17 . 5 . Теорема о циркуляции при расчете магнитного поля бесконечно длинного соленоида.

Проекция вектора магнитной индукции на направление обхода контура a b c d только на стороне a b отлична от 0 . Значит, циркуляция вектора B → по контуру равняется B l , где l – это длина стороны a b . Количество витков соленоида, пронзающих контур a b c d , равняется n · l , где n – это количество витков на единицу длины соленоида, а полный ток, пронзающий контур, равняется I n l . Из теоремы о циркуляции, B l = μ 0 I n l .

Отсюда B = μ 0 I n .

Данное вычисление совпадает с формулой для магнитного поля тонкой тороидальной катушки.

Теорема о циркуляции вектора магнитной индукции

Рисунок 1 . 17 . 6 . Модель магнитного поля кругового витка с током.

Теорема о циркуляции вектора магнитной индукции

Рисунок 1 . 17 . 7 . Модель магнитного поля прямого тока.

Теорема о циркуляции вектора магнитной индукции

Рисунок 1 . 17 . 8 . Модель магнитного поля соленоида.

Источник

Закон Био-Савара. Теорема о циркуляции

Магнитное поле постоянных токов различной конфигурации изучалось экспериментально французскими учеными Жан Батист Био и Феликсом Саваром (1820 г.). Они пришли к выводу, что индукция магнитного поля токов, текущих по проводнику, определяется совместным действием всех отдельных участков проводника. Магнитное поле подчиняется принципу суперпозиции:

Если магнитное поле создается несколькими проводниками с током, то индукция результирующего поля есть векторная сумма индукций полей, создаваемых каждым проводником в отдельности.

Индукцию проводника с током можно представить как векторную сумму элементарных индукций создаваемых отдельными участками проводника. На опыте невозможно выделить отдельный участок проводника с током, так как постоянные токи всегда замкнуты. Можно измерить только суммарную индукцию магнитного поля, создаваемого всеми элементами тока. Закон Био–Савара определяет вклад в магнитную индукцию результирующего магнитного поля, создаваемый малым участком Δl проводника с током I.

Здесь r – расстояние от данного участка Δl до точки наблюдения, α – угол между направлением на точку наблюдения и направлением тока на данном участке, μ – магнитная постоянная. Направление вектора определяется правилом буравчика: оно совпадает с направлением вращения рукоятки буравчика при его поступательном перемещении вдоль тока. Рис. 1.17.1 иллюстрирует закон Био–Савара на примере магнитного поля прямолинейного проводника с током. Если просуммировать (проинтегрировать) вклады в магнитное поле всех отдельных участков прямолинейного проводника с током, то получится формула для магнитной индукции поля прямого тока:

которая уже приводилась в 1.16.

Иллюстрация закона Био–Савара

Закон Био–Савара позволяет рассчитывать магнитные поля токов различных конфигураций. Нетрудно, например, выполнить расчет магнитного поля в центре кругового витка с током. Этот расчет приводит к формуле

где R – радиус кругового проводника. Для определения направления вектора также можно использовать правило буравчика, только теперь его рукоятку нужно вращать в направлении кругового тока, а поступательное перемещение буравчика укажет направление вектора магнитной индукции.

Расчеты магнитного поля часто упрощаются при учете симметрии в конфигурации токов, создающих поле. В этом случае можно пользоваться теоремой о циркуляции вектора магнитной индукции, которая в теории магнитного поля токов играет ту же роль, что и теорема Гаусса в электростатике.

Поясним понятие циркуляции вектора Пусть в пространстве, где создано магнитное поле, выбран некоторый условный замкнутый контур (не обязательно плоский) и указано положительное направление его обхода. На каждом отдельном малом участке Δl этого контура можно определить касательную составляющую вектора в данном месте, то есть определить проекцию вектора на направление касательной к данному участку контура (рис. 1.17.2).

Замкнутый контур (L) с заданным направлением обхода. Изображены токи I1, I2 и I3, создающие магнитное поле

Циркуляцией вектора называют сумму произведений Δl, взятую по всему контуру L:

Некоторые токи, создающие магнитное поле, могут пронизывать выбранный контур L в то время, как другие токи могут находиться в стороне от контура.

Теорема о циркуляции утверждает, что циркуляция вектора магнитного поля постоянных токов по любому контуру L всегда равна произведению магнитной постоянной μ на сумму всех токов, пронизывающих контур:

В качестве примера на рис. 1.17.2 изображены несколько проводников с токами, создающими магнитное поле. Токи I2 и I3 пронизывают контур L в противоположных направлениях, им должны быть приписаны разные знаки – положительными считаются токи, которые связаны с выбранным направлением обхода контура правилом правого винта (буравчика). Следовательно, I3 > 0, а I2 Опубликовано в разделах: Электродинамика, Магнитное поле

Читайте также:  Инжектор тока 200 мгц

Источник

Закон Био — Савара — Лапласа

Три французских ученых в 1820 г. открыли закон, который позволяет рассчитать вектор магнитной индукции, созданный проводником с током. Также можно вычислять напряженность магнитного поля , которая связана с вектором магнитной индукции соотношением (2.33).

Закон Био — Савара — Лапласа записывается для элемента тока. Элементом тока называется вектор, модуль которого равен произведению силы тока в проводнике на длину малого отрезка этого проводника, а направление совпадает с направлением силы тока — .

Закон Био — Савара — Лапласа в векторной форме формулируется следующим образом.

Вектор магнитной индукции, созданный элементом тока, пропорционален векторному произведению элемента тока на радиус-вектор, проведенный от элемента в точку наблюдения, и обратно пропорционален кубу расстояния от элемента тока до точки наблюдения (рис. 2.11)

Направление вектора определяется по правилу векторного произведения двух векторов и , т. е. перпендикулярен плоскости, в которой лежат перемножаемые вектора, и направлен по правилу правого винта.

На рис. 2.11 показана линия магнитной индукции. По касательной к этой линии направлен вектор . Модуль вектора определяется по закону Био — Савара — Лапласа в скалярной форме

где α — угол между векторами и .

Для напряженности магнитного поля можно записать аналогичные формулы

Изолированный элемент с током создать невозможно. Ток, который создает магнитное поле, всегда течет по проводникам конечных размеров. Поэтому далее надо применять принцип суперпозиции и векторно суммировать (интегрировать) или , созданные всеми элементами тока ,

Магнитное поле в центре кругового тока

С помощью закона Био — Савара — Лапласа и принципа суперпозиции найдем напряженность магнитного поля в центре витка с током I радиуса R (рис. 2.12) (виток перпендикулярен чертежу).

В этом случае все элементы проводника перпендикулярны радиусу и , т. е. . Расстояние всех элементов провода до центра одинаково и r = R. Поэтому формула (2.37) примет следующий вид

Применим принцип суперпозиции.

Все элементы тока создают магнитное поле одинакового направления, перпендикулярно плоскости витка, поэтому от векторного интегрирования можно перейти к скалярному

где — длина окружности.

Окончательно получим формулу для вычисления напряженности магнитного поля в центре кругового тока

Магнитная индукция равна

Напомним, что для вакуума μ = 1.

Направление векторов и нужно находить по правилу правого винта (рис. 2.12) с учетом того, что и .

Магнитное поле прямого тока

Применяя закон Био — Савара — Лапласа и принцип суперпозиции, можно найти напряженность магнитного поля прямого тока. Запишем без вывода конечный результат для проводника конечной длины (рис. 2.13).

Введем следующие обозначения: I — сила тока в проводнике, b — кратчайшее расстояние от точки наблюдения до проводника, α1 и α2 — углы между отрезком проводника и линией, соединяющей концы отрезка с точкой наблюдения.

Напряженность магнитного поля, созданного конечным прямым проводником с током, равна

Направление вектора определяется по правилу правого винта. Вектор, направленный за чертеж, изображается крестиком . Вектор, направленный к нам — точкой . Линия напряженности представляет собой окружность.

Для бесконечно длинного проводника и . Напряженность магнитного поля равна

Модуль вектора магнитной индукции, соответственно, равен

Сила Лоренца. Сила Ампера

Магнитное поле не только порождается движущимися электрическими зарядами, но действует на движущиеся заряды.

Силой Лоренца называется сила, действующая на движущийся электрический заряд со стороны магнитного поля. Сила Лоренца равна произведению заряда q на векторное произведение скорости движения заряда и вектора магнитной индукции , т. е.

Модуль силы Лоренца равен

где α — угол между векторами и .

Поскольку ток — это упорядоченное движение электрических зарядов, то на проводник с током в магнитном поле тоже действует сила, которая называется силой Ампера.

Сила Ампера равна произведению силы тока на векторное произведение элемента проводника и вектора магнитной индукции

Модуль силы Ампера равен

где α — угол между векторами .

С помощью измерения силы можно найти модуль вектора магнитной индукции (формула (2.45)). Сила будет максимальной, если sinα = 1. Тогда по формуле (2.45)

Тогда единица магнитной индукции тесла (Тл) равна ньютон (Н), деленный на ампер и на метр , т. е.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Источник