Меню

Задержка срабатывания защиты по току



Селективная защита электропроводки на основе УЗО

Владимир СадовскийВладимир Садовский

Обычное устройство защитного отключения при возникновении тока утечки обесточивает всю квартиру или весь защищаемый объект. В некоторых ситуациях такая массовость нежелательна. При общем отключении могут нарушиться производственные процессы или банально не сохранится текстовый документ на компьютере. Чтобы исключить подобные казусы специалисты рекомендуют использовать селективное УЗО.

Что такое селективность

Селективные устройства защитного отключения выполняют те же задачи и работают по тому же принципу, что и простые. Приборы сравнивают значения тока в фазном и нулевом проводах и на основе измерений высчитывают ток утечки. Если он превышает уставку, электропитание квартиры отключается.

Принцип работы УЗО

Ток утечки возникает в 2 ситуациях:

  1. Повреждена изоляция проводки. Существует риск возгорания или поражения человека электрическим током.
  2. Вышеописанный риск оправдался. Человек коснулся либо попавшего под фазный потенциал корпуса электроприбора, либо непосредственно оголенного провода от розетки.

Важно! Устройство защитного отключения имеет один большой недостаток. Если человек одновременно коснется фазного и нулевого проводов, но при этом не будет достаточно хорошо контактировать с землей, УЗО не сработает. Защитное устройство реагирует на утечку тока на землю.

Принцип действия селективного УЗО

Принцип действия селективной защиты основан на разнице во времени отключения. Для примера можно рассмотреть типичную квартиру. Имеется одно общее вводное УЗО. Оно установлено в электрощите. Настроено на отключение через 0,5 с после появления утечки тока. Фазные провода с этого защитного устройства распределяются по групповым УЗО. Они обладают временем отключения в 0,25 с. Через них запитываются розетки в ванной комнате, кухне, гостиной и других помещениях.

Если в ванне произошло замыкание фазного провода на корпус стиральной машины, сработает УЗО с уставкой на отключение равной 0,25 с. Отключится именно это помещение. Вводное УЗО с уставкой 0,5 с не сработает и оставит квартиру под напряжением, так как для отключения не прошло достаточно времени. То есть УЗО 0,25 с сработает быстрее чем 0,5. Отключится ванна, но не вся квартира.

Схема селективной защиты электросети

к содержанию ↑

Особенности селективной защиты

У селективных устройств, в отличие от обычных, предусмотрена возможность подбора по току и времени срабатывания защиты. Соответствующие значения указаны на корпусе устройства. Комбинируя защитную систему по этим параметрам, возможно придать защите свойство селективности.

В результате при возникновении тока утечки в одной из комнат, отключится только аварийное помещение, а не вся электропроводка. Как следствие, время на поиск и устранение неисправности сокращается в разы.

Селективность автоматического выключателя

Временные характеристики УЗО типа S

Приборы разных производителей обладают отличающимися свойствами. Различия кроются в токе утечки и времени выдержки, при котором происходит отключение.

Поэтому приборы данного типа принято подразделять на 2 группы:

Селективное УЗО от ABB: F202 A S, 63А

  • обычные;
  • типа S.

Сравнение их временных характеристик приведено ниже.

Тип УЗО Время отключения при токе утечки равном Idn 2*Idn 5*Idn
Обычное устройство 0,3 0,15 0,04
УЗО типа S 0,13-0,5 0,06-0,2 0,05-0,15

к содержанию ↑

Режимы работы

Устройство защитного отключения во время эксплуатации способно находиться в одном из двух рабочих режимов:

  • нормальный;
  • аварийный;

Под нормальным режимом работы подразумевается равенство проходящих по L и N проводам токов. В дифференциальном трансформаторе наводятся одинаковые по величине, но противоположные по вектору магнитные потоки. Они компенсируют друг друга. УЗО делает вывод, что утечка тока отсутствуют. Электропроводка продолжает работать в штатном режиме.

Ток утечки УЗО

При аварийном режиме ток в одном из проводов меньше (больше) на величину утечки. Обычно она не превышает 100 мА. Но даже этого отклонения достаточно, чтобы нарушить равенство магнитных потоков в трансформаторе устройства и привести к срабатыванию УЗО. Электропроводка отключается.

Разновидности селективных УЗО

Стандартно для бытовых нужд используется переменное напряжение величиной 220 В и частотой тока равной 50 Гц. Однако в мире электротехнике все не так однообразно. Некоторые потребители питаются от напряжений других величин. Потребляемый ток может быть и постоянным. Поэтому УЗО производятся самыми разнообразными:

УЗО категории АС

  1. Категория AC. Используются в цепях переменного тока. Нечувствительны к утечкам постоянного тока. Пример — (АВВ FH202)
  2. Кат. A. Универсальны. Используются в сетях с постоянным и переменным током (ИЭК ВД1-63)
  3. Кат. S. Используются для построения селективных защит с большими выдержками времени (АББ F204 A S-63/1).
  4. Кат. G. Применяются для селективных защит, но обладают большими временными характеристиками (Eaton Electric модель PFIM-G).

Обратите внимание! Отдельно выделяется 4 полюсное УЗО. Его используют для питания трехфазных потребителей (частотного привода, двигателя). Защитное устройство данного типа требует подключения 3 фаз и нуля.

Селективность по времени

Селективность (избирательность) защиты по времени основана на задержке срабатывания. Использовать необходимо минимум 2 устройства. Они должны в несколько раз отличаться по времени срабатывания. Для достижения свойства селективности важно соблюдать последовательность расположения УЗО. Чем ближе источник питания (электрический щит), тем больше время отключения защитного устройства.

УЗО, обладающее максимальной выдержкой времени, устанавливается на вводе в квартиру. Обычно это однофазное устройство S типа. Далее следуют обычные УЗО с меньшей выдержкой.

Графики времен отключения

Важно! К общему вводному защитному устройству предъявляются повышенные требования по надежности. Если оно выйдет из строя, то отключатся или останутся без защиты нижестоящие потребители. Поэтому желательно, чтобы вводное устройство было от качественного производителя. Например, ABB или Schneider.

Селективность по току утечки

Селективность по току работает по схожему принципу. Но в качестве величины для избирательности используется не время, а ток утечки.

Также используется минимум 2 защитных устройства. То, что находится ближе к квартирному щитку, обладает большим значением тока срабатывания. Обычно для подобных задач применяют противопожарные УЗО с током отключения порядка 100 мА. Например, IEK 2п 63А 100мА ВД1-63 АС.

Схема установки по току утечки

Далее по группам потребителей (отдельным комнатам) расставляются устройства с меньшим током утечки 5-30 мА. Если в одном из помещений развивается неисправность, то с большей вероятностью сработает только слаботочное реле на 30 мА. А противопожарное устройство на 300 мА, установленное на вводе, останется в работе. Таким образом, отключается только аварийное помещение.

Задержка срабатывания

Задержка срабатывания УЗО — это один из важнейших аспектов его работы. Особенно если говорить о селективных защитных системах, работа которых невозможна без отличающихся временных характеристик.

Время отключения указывается на корпусе аппарата. Обычно оно составляет от 0,001 до 0,5 с, чего достаточно для построения большинства селективных защит. Сама же задержка обеспечивается с помощью компактной электронной платы в составе прибора.

Временные характеристики УЗО-Д

Области применения селективной защиты

Основная задача селективных УЗО — построение избирательной защиты. Поэтому такие приборы используются в широком перечне электрических систем:

Система релейной защиты автоматики

  1. Самое простое — применение в квартире. Селективное защитное устройство необходимо, чтобы отключать именно аварийную комнату или розетку.
  2. Построение сложных электрических схем с потребителями, сильно отличающимися по мощности. Используется при раздельном питании частного дома, гаража и освещения сада. Обычно в таких случаях применяется трехфазное УЗО.
  3. В системах релейной защиты и автоматики. Селективное устройство позволяет организовать выдержку времени и задержки на переключения между основным и аварийным источником питания.

к содержанию ↑

Подключение УЗО с селективной отсечкой

Селективное защитное устройство подключается по тем же правилам, что и обычное. Трудности возникают, если необходимо построить более сложную защиту с одновременным использованием приборов S-типа с другими устройствами автоматики.

При сборке схемы следует руководствоваться следующими принципами:

  1. Первоначально на ввод устанавливается автомат. Он защитит последующие цепи от коротких замыканий, позволит оперативно снять напряжение на время ремонта или обслуживания.
  2. После автомата подключается УЗО типа S. Иногда на его место устанавливается противопожарное устройство. Подойдет EKF ВД-100 2P на ток утечки 300 мА.
  3. Далее следуют потребители или другие УЗО с меньшим током и временем срабатывания. Если требуется именно селективная защита, то без дополнительных защитных устройств не обойтись.

Схема подключения с селективной отсечкой

Нюансы выбора и подключения УЗО типа S

Для подключения модулей типа S следует придерживаться стандартных электромонтажных правил:

  • соединения выполняются с учетом маркировки;
  • работы производятся со снятием напряжения;

Существуют правила, касающиеся только УЗО типа S:

  • защитное устройство подбирается с учетом уставки на время срабатывания;
  • последующие УЗО должны иметь в 3 раза меньший ток утечки;
  • после установки работу устройства необходимо проверить нажатием кнопки «test»;

Важно! Устройство защитного отключения получает электропитание от защищаемой сети. Если на входе в УЗО произошел обрыв нулевого провода, оно не сможет отключить фазный даже в случае замыкания на землю. В том числе, если под напряжение попал человек.

Главное отличие селективного УЗО от простого — это более широкие временные характеристики. Такое свойство позволяет выполнять избирательную защиту. В результате отключается только неисправный потребитель, а исправные остаются в работе.

Применение селективных устройств защиты имеет особенности. Работая с ними, необходимо учитывать задержку на срабатывание по времени и току. Также нужно хорошо разбираться в подключении приборов данного типа. Ведь их схемотехника и настройка несколько сложнее, чем у обычных защитных аппаратов.

Источник

Максимальная токовая защита: принцип действия, виды, примеры схем

В силу разных причин аварии в электросетях случаются довольно часто. При коротком замыкании губительно действует на все электроприборы сверхток. Если не предпринять защитных мер, то последствием от неуправляемого увеличения тока может стать не только повреждение электроустановок на участке от места аварии до источника питания, но и выведение из строя всей энергосистемы. Во избежание негативных последствий, вызванных авариями, применяются разные схемы электрозащиты:

  • отсечка;
  • дифференциально-фазная;
  • высокоэффективная максимальная токовая защита электрических цепей (МТЗ).

Из перечисленных видов защиты самой распространённой является МТЗ. Этот простой и надёжный способ предотвращения опасных перегрузок линий нашёл широкое повсеместное применение благодаря обеспечению селективности, то есть, обладанию способностью избирательно реагировать на различные ситуации.

Устройство и принцип действия

Конструктивно МТЗ состоят из двух важных узлов: автоматического выключателя и реле времени. Они могут быть объединены в одной конструкции либо размещаться отдельными блоками.

Отличия от токовой отсечки

Из всех видов защиты по надёжности лидирует токовая отсечка. Примером может служить защита бытовой электросети устройствами с применением плавких предохранителей или пакетных автоматов. Метод токовых отсечек гарантирует обесточивания защищаемой цепи в аварийных ситуациях. Но для возобновления подачи электроэнергии необходимо устранить причину отсечения и заменить предохранитель, либо включить автомат.

Недостатком такой системы является то, что отключение может происходить не только вследствие КЗ, но и в результате даже кратковременного превышения параметров по току нагрузки. Кроме того, требуется участие человека для восстановления защиты. Эти недостатки не критичны в бытовой сети, но они неприемлемы при защите разветвлённых линий электропередач.

Благодаря тому, что в конструкциях МТЗ предусмотрены реле времени, задерживающие срабатывание механизмов отсечения, они кратковременно игнорируют перепады напряжений. Кроме того, токовые реле сконструированы таким образом, что они возвращаются в исходное положение после ликвидации причины, вызвавшей размыкание контактов.

Именно эти два фактора кардинально отличают МТЗ от простых токовых отсечек, со всеми их недостатками.

Принцип действия МТЗ

Между узлом задержки и токовым реле существует зависимая связь, благодаря которой отключение происходит не на начальной стадии возрастания тока, а спустя некоторое время после возникновения нештатной ситуации. Данный промежуток времени слишком короткий для того, чтобы величина тока достигла критического уровня, способного навредить защищаемой цепи. Но этого хватает для предотвращения возможных ложных срабатываний защитных устройств.

Принцип действия систем МТЗ напоминает защиту токовой отсечки. Но разница в том, что токовая отсечка мгновенно разрывает цепь, а МТЗ делает это спустя некоторое, наперёд заданное время. Этот промежуток, от момента аварийного возрастания тока до его отсечения, называется выдержкой времени. В зависимости от целей и характера защиты каждая отдельная ступень времени задаётся на основании расчётов.

Наименьшая выдержка времени задаётся на самых удалённых участках линий. По мере приближения МТЗ к источнику тока, временные задержки увеличиваются. Эти величины определяются временем, необходимым для срабатывания защиты и именуются ступенями селективности. Сети, построенные по указанному принципу, образуют зоны действия ступеней селективности.

Такой подход обеспечивает защиту поврежденного участка, но не отключает линию полностью, так как ступени селективности увеличиваются по мере удаления МТЗ от места аварии. Разница величин ступеней позволяет защитным устройствам, находящимся на смежных участках, оставаться в состоянии ожидания до момента восстановления параметров тока. Так как напряжение приходит в норму практически сразу после отсечения зоны с коротким замыканием, то авария не влияет на работу смежных участков.

Читайте также:  Два круговых проводника с током

Примеры использования защиты

  • с целью локализации и обезвреживания междуфазных КЗ;
  • для защиты сетей от кратковременных перегрузок;
  • для обесточивания трансформаторов тока в аварийных ситуациях;
  • в качестве протектора при запуске мощного, энергозависимого оборудования.

Задержка времени очень полезна при пуске двигателей. Дело в том, что на старте в цепях обмоток наблюдается значительное увеличение пусковых токов, которое системы защиты могут воспринимать как аварийную ситуацию. Благодаря небольшой задержке времени МТЗ игнорирует изменение параметров сети, возникающие при пуске или самозапуске электродвигателей. За короткое время показатели тока приближаются к норме и причина для аварийного отключения устраняется. Таким образом, предотвращается ложное срабатывание.

Пример подключения МТЗ электродвигателя иллюстрирует схема на рисунке 1. На этой схеме реле времени обеспечивает уверенный пуск электромотора до момента реагирования токового реле.

МТЗ с выдержкой времени

Рисунок 1. МТЗ с выдержкой времени

Аналогично работает задержка времени при кратковременных перегрузках в защищаемой сети, которые не связаны с аварийными КЗ. Отсечка действует лишь в тех случаях, когда на защищаемой линии возникает значительное превышение номинальных значений, которое по времени превосходит величину выдержки.

Для надёжности защиты на практике часто используют схемы двухступенчатой и даже трёхступенчатой защиты участков цепей. Стандартная трёхступенчатая защитная характеристика выглядит следующим образом (Рис. 2):

Карта селективности стандартной трёхступенчатой защиты

Рис. 2. Карта селективности стандартной трёхступенчатой защиты

На абсциссе отмечено значения тока, а на оси ординат время задержки в секундах. Кривая в виде гиперболы отображает снижение времени защиты от возрастания перегрузок. При достижении тока отметки 170 А включается отсчёт времени МТЗ. Задержка времени составляет 0,2 с, после чего на отметке 200 А происходит отключение. То есть, разрыв цепи происходит в случае отказа защиты остальных устройств.

Расчет тока срабатывания МТЗ

Стабильность работы и надёжность функционирования максимально-токовой защиты зависит от настройки параметров по току срабатывания. Расчёты должны обеспечивать гарантированное срабатывание реле при авариях, однако на её работу не должны влиять параметры тока нагрузки, а также кратковременные всплески, возникающие в режиме запуска двигателей.

Следует помнить, что слишком чувствительные реле могут вызывать ложные срабатывания. С другой стороны, заниженные параметры срабатывания не могут гарантировать безопасности стабильной работы электроприборов. Поэтому при расчетах уставок необходимо выбирать золотую середину.

Существует формула для расчёта среднего значения тока, на который реагирует электромагнитное реле [ 1 ]:

где Iс.з. – минимальный первичный ток, на который должна реагировать защита, а Iн. макс. – предельное значение тока нагрузки.

Ток возврата реле подбирается таким образом, чтобы его хватило повторного замыкания контактов в отработавшем устройстве. Для его определения используем формулу:

Здесь Iвз– ток возврата, kн. – коэффициент надёжности, kз – коэффициент самозапуска, Iраб. макс. величина максимального рабочего тока.

Для того чтобы токи возврата и срабатывания максимально приблизить, вводится коэффициент возврата, рассчитываемый по формуле:

kв = Iвз / Iс.з. с учётом которого Iс.з. = kн.×kз.×Iраб. макс. / kв

В идеальном случае kв = 1, но на практике этот коэффициент всегда меньший за единицу. Чувствительность защиты тем выше, чем выше значение kв.. Отсюда вывод: для повышения чувствительности необходимо подобрать kв в диапазоне, стремящимся к 1.

Виды максимально-токовых защит

В электрических сетях используют 4 разновидности МТЗ. Их применение диктуется условиями, которые требуется создать для уверенной работы электрооборудования.

МТЗ с независимой от тока выдержкой времени

В таких устройствах выдержка времени не меняется. Для задания уставок периода, достаточного для активации реле с независимыми характеристиками, учитывают ступени селективности. Каждая последующая выдержка (в сторону источника тока) увеличивается от предыдущей на промежуток времени, соответствующий ступени селективности. То есть, при расчётах необходимо соблюдать условия селективности.

МТЗ с зависимой от тока выдержкой времени

В данной защите процесс задания уставок МТЗ требует более сложных расчётов. Зависимые характеристики, в случаях с индукционными реле, выбирают по стандарту МЭК: tсз = A / (k n — 1), где A, n – коэффициенты чувствительности, k = Iраб / Iср — кратность тока.

Из формулы следует, что выдержка времени уже не является константой. Она зависит от нескольких параметров, в т. ч. и от силы тока, попадающего на обмотки реле, причём эта зависимость обратная. Однако выдержка не линейная, её характеристика приближается к гиперболе (рис. 3). Такие МТЗ используют для защиты от опасных перегрузок.

Характеристика МТЗ с зависимой выдержкой

Рисунок 3. Характеристика МТЗ с зависимой выдержкой

МТЗ с ограниченно-зависимой от тока выдержкой времени

В устройствах данного вида релейных защит совмещено две ступени защиты: зависимая часть с гиперболической характеристикой и независимая. Примечательно, что времятоковая характеристика независимой части является прямой, плавно сопряжённой с гиперболой. При малых кратностях критичных токов характеристика зависимого периода более крутая, а при больших – пологая кривая (применяется для защиты электромоторов большой мощности).

МТЗ с пуском (блокировкой) от реле минимального напряжения

В данном виде дифференциальной защиты применена комбинация МТЗ с использованием влияния минимального напряжения. В электромеханическом реле произойдёт размыкание контактов только тогда, когда возрастание тока в сети приведёт к падению разницы потенциалов. Если падение превысит нижнюю границу напряжения уставки – это вызовет отработку защиты. Поскольку уставка задана на падение напряжения, то реле не среагирует на резкие скачки тока в сети.

Примеры и описание схем МТЗ

С целью защиты обмоток трансформаторов, а также других элементов сетей с односторонним питанием используются различные схемы.

МТЗ на постоянном оперативном токе.

Особенность данной схемы в том, что управление элементами защиты осуществляется выпрямленным током, который меняет полярность, реагируя на аварийные ситуации. Мониторинг изменения напряжения выполняют интегральные микроэлементы.

Для защиты линий от последствий междуфазных замыканий используют двухфазные схемы на двух, либо на одном токовом реле.

Однорелейная на оперативном токе

В данной защите используется токовое пусковое реле, которое реагирует на изменение разности потенциалов двух фаз. Однорелейная МТЗ реагирует на все межфазные КЗ.

Схема на 1 реле

Схема на 1 реле

Преимущества: одно токовое реле и всего два провода для подсоединения.

Недостатки:

  • сравнительно низкая чувствительность;
  • недостаточная надёжность – при отказе одного элемента защиты участок цепи остаётся незащищённым.

Однорелейка применяется в распределительных сетях, где напряжение не превышает 10 тыс. В, а также для безопасного запуска электромоторов.

Двухрелейная на оперативном токе

В данной схеме токовые цепи образуют неполную звезду. Двухрелейная МТЗ реагирует на аварийные междуфазные короткие замыкания.

Схема на 2 реле

Схема на 2 реле

К недостаткам этой схемы можно отнести ограниченную чувствительность. МТЗ выполненные по двухфазным схемам нашли широкое применение, особенно в сетях, где используется изолированная нейтраль. Но при добавлении промежуточных реле могут работать в сетях с глухозаземлённой нейтралью.

Трехрелейная

Схема очень надёжная. Она предотвращает последствия всех КЗ, реагируя также и на однофазные замыкания. Трехфазные схемы можно применять в случаях с глухозаземлённой нейтралью, вопреки тому, что там возможны ситуации с междуфазными так и однофазными замыканиями.

Из рисунка 4 можно понять схему работы трёхфазной, трёхлинейной МТЗ.

Схема трёхфазной трёхрелейной защиты

Рисунок 4. Схема трёхфазной трёхрелейной защиты

Схема двухфазного трёхрелейного подключения МТЗ изображена на рисунке 5.

Рис. 5. Схема двухфазного трёхрелейного подключения МТЗ

На схема обозначены:

  • KA — реле тока;
  • KT — реле времени;
  • KL — промежуточное реле;
  • KH — указательное реле;
  • YAT — катушка отключения;
  • SQ — блок контакт, размыкающий цепь;
  • TA — трансформатор тока.

Видео в дополнение темы

Источник

Селективность УЗО и автоматических выключателей

Заголовок звучит так, как название кандидатской диссертации на физмате. На самом деле, это ситуация, с которой мы постоянно сталкиваемся как в своем жилище, так и на крупных предприятиях или офисах. Если перевести фразу «селективность автоматических выключателей» на доступный язык: каждое устройство защитного отключения должно работать избирательно. Все равно непонятно? Тогда разберем тему подробнее.

Представим себе коммунальную квартиру из 50-х годов прошлого века. Общие коммуникации, единая электросеть с одним счетчиком в прихожей. И знаменитые керамические «пробки», которые сегодня повсеместно заменены автоматическими выключателями.

Селективность автоматических выключателей 1

У одного из соседей в комнате замкнуло электрический утюг. Разумеется, «пробки» перегорели, и все комнаты в квартире обесточены. А причина — всего лишь точечная микро авария на одной из ветвей квартирной энергосистемы.

Это наглядный пример неселективной системы защиты, когда на множество объектов установлено лишь одно устройство защиты.

Согласитесь, если бы у каждого жильца в комнате был собственный вводной щиток с автоматами, проблема в одной квартире не приводила бы к потере энергоснабжения на нескольких объектах.

Сегодня коммуналки в прошлом, в каждую квартиру приходит отдельная линия энергоснабжения с автоматом на входе.

Проблема решена? В масштабах подъезда — безусловно. А в рамках одной квартиры?

Снова типичная ситуация: переломился провод настольной лампы, возникло короткое замыкание. При этом гаснет свет во всей квартире, перестает работать холодильник и телевизор. Почему? Снова отсутствует селективность автоматов.

Важно! Требования безопасности: Правила устройства электроустановок (ПУЭ) рассматривают селективную защиту, как один из способов обеспечения безопасной эксплуатации электроустановок.

Понятное дело, что никакая комиссия не проверит вашу квартиру или частное домовладение на предмет выполнения всех требования ПУЭ. Однако если объект принимается в соответствии с проектом или по СНиП, акт ввода в эксплуатацию могут и не согласовать. Особенно это касается производственных и офисных помещений, а также мест массового пребывания людей (театры, магазины, школы и прочее).

Как работает селективная защита

Это понятие включает в себя несколько способов избирательного отключения.

Токовая селективность

В соответствии с законом Ома, сила тока одинакова на любом участке цепи. Соответственно, при наличии нескольких последовательно расположенных защитных автоматов, первым сработает тот, у которого ток отсечки наименьший. Если расположение линий параллельное, то на вводе мы получим максимальное значение тока (сумма величин каждой «ветви»). При одинаковом токе отсечки в каждом автомате, они отключатся одновременно по всей цепи. А если защитное устройство, расположенное к потребителю, имеет меньший ток срабатывания, отключится только оно.

Рассмотрим принцип работы на простом примере правильно организованного квартирного щитка.

  • технические условия энергоснабжения объекта: 9 кВт (защитный автомат 40 А);
  • подключение однофазное;
  • нулевой проводник (PE) может быть как с автоматом, так и без него;
  • подключаемые помещения: коридор, санузел, кухня, гостиная, спальня;

Правильная селективность защиты изображена на иллюстрации:

Селективность автоматических выключателей 2

Разбираем схему по секторам:

  1. Ограничение по входному току определено вводным автоматом: 40 А. То есть, если суммарный ток во всей разветвленной линии превысит это значение (например, при коротком замыкании), подача электроэнергии прекратится. Как мы уже знаем, такая авария оставит без «света» все помещения объекта.
  2. Далее идем по группам, организуя вторую ступень защиты (вводной автомат — это третья «линия обороны», если остальные не помогут):
  • Подключение коридора можно упростить, не выводя его в отдельную группу. Классическая схема: два автомата, на розеточную сеть и освещение.
  • Санузел имеет более сложную схему включения, поскольку в ванной комнате сыро, и есть риск получить электротравму. Поэтому групповая защита — УЗО с минимальным дифференциальным током (10 мА) и током отсечки автомата 10 А. Вы спросите, почему нет селективности? Она тут не нужна, поскольку после группового УЗО нет разветвления.

    Информация: Ставить или не ставить УЗО в принципе, это решение каждого владельца помещения. Селективность защиты может быть решена и с обычными автоматами.

    Так работает селективная защита, организованная по принципу разности токов срабатывания. Возвращаемся к началу раздела: при аварийной ситуации сила тока стремительно возрастает, и срабатывает автомат с минимальным током отсечки. До второй и третьей линий защиты проблема просто не доходит.

    Однако, существуют условия, при которых сила сверхтока сразу будет достаточной для отключения автомата третьего уровня защиты:

    Селективность автоматических выключателей 3

    • Если замыкание или избыточная токовая нагрузка происходит в электроприборе, сверхтоки растут на так стремительно. Часть нагрузки берет на себя питающий кабель самого устройства, который (нагреваясь) дифференцирует резкий токовый скачок.
    • В случае, когда короткое замыкание происходит на силовом питающем кабеле (линия, на которой установлены розетки), сверхток достигает максимального значения практически мгновенно.Защитные автоматы всех уровней могут сработать одновременно.

    Временная селективность

    Если токовая карта селективности защит не может обеспечить избирательность аварийного отключения, применяется дополнительный порог срабатывания: по времени задержки механизма размыкания. Существуют так называемые «медленные» и «быстрые» автоматы. Возникает вопрос: для чего нужна защита с отложенным срабатыванием?

    Селективность автоматических выключателей 4

    • Во-первых, зачастую в электроустановках кратковременно возникают токовые перегрузки, которые не опасны для линии. «Скоростной» автомат защиты будет срабатывать постоянно, нарушая нормальный режим работы.
    • Во-вторых, именно так и обеспечивается временна́я селективность. Поэтому, при подборе автоматов для самостоятельно изготовленного щитка питания, обязательно обращайте внимание на времятоковую характеристику прибора. Она выглядит так: B40 (C16, D32).Именно от этого значения зависит, какой автомат сработает первым при прочих равных условиях.

    Разумеется, токовая защита в автомате также останется. Просто кроме порога срабатывания по току, определяется время задержки размыкания контактов. При грамотном использовании этих параметров, можно выстроить цепочку селективной защиты таким образом, чтобы первым срабатывал выключатель, расположенный ближе к проблемному потребителю (либо аварийному участку цепи). В этом случае вторая и третья ступени защиты остаются работоспособными, общее энергоснабжение объекта не прекращается.

    При построении карты селективности в релейной защите, стратегия строится на постепенном повышении как порогов срабатывания по току, точному расчету времени задержек на каждом следующем автомате. Разница во времени между задержками последующих ступеней состоит из времени обнаружения сверхтока (короткое замыкание, превышение нагрузки) со стороны потребителя, а также из естественной инерции размыкающего устройства со стороны генерирующей установки.

    Эти характеристики анализируются методом сравнения времятоковых параметрических кривых.

    Селективность автоматических выключателей 5

    Если наложить графики друг на друга, можно определить иерархию расположения защитных автоматов в цепи.

    Интересно, что нормальную селективную защиту можно обеспечить только с использованием временных характеристик (без распределения токовой отсечки). Расщепление по току может быть одинаковым у всех автоматов, а срабатывание расцепителей будет происходить в строгой иерархической последовательности: от потребителя к источнику электроэнергии.

    При этом задержка срабатывания настраивается таким образом, что первый от потребителя (в аварийной ситуации — проблемной зоны) автомат должен сработать мгновенно. Следующий за ним, удерживает контакты замкнутыми, обеспечивая электропитанием остальную цепь.

    Селективность автоматических выключателей 6

    Иллюстрация наглядно демонстрирует, как можно организовать разветвленное подключение на защитных автоматах с одинаковым током уставки. Безопасность организуется за счет ступенчатого отключения по времени и на разных уровнях.

    Энергетическая селективность

    Этот способ защиты нельзя рассматривать, как обособленный. Просто для его организации используются специально сконструированные автоматические выключатели.

    При возникновении короткого замыкания, такие автоматы демонстрируют быстродействие, измеряемое единицами миллисекунд. Иерархия цепочки размыканий строится по обычному принципу: быстрые устройства от потребителя, медленные — ближе к энергоснабжению.

    Расчет производится сначала теоретически, на основе паспортных данных выключателей, а затем производятся практические испытания. Только после этого система может считаться безопасной, и принимается на вооружение проектировщиками.

    К этой категории можно отнести селективную защиту с помощью устройств защитного отключения. Для этих целей также используется специальное оборудование.

    Что такое селективное УЗО, и чем оно отличается от обычного?

    Любой пользователь этих автоматов знает, что при возникновении любого подозрения на опасность (с точки зрения УЗО), происходит моментальное отключение всей цепи. Многие электрики по этой причине отказываются монтировать устройства защитного отключения в селективные схемы. Это ставит под сомнение безопасность электрического подключения бытовой техники.

    Поэтому производители разработали УЗО с большим временем срабатывания. Получается, что при традиционном подключении, традиционные автоматы срабатывают раньше, чем устройства защитного отключения.

    На иллюстрации схема выглядит, как в обычном проекте, на самом деле это селективная защита с использованием УЗО.

    Селективность автоматических выключателей 7

    Кроме того, отключение происходит только на том уровне, где возникла проблема. Мало того, что авария на одной линии не приводит к прекращению энергоснабжения целого объекта, упрощается поиск вышедшей из строя электроустановки.

    Для информации, типы селективных УЗО

    Для поддержания принципа временной селективности, выдержка интервала должна быть разной: для каждой задачи своя. Типовых классификаций две:

    • Тип «S». Время задержки в диапазоне от 0.145 до 0.5 секунд. Это медленнее, чем у традиционных устройств защиты. Организация питания выглядит следующим образом: На каждой конечной группе потребителей (либо отдельном потребителе) устанавливается традиционное устройство защиты. То есть, чувствительное, и с быстрым временем срабатывания. А на входе в общую группу, либо на едином вводе электроэнергии объекта, устанавливается селективное УЗО. При «стандартной» аварии, конечные автоматы мгновенно срабатывают, а входная защита остается «на взводе», выдержав положенное время. А если по параметрам аварии, конечные УЗО не сработают, вводной автомат все равно отключит питание через 0.15–0.5 секунд, обеспечив безусловную защиту.
    • Тип «G». Устройства такого типа могут превосходить по времени реакции даже традиционные защитные устройства. Срабатывание происходит в диапазоне 0.06–0.08 секунд. Разумеется, такие УЗО не применяются в быту и традиционных офисных помещениях. Эти профессиональные аппараты устанавливают на объектах, где промедление даже в 1 десятую доли секунды может привести к катастрофе.

    Селективность автоматических выключателей 8

    Зонная селективность

    С технической точки зрения, это разновидность временной селективности. Принцип работы изменяется за счет технологического администрирования. Организуется своеобразный обмен данными между анализаторами тока на каждом автомате. В результате, при возникновении аварии по току в одной зоне, отключается только она. При этом, иерархия не обязательно выдерживается: сектор отключения может быть на любом уровне.

    Селективность автоматических выключателей 9

    Есть две методики построения администрирования:

    1. В каждом секторе (зоне) монтируются измерительные устройства без исполнительных механизмов. Они дают информацию в модуль управления, который «принимает решения» о прекращении подачи питания в ту или иную зону. В качестве исполнительного механизма можно использовать электромагнитный контактор. При этом контроллер определяет, есть ли аналогичная информация со стороны подачи питания. Если защитное устройство не сработало на более высоком уровне, то отключается только конкретный потребитель. Если авария по всей цепочке — отключаются автоматы дальше по иерархии.
    2. Обеспечение меньшего времени срабатывания защиты в нужном секторе, за счет введения дополнительного оборудования. Усиливающая система потребует дополнительного источника питания. Преимущество данной схемы защиты — нет необходимости подбирать устройства отключения по временной селективности. Кроме того, можно обеспечить большое количество уровней селективной защиты. Методика требует высокой квалификации персонала, и высоких финансовых затрат. Поэтому такое решение принимается исключительно для сложных и ответственных радиальных систем организации питания.

    Какой бы способ селективной защиты вы не выбрали, все начинается с точного расчета.

    Карта селективности защиты

    Идеальных вариантов обеспечения питания не бывает. Разные режимы нагрузки подразумевают различные аварийные ситуации. Именно карта селективности позволяет увидеть работу релейной защиты виртуально. Моделируя проект на бумаге, инженеры могут убедиться, что во всех режимах защита может работать правильно. Для разветвленных схем характерно наличие защитных устройств с различными времятоковыми характеристиками. Для примера возьмем любой автомат и определим его, как «нашу защиту».

    Селективность автоматических выключателей 10

    Остальные устройства на схеме назовем смежными. Главный принцип правильной организации — времятоковые характеристики всех устройств не должны пересекаться на одном линейном уровне. Если провести временную линию в качестве оси координат, то между ступенями селективности должен быть разрыв. Увидеть это можно только на графиках. Это и есть карта селективности: на нем совмещены характеристики смежных защит.

    Информация: Для простых схем организации селективной защиты построение карт не требуется. Если нет смежных уровней — не рассчитывается и совместимость.

    Селективность автоматических выключателей 11

    Для построения карт лучше использовать специальные компьютерные программы. Хотя профессиональные инженеры легко строят графики карандашом. После выстраивания всех параметрических кривых, график проверяется на их пересечение. При возникновении такой ситуации, проверяется критичность: возможно, ничего менять не потребуется. Если линии электропитания не находятся в зависимости друг от друга, разведение ничего не меняет.

    В остальных случаях необходимо обеспечить временную разницу по оси времени не менее 0.25 секунды.

    Кроме того, даже если пересекаются селективности по времени срабатывания, разведение может быть организовано по разнице тока отсечки. Как правило, используются оба способа, это можно учитывать в построении карты, а можно оставить на практическом уровне.

    Редко применяемые системы защиты

    • Направленная система работает по принципу вектора тока и напряжения. Между ними всегда есть фазовый сдвиг. Устройства защиты анализируют разницу и при необходимости отключают оборудование в нужном секторе.
    • Дифференцируемая система сравнивает отклонения параметров в начале линии питания, и непосредственно у агрегата. Если отклонения достигают заданной величины — ситуация признается аварийной. Такая селективность требуется, если питание подается на очень мощные агрегаты.

    Материал одинаково подойдет начинающим электрикам, и энергетическим отделам крупных предприятий. Разумеется, в домашних условиях нет необходимости усложнять схему: достаточно обеспечить селективность по току отсечки.

    Видео по теме

    Источник

    Задержка срабатывания защиты по току

    Расчет параметров срабатывания максимальных токовых защит главным образом состоит из выбора тока срабатывания измерительных органов защиты и выдержки времени логического элемента задержки, т.е. уставок по току и по времени. Для токовых отсечек чаще всего выбирается только уставка по току, но иногда — и уставка по времени.

    Выбранные уставки по току и по времени должны обеспечивать правильную работу защиты, отвечающую требованиям селективности, чувствительности, быстродействия и надежности [1].

    При выборе уставок может выявиться непригодность предварительно принятой схемы и даже типа релейной защиты. Например, при недостаточной чувствительности максимальной токовой защиты трансформатора или линии к удаленным КЗ может потребоваться дополнительная установка пускового органа напряжения или вообще замена этого типа защиты на другой — дистанционный. Возможны случаи, когда в результате выбора уставок максимальной токовой защиты выявляются возможности обеспечения ее чувствительности только при условии преднамеренного ограничения сверхтоков перегрузки, например недопущения одновременного включения большого числа асинхронных двигателей, предусмотрев их поочередный пуск с помощью специальной автоматики.

    Таким образом, выбор уставок защиты является очень ответственным делом. И чем проще устройство защиты, тем более сложным и трудоемким может оказаться выбор ее параметров срабатывания. Поэтому при расчетах релейной защиты интенсивно используются современные электронно-вычислительные машины (ЭВМ).

    В распределительных электрических сетях простой конфигурации напряжением до 35 кВ, а иногда и 110 кВ, где в основном и применяются простые максимальные токовые защиты, для расчета уставок можно использовать как правило, персональные ЭВМ, называемые микро-ЭВМ, а в настоящее время — персональными ЭВМ (ПЭВМ).

    В диалоге с ЭВМ можно быстро произвести расчеты токов короткого замыкания для различных режимов работы электроустановки, выполнить несколько вариантов выбора параметров срабатывания какой-либо защиты, при необходимости усложняя ее схему, заменяя дешевые электромеханические реле более дорогими полупроводниковыми реле с лучшими характеристиками. Практически одновременно решаются вопросы пуска и самозапуска электродвигателей нагрузки, производится выбор электродвигателей, которые предварительно, перед действием устройства АВР, должны отключаться, а также выбираются параметры срабатывания устройств АВР, определяющие очередность их действий. Далее производится расчетная проверка измерительных трансформаторов тока, которая также может оказаться многовариантной и привести к необходимости замены трансформаторов тока и изменения ранее выбранных типов и параметров срабатывания устройств защиты.

    Для составления прикладных программ ЭВМ, так же как и для обычных расчетов параметров срабатывания максимальных токовых защит и токовых отсечек, используются известные, проверенные много летней практикой расчетные условия [1-5]. В этом параграфе они приводятся в общем виде, а конкретизируются — в следующих применительно к особенностям защищаемых элементов.

    Выбор тока срабатывания максимальной токовой защиты.

    Ток срабатывания максимальной токовой защиты выбирается в амперах по условию (7) несрабатывания защиты при сверхтоках послеаварийных перегрузок, по условию (8) согласования чувствительности защит защищаемого последующего и предыдущих элементов, а также по условию (2) обеспечения необходимой чувствительности защиты ко всем видам КЗ в основной зоне и в зонах дальнего резервирования (рис. 1).

    По первому из этих условий ток срабатывания максимальной токовой защиты I с.з выбирается по выражениям:

    (7)

    (7а)

    где k н — коэффициент надежности отстройки (табл. 7); k в — коэффициент возврата максимальных реле тока или комплектных устройств того же назначения (табл. 7); k сзп — коэффициент самозапуска, равный отношению максимального значения тока при самозапуске нагрузки I сзп к максимальному реальному значению рабочего тока защищаемого элемента I раб.max т. е. .

    Значения коэффициентов в Выражениях (7) и (8) выбора тока срабатывания максимальной токовой защиты

    Тип (серия) реле тока

    Максимальные значения тока самозапуска и коэффициента самозапуска при значительной доле электродвигательной (моторной) нагрузки определяются расчетом для конкретных условий, но обязательно при наиболее тяжелом условии пуска полностью заторможенных электродвигателей. Для нагрузок жилищно-коммунального (бытового) сектора, а также для большинства нагрузок в сельской местности, где преобладают осветительные и электронагревательные устройства при относительно небольшой доле мелкомоторной нагрузки, коэффициент самозапуска, как правило, не рассчитывается, а принимается в пре делах 1,2—1,5.

    Максимальное значение рабочего тока защищаемого элемента I раб.max определяется с учетом его максимально допустимой перегрузки. Например, для трансформаторов 10 и 6 кВ мощностью до 630 кВ*А допускается длительная перегрузка до 1,6—1,8 номинального тока, для трансформаторов двухтрансформаторных подстанций 110 кВ — до 1,4—1,6 номинального тока. Для некоторых элементов перегрузка вообще не допускается (кабели напряжением выше 10 кВ, реакторы). Значения допустимых максимальных нагрузок определяют диспетчерские службы.

    По условию согласования чувствительности защит последующего (защищаемого) и предыдущих элементов ток срабатывания после дующей защиты выбирается по выражению

    , (8)

    где k н.с — коэффициент надежности согласования, значения которого приведены в табл. 7, причем большие из них относятся к тем случаям, когда защиты предыдущих элементов выполнены на реле прямого действия типа РТВ; k р — коэффициент токораспределения, который учитывается только при наличии нескольких источников питания, а при одном источнике питания равен 1 (рис. 26); — наибольшая из геометрических сумм токов срабатывания максимальных токовых защит параллельно работающих предыдущих элементов ( n ); при разнице между углами фазового сдвига напряжения и тока для всех предыдущих элементов n не более 50° допустимо арифметическое сложение вместо геометрического; — геометрическая сумма максимальных значений рабочих токов всех предыдущих элементов ( N ), за исключением тех, с защитами которых производится согласование ( n ); при примерно однородной нагрузке допустимо арифметическое сложение вместо геометрического, что создает некоторый расчетный запас.

    Например, для каждой из предыдущих линий 2—7 (рис. 26) значения рабочего тока I раб.max = 100 А; ток срабатывания у защит линий 5—7, работающих параллельно ( n = 3), одинаков: I с.з = 300 А. Тогда ток срабатывания максимальной токовой защиты последующей линии 1 по условию (8) при k н.с = 1,3 должен быть

    Установив такой ток срабатывания защиты последующей линии 1, можно быть уверенным в том, что ее измерительные органы сработают лишь при таких значениях тока КЗ, при которых обеспечивается срабатывание защит предыдущих элементов. При этом учитывается возможность распределения тока К3 по двум или трем параллельно работающим предыдущим линиям или трансформаторам. Параллельная работа более чем трех элементов осуществляется очень редко.

    Рис. 26. Схема электрической сети с параллельно работающими предыдущими элементами 3, 4 и 5—7, поясняющая условие (8) согласования чувствительности максимальных токовых защит последующих и предыдущих элементов.

    Правила [1] требуют выполнять согласование чувствительности защит во всех случаях, когда возможно действие защиты последующего элемента (линия 1 на рис. 26) из-за отказа вследствие недостаточной чувствительности защиты предыдущего элемента. Надо отметить, что в распределительных электрических сетях, где в основном и применяются максимальные токовые защиты, весьма вероятны отказы защит из-за недостаточной чувствительности при К3 в зонах дальнего резервирования. Например, при удаленных КЗ на линиях при отказе собственной защиты или выключателя (линия 8 на рис. 26) или при этих же условиях при КЗ в трансформаторах, в электродвигателях, за реакторами и т. п., когда значения токов КЗ невелики и близки к токам срабатывания защит последующих элементов (линий 5—7 на рис. 26) и эти защиты находятся на грани срабатывания.

    Наиболее тяжелыми условия согласования чувствительности максимальных токовых защит оказываются при параллельно работающих предыдущих элементах, при разнотипных времятоковых характеристиках согласуемых защит (в том числе и плавких предохранителей), а также при выполнении на предыдущих элементах дистанционных защит [5].

    Из полученных по выражениям (7) и (8) значений токов срабатывания защиты выбирается наибольшее, а затем по выражению (1) определяется ток срабатывания реле. Для защит, выполненных на токовых реле с плавной регулировкой тока срабатывания (например, РТ-40), полученное значение I ср принимается за уставку по току. Для защит и реле со ступенчатой регулировкой тока срабатывания (4) подбирается ближайшее большее значение уставки по току.

    Чувствительность защиты определяется по выражению (2). Минимальные значения тока в реле I р min выбираются при самых неблагоприятных условиях: наибольшем сопротивлении питающей энергосистемы (минимальный режим) и наибольшем сопротивлении до места КЗ на защищаемом элементе (основная зона на рис. 1) и в зонах дальнего резервирования.

    Для выбора минимального значения тока в реле рассматриваются все виды КЗ. Например, для двухфазной схемы максимальной токовой защиты (рис. 5) из табл. 1 видно, что при КЗ на защищаемых линиях минимальное значение тока в реле следует рассчитывать при двухфазных КЗ. А при тех же видах КЗ за трансформаторами со схемами соединения обмоток Y /∆-11 или ∆/ Y 0-11 важно учесть схему выполнения защиты: для двухрелейной схемы (реле РТ1, РТ2 на рис. 5) расчетное значение , а для трехрелейной — и, следовательно, чувствительность защиты повышается в 2 раза и получается одинаковой при трехфазном и всех видах двухфазных КЗ. Здесь надо отметить, что чувствительность защиты оценивается по наибольшему из вторичных токов, проходящих в измерительных реле защиты, хотя бы и в одном из трех реле, поскольку все реле самостоятельно действуют на логическую часть защиты (включены по схеме ИЛИ, рис. 5,8).

    Ток срабатывания реле в выражении (2) рассчитывается по выражению (1). Значения коэффициента схемы указаны ранее при рассмотрении различных схем выполнения максимальных токовых защит. Для защит линий, выполненных по схеме неполной или полной звезды (рис. 5 и 7), с включением реле на фазные токи расчет коэффициента чувствительности защиты может производиться по первичным токам КЗ и срабатывания защиты (первичному):

    Для оценки чувствительности защит трансформаторов лучше пользоваться выражением (1).

    Для защит, выполненных на реле прямого действия типа РТМ и РТВ (рис. 11), необходимо оценивать чувствительность с учетом действительного значения токовой погрешности f измерительных трансформаторов тока (если f ≥10%). Примеры расчета приведены в работе [5].

    Для защит, выполненных по схеме с дешунтированием электромагнитов отключения ЭО (рис. 12, 13), дополнительно проверяются чувствительность ЭО и невозможность возврата защиты после дешунтирования ЭО при действительных значениях токовой погрешности в этом режиме, если они превышают 10%. Примеры расчета приведены в работе [5].

    Увеличение чувствительности максимальной токовой защиты может быть достигнуто применением более совершенных реле (табл. 7) и уменьшением значений тока самозапуска моторной нагрузки. Используется также автоматическое секционирование линий электропередачи

    с помощью выключателей с защитой с целью уменьшения длины защищаемых зон [5].

    Выбор времени срабатывания и времятоковой характеристики максимальной токовой защиты.

    Выдержка времени максимальных токовых защит вводится для замедления действия защиты с целью обеспечения селективности действия защиты последующего элемента по отношению к защитам предыдущих элементов. Для этого выдержка времени (или время срабатывания) защиты t с.з последующей линии Л2 (рис. 1) выбирается большей, чем у защит предыдущих элементов: линии Л1 и трансформатора подстанции В.

    В свою очередь, выдержка защиты линии Л3 должна быть больше, чем у защит линии Л2 и трансформатора подстанции Б. При этом выборе выдержек времени обеспечивается селективное (избирательное) отключение в первую очередь ближайшего к месту КЗ выключателя. Тем самым предотвращаются дополнительные излишние отключения неповрежденных элементов.

    Недостатками максимальных токовых защит является накопление выдержек времени, особенно существенное для головных элементов в многоступенчатых электрических сетях (рис. 1). Для преодоления этого недостатка используются реле времени с повышенной точностью работы (электронные), максимальные реле тока с обратнозависимыми времятоковыми характеристиками различной формы, сочетание максимальных токовых защит и токовых отсечек.

    После выбора выдержек времени максимальных токовых защит по условию селективности необходимо в ряде случаев проверять термическую стойкость защищаемого элемента, т.е. допустимость прохождения максимального тока КЗ в течение выбранного времени действия защиты. Это объясняется тем, что термическое воздействие электрического тока прямо пропорционально времени его прохождения. При недопустимо длительном прохождении большого сверхтока может произойти опасный перегрев токоведущих частей и изоляции и разрушение защищаемого элемента, например перегорание проводов воздушных линий электропередачи малого сечения, повреждение электрических кабелей и т. п. Следует учитывать и дополнительное время прохождения тока КЗ после АПВ линии на устойчивое неустранившееся повреждение [5].

    Выбор времени срабатывания максимальных токовых защит с независимой от тока выдержки времени.

    По условию селективности время срабатывания (уставка по времени) защиты последующего элемента выбирается в секундах, по выражению

    , (10)

    где tc .з.посл — время срабатывания максимальной токовой защиты предыдущего элемента, т. е. более удаленного от источника питания (рис. 27, а); ∆ t — ступень селективности.

    Значения ступени селективности для защит с независимой от тока выдержкой времени определяются в основном точностью реле времени [2]. У электромеханических реле времени с часовым механизмом серий РВ-100 и РВ-200 точность работы снижается с увеличением диапазона уставок по шкале [7]. Поэтому для максимальных токовых защит следует использовать реле времени со шкалой 0,25—3,5 с, а при возможности — со шкалой 0,1—1,3 с (§ 5). При этом значение ступени селективности можно уменьшить до 0,4 с. При использовании реле времени этих серий с более широкой шкалой (до 9 с) ступень селективности увеличивается до 0,5—0,6 с. Такая же ступень селективности принимается при установке реле времени типов РВМ-12 и РВМ-13.

    При выполнении защиты с электронными реле времени РВ-01 минимальная ступень селективности может быть принята равной 0,3 с.

    Рис. 27. Схема электрической сети (а) и карты селективности (б, в), поясняющие условия выбора ступеней селективности между защитами последующего и предыдущего элементов.

    Выбор времятоковых характеристик максимальных токовых защит с реле РТ-80, РТВ и им подобных.

    Времятоковые характеристики защит последующего и предыдущего элементов выбираются такими, чтобы была обеспечена ступень селективности ∆ t при одном из следующих значений тока КЗ:

    а) при максимальном значении тока КЗ в начале предыдущего элемента, если и на последующем 2 и на предыдущем 1 элементах выполнены защиты с обратнозависимым от тока времятоковыми характеристиками (рис. 27, 6)

    б) при токе КЗ, равном току срабатывания защиты 2 последующего элемента, если эта защита выполнена с независимым от тока временем срабатывания, а защита 1 предыдущего элемента имеет обратнозависимую от тока времятоковую характеристику (рис. 27, в).

    Значения ступеней селективности в первом случае (рис. 27, б) принимаются примерно равными 0,7 с для реле РТВ и примерно равными 0,6 с для реле РТ-80, если при максимальном значении тока К3 в начале защищаемого элемента реле обеих защит работают в независимой части характеристики или близко к ней. При согласовании характеристик защит с реле РТВ в зависимой части, т.е. при малых кратностях токов КЗ, рекомендуется увеличивать значение ступени селективности до 1 с.

    Во втором случае (рис. 27, в) значение ступени селективности можно несколько уменьшить.

    Опыт использования полупроводниковых реле и защит с обратно зависимой от тока времятоковой характеристикой еще невелик. Рекомендуемые ступени селективности находятся в пределах 0,4—0,5 с. При больших кратностях тока КЗ значение ступени селективности может быть снижено до 0,3 с, а при малых (2—З) — должно быть увеличено до 0,6 с.

    Выбор характеристик максимальных токовых защит с обратно зависимой времятоковой характеристикой производится аналитическим или графическим способом [5].

    Выбранное по условию селективности время срабатывания защиты проверяется по условию обеспечения термической стойкости защищаемого элемента, особенно в тех случаях, когда защищается понижающий трансформатор, кабельная линия или воздушная линия с про водами малых сечений. Примеры проверки приведены в работе [5].

    Источник

Задержка срабатывания защиты по току



ПРОМЕЖУТОЧНОЕ РЕЛЕ И ЕГО НАЗНАЧЕНИЕ

Реле промежуточное

Схемотехнические решения устройств релейной защиты и автоматики сдержат различные типы релейной аппаратуры, каждый из которых выполняет свои функции.

Основными «органами чувств» автоматики служат специальные релейные устройства, реагирующие на изменение значений контролируемых параметров – тока, напряжения, частоты, сопротивления, температуры и других величин. Обычно это достаточно тонкие механизмы, обладающие возможностью точной настройки.

Количество контактов в таких устройствах невелико и они рассчитаны на малые токи. При срабатывании устройства РЗА происходит одновременный запуск нескольких типов процессов по разным электрическим цепям.

Рассмотрим работу простейшей защиты по максимальному току высоковольтного электродвигателя.

Реагирующим органом такой защиты обычно служит максимальное реле тока типа РТ – 40. Якорь этого прибора в целях уменьшения инерционности очень лёгкий и удерживается мягкой спиральной пружинкой. Имеется только один контакт замыкающегося типа, рассчитанный на небольшую мощность.

В то же время, срабатывание этой защиты должно вызывать следующие последствия:

  • отключение высоковольтного выключателя путём подачи напряжения на мощный соленоид отключения;
  • подача электрического напряжения на специальные указательные релейные устройства (блинкеры), выпадение флажков которых сигнализирует о факте срабатывания защиты;
  • включение световых сигнальных табло и звуковой сигнализации различного типа; передача сигнала в систему диспетчерского управления (при наличии).
  • включение световых сигнальных табло и звуковой сигнализации различного типа;

Для выполнения перечисленных действий используются вспомогательные реле, называемые промежуточными. Промежуточное реле имеет несколько контактных групп замыкающегося и размыкающегося типа. Катушка этого прибора подключена в цепь контактов токового релейного органа (в случае токовой защиты).

При срабатывании реле тока, срабатывает и промежуточное, каждая контактная группа которого выполняет одну из перечисленных выше функций.

Несмотря на развитие систем РЗА микропроцессорного типа, электромагнитные приборы (в том числе промежуточные) продолжают широко использоваться. Появились серии модульного типа промежуточных реле для установки на дин рейку.

ТИПЫ ПРОМЕЖУТОЧНЫХ РЕЛЕ

Питание схем защиты и автоматики осуществляется от специальных цепей оперативного тока. По типу оперативный ток может быть переменным или постоянным.

Источниками напряжения постоянного оперативного тока могут служить аккумуляторные батареи, батареи конденсаторов или выпрямительные устройства, шинки переменного опертока питаются напряжением от трансформаторов собственных нужд.

Поскольку работают промежуточные реле в цепях оперативного напряжения, в зависимости от его типа они производятся с катушками на постоянный и переменный ток.

Данный тип промежуточного реле предназначен для работы в цепях постоянного напряжения. РП – 23 состоит из катушки напряжения с магнитным сердечником. Подвижной частью магнитной системы является якорь, который при подаче напряжения на катушку притягивается к сердечнику.

С якорем механически связана траверса, на которой закреплены четыре контактных мостика. Притягиваясь к сердечнику, якорь опускает траверсу, сжимая пружину, на которой она установлена. При этом происходит замыкание нормально разомкнутых контактов и размыкание нормально замкнутого.

Неподвижные контакты РП – 23 выполнены в форме уголков из тонких медных пластин. Каждый из уголков может быть установлен одним из двух способов. Благодаря этому можно получить четыре типа комбинаций вариантов контактных групп (р – группа на размыкание, з – группа на замыкание):

  • 1 р, 4 з;
  • 2 р, 3 з;
  • 3 р, 2 з;
  • 4 р, 1 з.

Такая инвариантность позволяет приспособить этот прибор к работе в составе любой схемы.

При размыкании создаётся два воздушных промежутка на каждый контакт, благодаря чему повышается их дугогасительная способность.

Это свойство важно при работе релейного аппарата в цепях отключения высоковольтных выключателей, соленоиды которых обладают большой индуктивностью и поддерживают напряжение электрической дуги при разрыве цепи.

РП – 23 выпускается в различных модификациях для работы в оперативных цепях напряжением 24 В, 48 В, 110 В и 220 В.

Внутренняя схема электрических соединений промежуточного реле этого типа аналогична РП – 23. Катушка РП – 25 предназначена для работы на переменном напряжении. Варианты исполнения оснащаются катушками на напряжение 100 В, 127 В или 220 В.

Рабочий ресурс электромагнитного механизма промежуточных реле РП – 23 и РП – 25 составляет 100000 срабатываний. Контактная группа выдерживает 10000 циклов замыкания – размыкания с полной электрической нагрузкой по току и напряжению.

РЕЛЕЙНЫЕ УСТРОЙСТВА С ЗАДЕРЖКОЙ НА СРАБАТЫВАНИЕ И ВОЗВРАТ

В некоторых схемах защиты и автоматики для обеспечения надёжности работы устройства требуется определённая задержка при срабатывании или возврате промежуточного релейного органа.

Необходимость задержки может быть проиллюстрирована следующим примером. Контакт выходного промежуточного реле подаёт команду управления электромагниту отключения выключателя.

Если при этом не обеспечить задержку возврата промежуточного релейного устройства, его контакты не справятся с размыканием цепи тока отключения и сгорят.

Задержка возврата на доли секунды необходима для того, чтобы выключатель успел отключиться и своими мощными блок – контактами разорвал цепь тока электромагнита. После этого происходит безопасный возврат реле.

Этот тип реле применяется в цепях постоянного оперативного напряжения. Особенность РП – 251 заключается в том, что его срабатывание происходит с задержкой по времени. Замедление создаётся за счёт медных демпфирующих шайб, расположенных на магнитном сердечнике вместе с катушкой напряжения.

Время задержки срабатывания в соответствии с потребностями конкретной схемы может регулироваться. Регулирование производится путём изменения количества демпферных шайб и доступно в пределах от 0,07 с до 0,11 с.

Модификации промежуточных реле этого типа, кроме 220 В рассчитаны на стандартные варианты величин постоянного оперативного напряжения – 24, 48, 110 вольт.

Также относится к промежуточным реле постоянного тока. Обеспечивает замедление при возврате. Конструкция РП – 252 похожа на РП – 251. Замедление также обеспечено медными шайбами. Но расположены они иначе. В релейной конструкции типа РП – 251 шайбы установлены ближе к цоколю, в РП – 252 – с другой стороны катушки, ближе к рабочему зазору.

Читайте также:  Током высокой частоты считается ток с частотой

СХЕМЫ ЗАЩИТ С ДЕШУНТИРОВАНИЕМ

Наличие оперативного тока позволяет строить схемы защиты и автоматики, несущие в себе ряд преимуществ:

  • возможность применения релейных органов вторичного действия, обладающих высокой точностью настройки;
  • использование различных средств сигнализации.

На объектах, удалённых от дислокации обслуживающего персонала часто используются защиты без оперативного тока. Идея таких устройств заключается в следующем. Отключение выключателя при срабатывании защиты максимального тока осуществляется энергией короткого замыкания.

Выключатели оборудуются токовыми катушками отключения – электромагнитами с подвижными сердечниками, непосредственно воздействующими на привод отключения.

Катушка отключения связана с первичной сетью через трансформатор тока. В рабочем режиме цепь тока катушки зашунтирована контактами специального промежуточного реле.

При появлении сверхтоков короткого замыкания срабатывает токовое реле. Контакты токового релейного органа подключают к вторичной токовой цепи катушку промежуточного реле. При срабатывании, оно своими контакты дешунтирует электромагнит отключения выключателя.

Указанные функции реализуются при подключении промежуточных реле типов РП – 321 и РП – 341. Отличительной особенностью этих приборов является то, что их контакты работают в токовых цепях защит.

Токовые цепи запрещается разрывать, поэтому контакты РП – 321 и РП – 341 имеют особую конструкцию. В процессе дешунтирования вначале срабатывает замыкающийся контакт, и только после него размыкающийся.

Подобные системы защиты отличаются простотой и надёжностью и могут длительное время функционировать без вмешательства оперативного персонала. Схемы с дешунтированием электромагнитной катушки отключения используются в электроустановках 6 – 35 кВ. К минусу таких конструкций можно отнести невозможность реализации более сложных устройств РЗА.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Источник

Задержка срабатывания защиты по току

Расчет параметров срабатывания максимальных токовых защит главным образом состоит из выбора тока срабатывания измерительных органов защиты и выдержки времени логического элемента задержки, т.е. уставок по току и по времени. Для токовых отсечек чаще всего выбирается только уставка по току, но иногда — и уставка по времени.

Выбранные уставки по току и по времени должны обеспечивать правильную работу защиты, отвечающую требованиям селективности, чувствительности, быстродействия и надежности [1].

При выборе уставок может выявиться непригодность предварительно принятой схемы и даже типа релейной защиты. Например, при недостаточной чувствительности максимальной токовой защиты трансформатора или линии к удаленным КЗ может потребоваться дополнительная установка пускового органа напряжения или вообще замена этого типа защиты на другой — дистанционный. Возможны случаи, когда в результате выбора уставок максимальной токовой защиты выявляются возможности обеспечения ее чувствительности только при условии преднамеренного ограничения сверхтоков перегрузки, например недопущения одновременного включения большого числа асинхронных двигателей, предусмотрев их поочередный пуск с помощью специальной автоматики.

Таким образом, выбор уставок защиты является очень ответственным делом. И чем проще устройство защиты, тем более сложным и трудоемким может оказаться выбор ее параметров срабатывания. Поэтому при расчетах релейной защиты интенсивно используются современные электронно-вычислительные машины (ЭВМ).

В распределительных электрических сетях простой конфигурации напряжением до 35 кВ, а иногда и 110 кВ, где в основном и применяются простые максимальные токовые защиты, для расчета уставок можно использовать как правило, персональные ЭВМ, называемые микро-ЭВМ, а в настоящее время — персональными ЭВМ (ПЭВМ).

В диалоге с ЭВМ можно быстро произвести расчеты токов короткого замыкания для различных режимов работы электроустановки, выполнить несколько вариантов выбора параметров срабатывания какой-либо защиты, при необходимости усложняя ее схему, заменяя дешевые электромеханические реле более дорогими полупроводниковыми реле с лучшими характеристиками. Практически одновременно решаются вопросы пуска и самозапуска электродвигателей нагрузки, производится выбор электродвигателей, которые предварительно, перед действием устройства АВР, должны отключаться, а также выбираются параметры срабатывания устройств АВР, определяющие очередность их действий. Далее производится расчетная проверка измерительных трансформаторов тока, которая также может оказаться многовариантной и привести к необходимости замены трансформаторов тока и изменения ранее выбранных типов и параметров срабатывания устройств защиты.

Для составления прикладных программ ЭВМ, так же как и для обычных расчетов параметров срабатывания максимальных токовых защит и токовых отсечек, используются известные, проверенные много летней практикой расчетные условия [1-5]. В этом параграфе они приводятся в общем виде, а конкретизируются — в следующих применительно к особенностям защищаемых элементов.

Выбор тока срабатывания максимальной токовой защиты.

Ток срабатывания максимальной токовой защиты выбирается в амперах по условию (7) несрабатывания защиты при сверхтоках послеаварийных перегрузок, по условию (8) согласования чувствительности защит защищаемого последующего и предыдущих элементов, а также по условию (2) обеспечения необходимой чувствительности защиты ко всем видам КЗ в основной зоне и в зонах дальнего резервирования (рис. 1).

По первому из этих условий ток срабатывания максимальной токовой защиты I с.з выбирается по выражениям:

(7)

(7а)

где k н — коэффициент надежности отстройки (табл. 7); k в — коэффициент возврата максимальных реле тока или комплектных устройств того же назначения (табл. 7); k сзп — коэффициент самозапуска, равный отношению максимального значения тока при самозапуске нагрузки I сзп к максимальному реальному значению рабочего тока защищаемого элемента I раб.max т. е. .

Значения коэффициентов в Выражениях (7) и (8) выбора тока срабатывания максимальной токовой защиты

Тип (серия) реле тока

Максимальные значения тока самозапуска и коэффициента самозапуска при значительной доле электродвигательной (моторной) нагрузки определяются расчетом для конкретных условий, но обязательно при наиболее тяжелом условии пуска полностью заторможенных электродвигателей. Для нагрузок жилищно-коммунального (бытового) сектора, а также для большинства нагрузок в сельской местности, где преобладают осветительные и электронагревательные устройства при относительно небольшой доле мелкомоторной нагрузки, коэффициент самозапуска, как правило, не рассчитывается, а принимается в пре делах 1,2—1,5.

Читайте также:  Меня все предметы постоянно бьют током

Максимальное значение рабочего тока защищаемого элемента I раб.max определяется с учетом его максимально допустимой перегрузки. Например, для трансформаторов 10 и 6 кВ мощностью до 630 кВ*А допускается длительная перегрузка до 1,6—1,8 номинального тока, для трансформаторов двухтрансформаторных подстанций 110 кВ — до 1,4—1,6 номинального тока. Для некоторых элементов перегрузка вообще не допускается (кабели напряжением выше 10 кВ, реакторы). Значения допустимых максимальных нагрузок определяют диспетчерские службы.

По условию согласования чувствительности защит последующего (защищаемого) и предыдущих элементов ток срабатывания после дующей защиты выбирается по выражению

, (8)

где k н.с — коэффициент надежности согласования, значения которого приведены в табл. 7, причем большие из них относятся к тем случаям, когда защиты предыдущих элементов выполнены на реле прямого действия типа РТВ; k р — коэффициент токораспределения, который учитывается только при наличии нескольких источников питания, а при одном источнике питания равен 1 (рис. 26); — наибольшая из геометрических сумм токов срабатывания максимальных токовых защит параллельно работающих предыдущих элементов ( n ); при разнице между углами фазового сдвига напряжения и тока для всех предыдущих элементов n не более 50° допустимо арифметическое сложение вместо геометрического; — геометрическая сумма максимальных значений рабочих токов всех предыдущих элементов ( N ), за исключением тех, с защитами которых производится согласование ( n ); при примерно однородной нагрузке допустимо арифметическое сложение вместо геометрического, что создает некоторый расчетный запас.

Например, для каждой из предыдущих линий 2—7 (рис. 26) значения рабочего тока I раб.max = 100 А; ток срабатывания у защит линий 5—7, работающих параллельно ( n = 3), одинаков: I с.з = 300 А. Тогда ток срабатывания максимальной токовой защиты последующей линии 1 по условию (8) при k н.с = 1,3 должен быть

Установив такой ток срабатывания защиты последующей линии 1, можно быть уверенным в том, что ее измерительные органы сработают лишь при таких значениях тока КЗ, при которых обеспечивается срабатывание защит предыдущих элементов. При этом учитывается возможность распределения тока К3 по двум или трем параллельно работающим предыдущим линиям или трансформаторам. Параллельная работа более чем трех элементов осуществляется очень редко.

Рис. 26. Схема электрической сети с параллельно работающими предыдущими элементами 3, 4 и 5—7, поясняющая условие (8) согласования чувствительности максимальных токовых защит последующих и предыдущих элементов.

Правила [1] требуют выполнять согласование чувствительности защит во всех случаях, когда возможно действие защиты последующего элемента (линия 1 на рис. 26) из-за отказа вследствие недостаточной чувствительности защиты предыдущего элемента. Надо отметить, что в распределительных электрических сетях, где в основном и применяются максимальные токовые защиты, весьма вероятны отказы защит из-за недостаточной чувствительности при К3 в зонах дальнего резервирования. Например, при удаленных КЗ на линиях при отказе собственной защиты или выключателя (линия 8 на рис. 26) или при этих же условиях при КЗ в трансформаторах, в электродвигателях, за реакторами и т. п., когда значения токов КЗ невелики и близки к токам срабатывания защит последующих элементов (линий 5—7 на рис. 26) и эти защиты находятся на грани срабатывания.

Наиболее тяжелыми условия согласования чувствительности максимальных токовых защит оказываются при параллельно работающих предыдущих элементах, при разнотипных времятоковых характеристиках согласуемых защит (в том числе и плавких предохранителей), а также при выполнении на предыдущих элементах дистанционных защит [5].

Из полученных по выражениям (7) и (8) значений токов срабатывания защиты выбирается наибольшее, а затем по выражению (1) определяется ток срабатывания реле. Для защит, выполненных на токовых реле с плавной регулировкой тока срабатывания (например, РТ-40), полученное значение I ср принимается за уставку по току. Для защит и реле со ступенчатой регулировкой тока срабатывания (4) подбирается ближайшее большее значение уставки по току.

Чувствительность защиты определяется по выражению (2). Минимальные значения тока в реле I р min выбираются при самых неблагоприятных условиях: наибольшем сопротивлении питающей энергосистемы (минимальный режим) и наибольшем сопротивлении до места КЗ на защищаемом элементе (основная зона на рис. 1) и в зонах дальнего резервирования.

Для выбора минимального значения тока в реле рассматриваются все виды КЗ. Например, для двухфазной схемы максимальной токовой защиты (рис. 5) из табл. 1 видно, что при КЗ на защищаемых линиях минимальное значение тока в реле следует рассчитывать при двухфазных КЗ. А при тех же видах КЗ за трансформаторами со схемами соединения обмоток Y /∆-11 или ∆/ Y 0-11 важно учесть схему выполнения защиты: для двухрелейной схемы (реле РТ1, РТ2 на рис. 5) расчетное значение , а для трехрелейной — и, следовательно, чувствительность защиты повышается в 2 раза и получается одинаковой при трехфазном и всех видах двухфазных КЗ. Здесь надо отметить, что чувствительность защиты оценивается по наибольшему из вторичных токов, проходящих в измерительных реле защиты, хотя бы и в одном из трех реле, поскольку все реле самостоятельно действуют на логическую часть защиты (включены по схеме ИЛИ, рис. 5,8).

Ток срабатывания реле в выражении (2) рассчитывается по выражению (1). Значения коэффициента схемы указаны ранее при рассмотрении различных схем выполнения максимальных токовых защит. Для защит линий, выполненных по схеме неполной или полной звезды (рис. 5 и 7), с включением реле на фазные токи расчет коэффициента чувствительности защиты может производиться по первичным токам КЗ и срабатывания защиты (первичному):

Для оценки чувствительности защит трансформаторов лучше пользоваться выражением (1).

Для защит, выполненных на реле прямого действия типа РТМ и РТВ (рис. 11), необходимо оценивать чувствительность с учетом действительного значения токовой погрешности f измерительных трансформаторов тока (если f ≥10%). Примеры расчета приведены в работе [5].

Читайте также:  Два круговых проводника с током

Для защит, выполненных по схеме с дешунтированием электромагнитов отключения ЭО (рис. 12, 13), дополнительно проверяются чувствительность ЭО и невозможность возврата защиты после дешунтирования ЭО при действительных значениях токовой погрешности в этом режиме, если они превышают 10%. Примеры расчета приведены в работе [5].

Увеличение чувствительности максимальной токовой защиты может быть достигнуто применением более совершенных реле (табл. 7) и уменьшением значений тока самозапуска моторной нагрузки. Используется также автоматическое секционирование линий электропередачи

с помощью выключателей с защитой с целью уменьшения длины защищаемых зон [5].

Выбор времени срабатывания и времятоковой характеристики максимальной токовой защиты.

Выдержка времени максимальных токовых защит вводится для замедления действия защиты с целью обеспечения селективности действия защиты последующего элемента по отношению к защитам предыдущих элементов. Для этого выдержка времени (или время срабатывания) защиты t с.з последующей линии Л2 (рис. 1) выбирается большей, чем у защит предыдущих элементов: линии Л1 и трансформатора подстанции В.

В свою очередь, выдержка защиты линии Л3 должна быть больше, чем у защит линии Л2 и трансформатора подстанции Б. При этом выборе выдержек времени обеспечивается селективное (избирательное) отключение в первую очередь ближайшего к месту КЗ выключателя. Тем самым предотвращаются дополнительные излишние отключения неповрежденных элементов.

Недостатками максимальных токовых защит является накопление выдержек времени, особенно существенное для головных элементов в многоступенчатых электрических сетях (рис. 1). Для преодоления этого недостатка используются реле времени с повышенной точностью работы (электронные), максимальные реле тока с обратнозависимыми времятоковыми характеристиками различной формы, сочетание максимальных токовых защит и токовых отсечек.

После выбора выдержек времени максимальных токовых защит по условию селективности необходимо в ряде случаев проверять термическую стойкость защищаемого элемента, т.е. допустимость прохождения максимального тока КЗ в течение выбранного времени действия защиты. Это объясняется тем, что термическое воздействие электрического тока прямо пропорционально времени его прохождения. При недопустимо длительном прохождении большого сверхтока может произойти опасный перегрев токоведущих частей и изоляции и разрушение защищаемого элемента, например перегорание проводов воздушных линий электропередачи малого сечения, повреждение электрических кабелей и т. п. Следует учитывать и дополнительное время прохождения тока КЗ после АПВ линии на устойчивое неустранившееся повреждение [5].

Выбор времени срабатывания максимальных токовых защит с независимой от тока выдержки времени.

По условию селективности время срабатывания (уставка по времени) защиты последующего элемента выбирается в секундах, по выражению

, (10)

где tc .з.посл — время срабатывания максимальной токовой защиты предыдущего элемента, т. е. более удаленного от источника питания (рис. 27, а); ∆ t — ступень селективности.

Значения ступени селективности для защит с независимой от тока выдержкой времени определяются в основном точностью реле времени [2]. У электромеханических реле времени с часовым механизмом серий РВ-100 и РВ-200 точность работы снижается с увеличением диапазона уставок по шкале [7]. Поэтому для максимальных токовых защит следует использовать реле времени со шкалой 0,25—3,5 с, а при возможности — со шкалой 0,1—1,3 с (§ 5). При этом значение ступени селективности можно уменьшить до 0,4 с. При использовании реле времени этих серий с более широкой шкалой (до 9 с) ступень селективности увеличивается до 0,5—0,6 с. Такая же ступень селективности принимается при установке реле времени типов РВМ-12 и РВМ-13.

При выполнении защиты с электронными реле времени РВ-01 минимальная ступень селективности может быть принята равной 0,3 с.

Рис. 27. Схема электрической сети (а) и карты селективности (б, в), поясняющие условия выбора ступеней селективности между защитами последующего и предыдущего элементов.

Выбор времятоковых характеристик максимальных токовых защит с реле РТ-80, РТВ и им подобных.

Времятоковые характеристики защит последующего и предыдущего элементов выбираются такими, чтобы была обеспечена ступень селективности ∆ t при одном из следующих значений тока КЗ:

а) при максимальном значении тока КЗ в начале предыдущего элемента, если и на последующем 2 и на предыдущем 1 элементах выполнены защиты с обратнозависимым от тока времятоковыми характеристиками (рис. 27, 6)

б) при токе КЗ, равном току срабатывания защиты 2 последующего элемента, если эта защита выполнена с независимым от тока временем срабатывания, а защита 1 предыдущего элемента имеет обратнозависимую от тока времятоковую характеристику (рис. 27, в).

Значения ступеней селективности в первом случае (рис. 27, б) принимаются примерно равными 0,7 с для реле РТВ и примерно равными 0,6 с для реле РТ-80, если при максимальном значении тока К3 в начале защищаемого элемента реле обеих защит работают в независимой части характеристики или близко к ней. При согласовании характеристик защит с реле РТВ в зависимой части, т.е. при малых кратностях токов КЗ, рекомендуется увеличивать значение ступени селективности до 1 с.

Во втором случае (рис. 27, в) значение ступени селективности можно несколько уменьшить.

Опыт использования полупроводниковых реле и защит с обратно зависимой от тока времятоковой характеристикой еще невелик. Рекомендуемые ступени селективности находятся в пределах 0,4—0,5 с. При больших кратностях тока КЗ значение ступени селективности может быть снижено до 0,3 с, а при малых (2—З) — должно быть увеличено до 0,6 с.

Выбор характеристик максимальных токовых защит с обратно зависимой времятоковой характеристикой производится аналитическим или графическим способом [5].

Выбранное по условию селективности время срабатывания защиты проверяется по условию обеспечения термической стойкости защищаемого элемента, особенно в тех случаях, когда защищается понижающий трансформатор, кабельная линия или воздушная линия с про водами малых сечений. Примеры проверки приведены в работе [5].

Источник

Adblock
detector