Меню

Является ли источником электрического тока прожектор



Какие существуют виды источников электрического тока?

Источник электрического тока – это устройство, с помощью которого создаётся электрический ток в замкнутой электрической цепи. В настоящее время изобретено большое количество видов таких источников. Каждый вид используется для определённых целей.

Какие существуют виды источников электрического тока?

Виды источников электрического тока

Существуют следующие виды источников электрического тока:

  • механические;
  • тепловые;
  • световые;
  • химические.

Механические источники

В этих источниках происходит преобразование механической энергии в электрическую. Преобразование осуществляется в специальных устройствах – генераторах. Основными генераторами являются турбогенераторы, где электрическая машина приводится в действие газовым или паровым потоком, и гидрогенераторы, преобразующие энергию падающей воды в электричество. Большая часть электроэнергии на Земле производится именно механическими преобразователями.

Какие существуют виды источников электрического тока?

Тепловые источники

Здесь преобразуется в электричество тепловая энергия. Возникновение электрического тока обусловлено разностью температур двух пар контактирующих металлов или полупроводников — термопар. В этом случае заряженные частицы переносятся от нагретого участка к холодному. Величина тока зависит напрямую от разности температур: чем больше эта разность, тем больше электрический ток. Термопары на основе полупроводников дают термоэдс в 1000 раз больше, чем биметаллические, поэтому из них можно изготавливать источники тока. Металлические термопары используют лишь для измерения температуры.

В настоящее время разработаны новые элементы на основе преобразования тепла, выделяющегося при естественном распаде радиоактивных изотопов. Такие элементы получили название радиоизотопный термоэлектрический генератор. В космических аппаратах хорошо себя зарекомендовал генератор, где применяется изотоп плутоний-238. Он даёт мощность 470 Вт при напряжении 30 В. Так как период полураспада этого изотопа 87,7 года, то срок службы генератора очень большой. Преобразователем тепла в электричество служит биметаллическая термопара.

Световые источники

С развитием физики полупроводников в конце ХХ века появились новые источники тока – солнечные батареи, в которых энергия света преобразуется в электрическую энергию. В них используется свойство полупроводников выдавать напряжение при воздействии на них светового потока. Особенно сильно этот эффект наблюдается у кремниевых полупроводников. Но всё-таки КПД таких элементов не превышает 15%. Солнечные батареи стали незаменимы в космической отрасли, начали применяться и в быту. Цена таких источников питания постоянно снижается, но остаётся достаточно высокой: около 100 рублей за 1 ватт мощности.

Какие существуют виды источников электрического тока?

Химические источники

Все химические источники можно разбить на 3 группы:

  1. Гальванические
  2. Аккумуляторы
  3. Тепловые

Гальванические элементы работают на основе взаимодействия двух разных металлов, помещённых в электролит. В качестве пар металлов и электролита могут быть разные химические элементы и их соединения. От этого зависит вид и характеристики элемента.

ВАЖНО! Гальванические элементы используются только разово, т.е. после разряда их невозможно восстановить.

Существует 3 вида гальванических источников (или батареек):

  1. Солевые;
  2. Щелочные;
  3. Литиевые.

Солевые, или иначе «сухие», батарейки используют пастообразный электролит из соли какого-либо металла, помещённый в цинковый стаканчик. Катодом служит графито-марганцевый стержень, расположенный в центре стаканчика. Дешёвые материалы и лёгкость изготовления таких батареек сделали их самыми дешёвыми из всех. Но по характеристикам они значительно уступают щелочным и литиевым.

Какие существуют виды источников электрического тока?

В щелочных батарейках в качестве электролита используется пастообразный раствор щёлочи — гидрооксида калия. Цинковый анод заменён на порошкообразный цинк, что позволило увеличить отдаваемый элементом ток и время работы. Эти элементы служат в 1,5 раза дольше солевых.

В литиевом элементе анод сделан из лития — щелочного металла, что значительно увеличило продолжительность работы. Но одновременно увеличилась цена из-за относительной дороговизны лития. Кроме того, литиевая батарейка может иметь различное напряжение в зависимости от материала катода. Выпускают батарейки с напряжением от 1,5 В до 3,7 В.

Аккумуляторы — источники электрического тока, которые можно подвергать многим циклам заряда-разряда. Основными видами аккумуляторов являются:

  1. Свинцово-кислотные;
  2. Литий-ионные;
  3. Никель-кадмиевые.

Свинцово-кислотные аккумуляторы состоят из свинцовых пластин, погружённых в раствор серной кислоты. При замыкании внешней электрической цепи происходит химическая реакция, в результате которой свинец преобразуется в сульфат свинца на катоде и аноде, а также образуется вода. В процессе зарядки сульфат свинца на аноде восстанавливается до свинца, а на катоде до диоксида свинца.

Какие существуют виды источников электрического тока?

Литий-ионный аккумулятор получил своё название из-за того, что в качестве носителя электричества в электролите служат ионы лития. Ионы возникают на катоде, который изготовлен из соли лития на подложке из алюминиевой фольги. Анод изготавливается из различных материалов: графита, оксидов кобальта и других соединений на подложке из медной фольги.

Напряжение в зависимости от применяемых компонентов может быть от 3 В до 4,2 В. Благодаря низкому саморазряду и большому количеству циклов заряда-разряда литий-ионные аккумуляторы приобрели большую популярность в бытовой технике.

ВАЖНО! Литий-ионные аккумуляторы очень чувствительны к перезарядке. Поэтому для их зарядки нужно использовать зарядные устройства, предназначенные только для них, которые имеют встроенные специальные схемы, предотвращающие перезаряд. Иначе может произойти разрушение аккумулятора и его возгорание.

Какие существуют виды источников электрического тока?

В никель-кадмиевых аккумуляторах катод сделан из соли никеля на стальной сетке, анод из соли кадмия на стальной сетке, а электролит — смесь гидроксида лития и гидроксида калия. Номинальное напряжение такого аккумулятора — 1,37 В. Он выдерживает от 100 до 900 циклов зарядки-разрядки.

Тепловые химические элементы служат как источники резервного питания. Они дают отличные характеристики по удельной плотности тока, но имеют короткий срок службы (до 1 часа). Применяются в основном в ракетной технике, где нужны надёжность и кратковременная работа.

Источник

Электрический ток. Источники электрического тока

Решебник к сборнику задач по физике для 7- 9 классов, Перышкин А.В.

987. В грозу между тучами возникает молния. Является ли она электрическим током? Является ли электрическим током молния, возникшая между облаком и Землей?
Да, является. Заряди из области с большими потенциалом переходят в область с меньшим потенциалом.

988. В металлическом проводнике, с помощью которого разряжается электроскоп, возникает электрический ток. По проводнику, соединяющему полюсы гальванического элемента, тоже идет электрический ток. Есть ли разница между этими токами? В чем состоит это различие?
Разница только во времени протекания тока.

989. В мопеде от генератора тока к фаре проведен только один провод. Почему нет второго провода?
Роль второго провода играет рама мопеда.

990. На рисунке 92 изображена схема электрической цепи. Назовите элементы, из которых состоит данная электрическая цепь? Что нужно сделать, чтобы лампочка в цепи загорелась?
Ключ, лампочка, источник тока; нужно замкнуть ключ.

991. Из каких элементов состоит цепь на рисунке 93? Будет ли идти ток через сопротивление R, если ключи 1 и 2 разомкнуты? Будет ли идти ток и через какие элементы цепи, если замкнуть:
а) только ключ 1; б) только ключ 2; в) оба ключа?

Две лампы; ключ 1, ключ 2; сопротивление, источник тока. Если оба ключа разомкнуты, ток идти не будет. А) будет, резистор R и лампы 1; б) будет, резистор R т лампа 2; в) будет, через все элементы.

992. Из каких элементов состоит цепь на рисунке 94? Будет ли идти ток через лампочки, если замкнуть:
а) только ключ 1;
б) только ключ 2;
в) оба ключа одновременно?
Стоит ли в такой цепи иметь два ключа?

Две лампочки, ключ 1, ключ 2, источник тока.
А) – нет; б) – нет ; в) да , будет. Не стоит хватит одного ключа.

993. Какова цена деления шкалы вольтметра, изображенного на рисунке 95?

994. Начертите схему цепи, содержащей источник тока и две лампочки, каждую из которых можно включать отдельно.

Электрический ток. Источники электрического тока

995. В электрическую цепь включен реостат со скользящим контактом (рис. 96). Покажите стрелками, как идет ток в цепи и в реостате.

Электрический ток. Источники электрического тока

996. Через лампочку А (рис. 97) протекает в течение 5 мин 150 Кл электричества, а через лампочку В — за то же время 60 Кл. Определить силу тока в той и другой лампочке.
Какова будет сила тока в проводах D и С?

Источник

Электрический ток

На графике представлены результаты измерений напряжения \(U\) на реостате при различных значениях сопротивления \(R\) реостата. Погрешность измерения напряжения \(\Delta U = \pm 0,2\) В, сопротивления \(\Delta R = \pm 0,4\) Ом.
Выберете два верных утверждения на основании данных графика.
1) С увеличением сопротивления напряжение увеличивается.
2) При сопротивлении 2 Ом сила тока примерно равна 1,5 А.
3) При сопротивлении 1 Ом сила тока в цепи примерно равна 2 А.
4) При сопротивлении 8 Ом сила тока примерно равна 0,78 А.
5) Напряжение не зависит от сопротивления.

Читайте также:  Может ли этанол проводить ток 1

1) \(\color<\small\text<Верно >>\)
Исходя из графика, можно сделать вывод, что чем больше сопротивление реостата, тем больше напряжение на нем.
2) \(\color<\small\text<Верно >>\)
По закону Ома сила тока в реостате прямо пропорциональна напряжению и обратно пропорциональна сопротивлению: \[I = \dfrac\] При сопротивлении 2 Ом напряжение на реостате равно \(3\) В. Тогда сила тока примерно равна: \[I= \dfrac<3\text< В>><2\text< Ом>> = 1,5\text< А>\] 3) \(\color<\small\text<Неверно >>\)
Информации на графике недостаточно, чтобы сделать вывод, чему равна сила тока, протекающего через реостат, при сопротивлении 1 Ом.
4) \(\color<\small\text<Неверно >>\)
При сопротивлении 8 Ом сила тока примерно равна: \[I= \dfrac<4,8\text< В>><8\text< Ом>> = 0,6\text< А>\] 5) \(\color<\small\text<Неверно >>\)
Исходя из графика видно, что напряжение на реостате зависит от сопротивления.

На рисунке изображена зависимость силы тока через лампу накаливания от приложенного к ней напряжения.

Выберите два верных утверждения на основании данных графика.
1) Сопротивление лампы увеличивается при увеличении силы тока.
2) Мощность, выделяемая в лампе при напряжении 55 В, равна 70 Вт.
3) Мощность, выделяемая в лампе при напряжении 85 В, равна 114,75 Вт.
4) Сопротивление лампы при силе тока в ней 1,05 А равно 100 Ом.
5) Мощность, выделяемая на лампе, при увеличении силы тока уменьшается.

1) \(\color<\small\text<Верно >>\)
Сопротивление лампы увеличивается при увеличении силы тока.
2) \(\color<\small\text<Неверно >>\)
Мощность, выделяемую на лампе, можно найти по формуле: \[N = IU\] При напряжении 55 В сила тока в лампе равна 1,05 А. Мощность, выделяемая на ней, равна: \[N = 1,05\text < А>\cdot 55\text < В>= 57,75\text< Вт>\] 3) \(\color<\small\text<Верно >>\)
При напряжении 85 В сила тока в лампе равна 1,35 А. Мощность, выделяемая на ней, равна: \[N = 1,35\text < А>\cdot 85\text < В>= 114,75\text< Вт>\] 4) \(\color<\small\text<Неверно >>\)
Сопротивление лампы можно выразить из закона Ома: \[I = \dfrac \; \; \; \Rightarrow \; \; \; R=\dfrac\] При силе тока 1,05 А напряжение равно 55 В. Сопротивление лампы равно: \[R = \dfrac<55\text< В>><1,05\text< А>> \approx 52 \text< Ом>\] 5) \(\color<\small\text<Неверно >>\)
Мощность, выделяемая на лампе, при увеличении силы тока увеличивается.

На рисунке изображена цепь состоящая из конденсатора, источника тока, ключа и резистора с сопротивлением \(R=30\) кОм. В начальный момент времени ( \(t=0\) ) ключ \(K\) замкнули, при этом конденсатор полностью разряжен. Результаты измерения силы тока представлены в таблице
\[\begin <|c|c|c|c|c|c|c|c|>\hline t \text< с>&0&1&2&3&4&5&6\\ \hline I\text< мкА>&100&50&30&20&10&5&1\\ \hline \end\] Выберите два верных утверждения о данной ситуации и укажите их номера.
1) Ток через резистор в процессе наблюдения уменьшается.
2) Через 5 с после замыкания ключа конденсатор полностью зарядился.
3) ЭДС источника тока составляет 6 В.
4) В момент времени t = 3 с напряжение на резисторе равно 0,6 В.
5) В момент времени t = 3 с напряжение на резисторе равно 0,9 В.

1) \(\color<\small\text<Верно >>\)
Из таблицы видно, что сила тока со временем уменьшается, а значит первое утверждение верно.
2) \(\color<\small\text<Неверно >>\)
Через 5 секунд ток в цепи еще не равен 0, а это значит, что конденсатор еще не зарядился до конца.
3) \(\color<\small\text<Неверно >>\)
ЭДС источника равен силе тока в начальный момент, так как тогда конденсатор еще не зарядился, умножить сопротивление резистора по закону Ома \[\xi=I_1 R= 100\text< мкА>\cdot 30\text< кОм>=3\text< В>\] ЭДС не равно 6 В, а значит 3) неверно
4) \(\color<\small\text<Верно >>\)
По закону Ома \[U_3=I_3R= 20\text< мкА>\cdot 30\text< кОм>=0,6\text< В>\] Сопротивление на резисторе равно 0,6 В, значит, 4) верно
\(\color<\small\text<Неверно >>\)
По пункту 4) пункт 5) будет неверным

На рисунке изображена цепь состоящая из конденсатора, источника тока, ключа и резистора с сопротивлением \(R=30\) кОм. В начальный момент времени ( \(t=0\) ) ключ \(K\) замкнули, при этом конденсатор полностью разряжен. Результаты измерения силы тока представлены в таблице
\[\begin <|c|c|c|c|c|c|c|c|>\hline t \text< с>&0&1&2&3&4&5&6\\ \hline I\text< мкА>&100&50&30&20&10&5&1\\ \hline \end\] Выберите два верных утверждения о данной ситуации и укажите их номера.
1) Ток через резистор в процессе наблюдения увеличивается.
2) Через 2 с после замыкания ключа конденсатор еще полностью разряжен.
3) ЭДС источника тока составляет 3 В.
4) В момент времени t = 3 с напряжение на резисторе равно 0,27 В.
5) В момент времени t = 3 с напряжение на конденсаторе равно 2,1 В.

1) \(\color<\small\text<Неверно >>\)
Из таблицы видно, что сила тока со временем уменьшается, а значит первое утверждение неверно.
2) \(\color<\small\text<Неверно >>\)
На конденсаторе будет возникать напряжение, которое будет противоположное направлению движению тока, а так как сила тока в цепи при \(t=2\) меньше, чем сила тока при \(t=0\) , то конденсатор будет заряжен.
3) \(\color<\small\text<Верно >>\)
ЭДС источника равен силе тока в начальный момент, так как тогда конденсатор еще не зарядился, умножить сопротивление резистора по закону Ома \[\xi=I_1 R= 100\text< мкА>\cdot 30\text< кОм>=3\text< В>\] ЭДС равно 3 В, а значит 3) верно
4) \(\color<\small\text<Неверно >>\)
По закону Ома \[U_3=I_3R= 30\text< мкА>\cdot 30\text< кОм>=0,9\text< В>\] Сопротивление на резисторе равно 0,9 В, значит, 4) неверно
5) \(\color<\small\text<Верно >>\)
Напряжение на конденсаторе будет равно разности между ЭДС источника и напряжением на резисторе, а значит оно равно \[U_C=\xi-I_3R=3\text< В>-0,9\text< В>=2,1\text< В>\] Напряжение равно 2,1 В, что означает, что 5) верно.

В колебательном контуре происходят свободные электромагнитные колебания. В таблице показано, как изменялся заряд в зависимости от времени \[\begin <|c|c|c|c|c|c|c|c|c|c|c|>\hline t \text< мкс>&0&1&2&3&4&5&6&7&8&9\\ \hline q\text< нКл>&4&2&0&-2&-4&-2&0&2&4&2\\ \hline \end\] Выберите два верных утверждения о данной ситуации и укажите их номера.
1) Период колебаний равен \(4\cdot10^ <−6>c\) .
2) В момент \(t = 2\cdot 10^ <−6>c\) энергия катушки максимальна.
3) В момент \(t = 4\cdot 10^ <−6>c\) энергия конденсатора минимальна.
4) В момент \(t = 2\cdot 10^ <−6>c\) сила тока в контуре равна 0.
5) Частота колебаний равна 125 кГц.

1) \(\color<\small\text<Неверно >>\)
Период колебаний это время, между двумя последовательными одинаковыми величинами заряда. Возьмем \(q=4\text< нКл>\) в первый раз он был при \(t=0\text< мкс>\) , а второй раз при \(t=8\text< мкс>\) , а значит период равен 8 мкс, то есть \(8 \cdot 10^<-6>\) с.
2) \(\color<\small\text<Верно >>\)
Энергия катушки будет максимальна, когда энергия конденсатора будет минимальна, а это наступает при минимальном по модулу заряде ( \(W=\dfrac<2C>\) ). У нас заряд по модулю минимален при \(t = 2\cdot 10^ <−6>c\) и \(t = 6\cdot 10^ <−6>c\) . Значит энергия катушки при \(t = 2\cdot 10^ <−6>c\) максимальна.
3) \(\color<\small\text<Неверно >>\)
Энергия конденсатор будет зависит от заряда на его пластинах, когда заряд на конденсаторе по модулю будет максимален , то и энергия конденсатора будет максимальна \(W=\dfrac<2C>\) , при \(t = 4\cdot 10^ <−6>c\) заряд по модулю максимален, следовательно, энергия на конденсаторе максимальна.
4) \(\color<\small\text<Неверно >>\)
Заряд в контуре изменяется синусоидально. А так как сила тока производная от заряда, то сила тока будет максимальна при минимальном по модулю заряде, то есть при \(t=0\) , \(t = 4\cdot 10^ <−6>c\) и \(t = 8\cdot 10^ <−6>c\) . Значит при \(t = 2\cdot 10^ <−6>c\) максимальная сила тока.
5) \(\color<\small\text<Верно >>\)
Частота \(\nu=\dfrac<1>=\dfrac<1><8\cdot 10^<-6>\text< с>>=125\text< кГц>\)

В колебательном контуре происходят свободные электромагнитные колебания. В таблице показано, как изменялся заряд в зависимости от времени \[\begin <|c|c|c|c|c|c|c|c|c|c|c|>\hline t \text< мкс>&0&1&2&3&4&5&6&7&8&9\\ \hline q\text< нКл>&4&2&0&-2&-4&-2&0&2&4&2\\ \hline \end\] Выберите два верных утверждения о данной ситуации и укажите их номера.
1) Период колебаний равен \(8\cdot10^ <−6>c\) .
2) В момент \(t = 2\cdot 10^ <−6>c\) энергия катушки минимальна.
3) В момент \(t = 4\cdot 10^ <−6>c\) сила тока в контуре будет минимальна.
4) В момент \(t =4 \cdot 10^ <−6>c\) сила тока в контуре равна будет максимальна.
5) Частота колебаний равна 250 кГц.

1) \(\color<\small\text<Верно >>\)
Период колебаний это время, между двумя последовательными одинаковыми величинами заряда. Возьмем \(q=4\text< нКл>\) в первый раз он был при \(t=0\text< мкс>\) , а второй раз при \(t=8\text< мкс>\) , а значит период равен 8 мкс, то есть \(8 \cdot 10^<-6>\) с.
2) \(\color<\small\text<Неверно >>\) Энергия катушки будет минимальная, когда энергия конденсатора будет максимальная, а это наступает при максимальном по модулю заряде ( \(W=\dfrac<2C>\) ). У нас заряд по модулю максимален при \(t=0\) \(t = 4\cdot 10^ <−6>c\) и \(t = 8\cdot 10^ <−6>c\) . Значит энергия катушки при \(t = 2\cdot 10^ <−6>c\) максимальна.
3) \(\color<\small\text<Верно >>\)
Энергия катушки будет минимальная, когда энергия конденсатора будет максимальная, а это наступает при максимальном по модулю заряде ( \(W=\dfrac<2C>\) ). У нас заряд по модулю максимален при \(t=0\) \(t = 4\cdot 10^ <−6>c\) и \(t = 8\cdot 10^ <−6>c\) . Значит энергия катушки при \(t = 4\cdot 10^ <−6>c\) минимальна.
4) \(\color<\small\text<Неверно >>\) По пункту 3) при \(t=4\cdot 10^ <−6>c\) сила тока будет минимальна.
5) \(\color<\small\text<Неверно >>\)
Частота \(\nu=\dfrac<1>=\dfrac<1><8\cdot 10^<-6>\text< с>>=125\text< кГц>\)

Читайте также:  Генераторы постоянных токов транзисторах

Демонстрационная версия ЕГЭ 2015 по физике На рис. 1 приведена схема установки, с помощью которой исследовалась зависимость напряжения на реостате от величины протекающего тока при движении ползунка реостата справа налево.


На рис. 2 приведены графики, построенные по результатам измерений для двух разных источников напряжения.

Выберите два утверждения, соответствующих результатам этих опытов.
1) При силе тока 12 А вольтметр показывает значение ЭДС источника.
2) Ток короткого замыкания равен 12 А.
3) Во втором опыте сопротивление резистора уменьшалось с большей скоростью.
4) Во втором опыте ЭДС источника в 2 раза меньше, чем в первом.
5) В первом опыте ЭДС источника равна 5 В.

1) \(\color<\small\text<Неверно >>\)
Из графиков видно, что ток, равный 12 А, является током короткого замыкания, следовательно, напряжение на вольтметре будет равно 0.

2) \(\color<\small\text<Верно >>\)
Верно на основе предыдущего пункта

3) \(\color<\small\text<Неверно >>\)
Угол наклона первой прямой относительно координатной оси больше, следовательно, скорость изменения сопротивления выше в первом опыте

4) \(\color<\small\text<Верно >>\)
На ЭДС источника указывает самая верхняя точка графика, действительно, они отличаются в два раза

5) \(\color<\small\text<Неверно >>\)
В первом опыте ЭДС источника равно 10 В.

Источник

Является ли источником электрического тока прожектор

При прохождении тока, т. е. при упорядоченном движении носителей заряда в проводнике, действующее на них электрическое поле, определяемое приложенным к концам проводника напряжением, совершает работу. Эту работу обычно называют работой электрического тока.

Работа сил электрического поля при перемещении носителей заряда равна произведению переносимого заряда на разность потенциалов между теми точками, где перемещается заряд:

При постоянном токе — время, в течение которого переносится заряд Поэтому работа постоянного тока за время на участке цепи, на концах которого поддерживается напряжение определяется соотношением

Мощность Р электрического тока, определяемая работой, совершаемой за единицу времени, равна

Электрический ток, совершая работу, может раскалять нить электролампы, вращать якорь электродвигателя, плавить металлы, вызывать химические превращения, заряжать аккумулятор и т. д. Во всех этих случаях работа тока определяет меру превращения электрической энергии в другие формы — внутреннюю энергию теплового движения, механическую энергию и т. д.

Работа электрического тока измеряется в тех же единицах, что и механическая работа. Это в системе СГСЭ и 1 Дж в

Мощность измеряется в ваттах: . Часто используются кратные единицы (киловатт) (мегаватт) Вт. Для работы тока часто используется внесистемная единица (киловатт-час) — работа, совершаемая за 1 час при развиваемой мощности

Закон Джоуля-Ленца. Прохождение электрического тока через проводник, обладающий сопротивлением, всеща сопровождается выделением теплоты. Количество выделившейся за время теплоты определяется законом Джоуля—Ленца:

В случае однородного участка, коща формулы (2) и (4) совпадают, т. е. количество выделяющейся теплоты равно работе тока, и работу тока можно выразить любым из эквивалентных способов:

В однородном участке цепи, например в резисторе, работа тока сводится только к выделению теплоты.

В качестве примера рассмотрим какой-нибудь электронагревательный прибор, отдающий выделяющуюся теплоту в окружающую среду. Скорость теплопередачи, т. е. количества теплоты, отдаваемой нагретым элементом в единицу времени, пропорциональна разности температур между нацзетым телом и окружающей средой:

Коэффициент к зависит от свойств тела (площади поверхности, размеров и формы). Будем считать его значение известным. Выделяющуюся джоулеву теплоту можно подсчитать по любой из формул (5). Поскольку обычно нагревательный прибор включается в сеть с заданным напряжением, то удобно воспользоваться выражением

Сразу после включения выделяющаяся джоулева теплота превосходит отдаваемую окружающей среде, так как происходит нагревание самого прибора. В конце концов устанавливается такая его температура Т, при которой Р и сравниваются наступает стационарное состояние, в котором разность температур прибора и окружающей среды уже не меняется.

Если сопротивление нагреваемого током элемента не зависит от температуры, то, приравнивая значения Р и немедленно получаем выражение для установившейся разности температур:

Однако в действительности, как правило, сопротивление зависит от температуры. Для металлической проволоки эту зависимость можно считать линейной (см. § 10):

где с хорошей точностью под можно понимать сопротивление при температуре окружающей среды. Если учитывать эту зависимость сопротивления от температуры, то, приравнивая Р и приходим уже к квадратному уравнению для

Имеющий физический смысл корень этого уравнения можно представить в следующем виде:

В условиях, когда мало, т. е. превышение температуры нагревательного элемента прибора над окружающей средой невелико, второй

член в подкоренном выражении мал по сравнению с единицей и можно воспользоваться приближенной формулой При этом получаем прежний результат

В другом предельном случае больших (как, например, у лампочки накаливания, температура нити которой составляет несколько тысяч градусов), можно, наоборот, в подкоренном выражении пренебречь единицей по сравнению со вторым членом. При этом для приближенно получаем

— разность температур теперь пропорциональна не квадрату, а первой степени приложенного напряжения.

В неоднородных участках цепи, где ток определяется формулой выделяющаяся теплота не равна работе тока. Это означает, что протекание тока в таком участке сопровождается не только выделением теплоты, но и другими процессами, связанными с превращением энергии.

Зарядка аккумулятора. В качестве примера энергетических превращений в неоднородной цепи рассмотрим зарядку аккумулятора. Не вдаваясь в детали происходящих в аккумуляторе процессов, а только учитывая, что при зарядке все химические процессы внутри него идут «вспять», легко сообразить, что ток идет в направлении, противоположном току при разрядке, когда аккумулятор является источником питания для внешней цепи. Поэтому аккумулятор включается в цепь так, как показано на рис. 86, а ток в цепи идет в направлении, указанном стрелкой. Так как ЭДС аккумулятора (сумма скачков потенциала внутри него) понижает потенциал в цепи в направлении протекания тока, то, в соответствии с законом Ома для неоднородного участка, ток в цепи равен

Рис. 86. Схема включения аккумулятора на зарядку

В этой формуле — внутреннее сопротивление аккумулятора, а сопротивление включено в цепь для регулировки зарядного тока. Легко видеть, что ток будет положительным и, следовательно, пойдет в указанном направлении только при условии, что подаваемое напряжение больше электродвижущей силы аккумулятора . Только при выполнении этого условия и можно зарядить аккумулятор.

Работа, совершаемая зарядной станцией (т. е. внешним источником напряжения в единицу времени, т. е. работа тока на всем рассматриваемом участке, равна На всех сопротивлениях,

включая внутреннее сопротивление аккумулятора, в единицу времени выделяется джоулева теплота, равная . Кроме зарядки аккумулятора и выделения теплоты других энергетических превращений в рассматриваемой цепи не происходит. Поэтому на основании закона сохранения энергии можно утверждать, что

где Рзар — мощность, идущая непосредственно на зарядку аккумулятора. Подставляя в (7) выражение для силы тока (6), получаем

Таким образом, при зарядке аккумулятор в единицу времени запасает энергию, равную 14. Разумеется, этого результата можно было ожидать из элементарных соображений: ведь процессы в аккумуляторе считаются обратимыми, а при разрядке аккумулятор развивает мощность

Обратим внимание, что, считая известными выражения для полной работы тока, для джоулевой теплоты и для работы зарядки аккумулятора, можно с помощью закона сохранения энергии получить выражение (6) для тока в цепи. Для этого нужно просто подставить в Это значит, что закон Ома для неоднородного участка можно получить как следствие закона сохранения энергии.

Работа источника тока. Источник тока — это устройство, поддерживающее разность потенциалов на концах подключенной к нему электрической цепи. Это происходит благодаря действию сторонних сил — сил неэлектростатической природы. Какие энергетические превращения при этом происходят?

Читайте также:  Напряжение ток лампочка формула

Как мы видели, ЭДС источника равна сумме напряжений во внешнем и внутреннем участках цепи:

Домножим обе части этого равенства на заряд проходящий по цепи за время В левой части получившегося равенства будет стоять сумма работ электрического тока во внешнем и во внутреннем участках цепи. Справа будет стоять произведение

Электрический ток совершает работу за счет действия источника, т. е. сторонних сил. По закону сохранения энергии работа тока в цепи равна работе, совершаемой за это же время источником тока, т. е. работе действующих в нем сторонних сил.

Определение ЭДС. Итак, работа источника тока при перемещении по цепи заряда равна Поэтому электродвижущей силе источника можно дать и такое определение: электродвижущей силой называется величина, равная отношению работы Лстор сторонних сил

при перемещении по цепи заряда к этому заряду:

Поскольку работа источника тока равна то развиваемая им мощность

Мощность и КПД источника тока. Выясним, каким должно быть сопротивление нагрузки для того, чтобы получить максимальную силу тока в цепи, максимальную полезную мощность, максимальный коэффициент полезного действия.

Ток в цепи (рис. 87) определяется законом Ома: Поэтому полная мощность Р, развиваемая источником тока, равна . Полезная мощность т. е. мощность, выделяющаяся на нагрузке дается соотношением

Коэффициент полезного действия источника в этой цепи, определяемый как отношение полезной мощности к полной, зависит от сопротивления нагрузки:

Исследуем полученные выражения. Полная мощность Р и ток в цепи I различаются постоянным множителем поэтому их зависимость от сопротивления нагрузки одинакова (кривая 1 на рис. 88).

Рис. 87. К исследованию условий работы источника тока

Рис. 88. Зависимость мощности и КПД источника тока от сопротивления нагрузки

Максимальным значение этих величин будет при т. е. при коротком замыкании источника. Как видно из формул (12) и (13), при этом равны нулю полезная мощность и коэффициент полезного действия При полная мощность и ток равны половине своего максимального значения, коэффициент полезного действия равен 0,5, а полезная мощность достигает своего максимального значения,

равного половине мощности Р при этой нагрузке. Для того чтобы убедиться, что при равенстве сопротивления нагрузки и внутреннего сопротивления источника тока полезная мощность максимальна, преобразуем правую часть выражения (12) следующим образом:

Полезная мощность будет максимальной, когда знаменатель правой части выражения (14) минимален. Преобразуем знаменатель:

Функция (15) достигает минимума тогда, когда выражение в скобках равно нулю, т. е. при Этот результат можно, разумеется, получить, приравнивая нулю производную по знаменателя правой части выражения (14).

При неограниченном увеличении сопротивления нагрузки как полная, так и полезная мощность стремится к нулю (кривая 2), а коэффициент полезного действия — к единице (кривая 3).

Из рис. 87 видно, что требования получения максимального тока в цепи, максимальной полезной мощности и максимального КПД противоречивы. Для получения возможно большего тока сопротивление нагрузки должно быть малым по сравнению с внутренним сопротивлением источника, но при этом близки к нулю полезная мощность и КПД: почти вся совершаемая источником тока работа идет на выделение теплоты на внутреннем сопротивлении Чтобы получить от данного источника тока максимальную полезную мощность, следует взять нагрузку с сопротивлением равным внутреннему сопротивлению источника. Значение максимальной полезной мощности но коэффициент полезного действия при этом равен всего лишь 0,5.

Любую полезную мощность меньшую максимальной, можно получить, как свидетельствует ход кривой 2 на рис. 88, при двух значениях сопротивления нагрузки. Практически для получения заданной полезной мощности следует выбирать нагрузку с большим сопротивлением так как КПД при этом выше. Для получения КПД, близкого к единице, следует брать нагрузку с сопротивлением, много большим внутреннего сопротивления источника тока, но при этом выделяющаяся мощность .

• Работа каких сил имеется в виду, когда говорят о работе, совершаемой электрическим током?

• В каких случаях работа электрического тока не равна выделяющейся в цепи джоулевой теплоте

• Для зарядки аккумулятора с ЭДС его включили в сеть с постоянным напряжением Какая доля потребляемой от сети энергии запасается в аккумуляторе?

• Каким образом работа сторонних сил связана с ЭДС источника тока? Аргументируйте свой ответ.

• Какой должна быть нагрузка, чтобы источник тока развивал максимальную полезную мощность? Каким при этом будет его КПД?

• Почему условия получения максимальной полезной мощности и максимального КПД от данного источника тока противоречат друг другу?

• Покажите, что два значения сопротивления нагрузки и при которых в нагрузке выделяется одинаковая джоулева теплота, связаны соотношением где — внутреннее сопротивление источника тока.

• Постройте графики зависимости мощности источника тока, полезной мощности и КПД от силы тока I в цепи.

Поле сторонних сил. Работа, совершаемая электрическим током при прохождении заряда по всей цепи, равна работе действующих в источнике сторонних сил. Поэтому ЭДС можно выразить через эти силы.

Введем новую величину Естор, которую назовем напряженностью поля сторонних сил. Это сила, действующая на единичный положительный заряд, обусловлена любыми причинами, кроме электростатического поля. Тогда полная сила, действующая на заряд, будет складываться из электростатической силы и сторонней силы:

Рассмотрим замкнутую цепь и рассчитаем полную работу, совершаемую всеми действующими на заряд силами при его перемещении по всей цепи. Работа электростатических сил на замкнутом контуре равна нулю, так как эти силы — потенциальные. Поэтому полная работа на замкнутом контуре равна работе только сторонних сил. Именно эта работа и определяет ЭДС источника тока.

Обратим внимание на кажущееся противоречие. Работа тока — это по определению работа сил электрического поля. В то же время, как мы видели, работа тока во всей цепи равна работе источника, т. е. работе сторонних сил. Но как мы только что выяснили, работа электростатического поля равна нулю. Как все это согласовать?

Дело в том, что, говоря о работе электрического тока, мы имели в виду работу электрических сил не на всем замкнутом пути, а только на тех участках цепи, где заряды движутся под действием электрических сил. Мы не включали работу электрических сил в местах скачков потенциала (где и действуют

сторонние силы), т. е. в местах, где электрическое поле направлено противоположно движению положительных зарядов. Именно в этих местах внутри источника тока движение зарядов против сил электрического поля обусловлено действием сторонних сил. Если учесть работу электрических сил и в этих местах, то полная их работа действительно будет равна нулю.

Здесь можно привести следующую механическую аналогию. Лыжник спускается с горы и, сделав круг, возвращается к ее подножию, а затем с помощью подъемника снова поднимается на вершину. Аналогом потенциального электростатического поля здесь является поле силы тяжести. Роль сторонних сил играют силы, поднимающие его наверх в подъемнике. Очевидно, что полная работа силы тяжести на всем замкнутом пути равна нулю. Однако в данном случае она не представляет интереса. Важна лишь та работа сил тяжести, что совершается при движении лыжника от вершины горы до ее основания. Эта работа как раз и равна работе «сторонних» сил, действующих на лыжника в подъемнике.

Работа и теплота в произвольной цепи. В неоднородном участке цепи, содержащем источник с ЭДС и внутренним сопротивлением когда , для работы тока А, работы источника и выделяющейся теплоты имеем

Выделяющаяся теплота равна сумме работы тока и работы источника:

Подчеркнем, что эти формулы справедливы во всех случаях, независимо от того, идет ли ток через источник в «естественном» направлении, когда он отдает энергию во внешнюю цепь, или в противоположном, как это бывает при зарядке аккумулятора, когда он потребляет энергию (в этом случае I и Ч имеют противоположные знаки и Лист При этом теплота окажется во всех случаях положительной.

Как связаны между собой работа сторонних сил и работа сил электрического поля при переносе заряда вдоль всей замкнутой цепи?

Поясните аналогию между работой электрических и сторонних сил и работой силы тяжести и «подъемной» силы при катании лыжника на горе с подъемником.

Источник