Меню

Является ли источником электрического тока генератор электрического тока



Источники электрического тока — таблица по видам

Общие сведения

Упорядоченное движение электрических зарядов в физическом теле называют током. Значит, для того чтобы он существовал необходима какая-то сила, воздействующая на обладающие энергией элементарные частицы. Причём её действие должно быть постоянной для поддержания необходимого электротока в установленный промежуток времени. Именно для этого и используют источники электрического тока, приборы, которые умеют генерировать электричество.

Создание первого источника датируется 1800 годом, когда физик Вольт представил сообществу прибор, названный им «электродвижущий аппарат». Позже он получил официальное название «вольтов столб». Принцип работы этого устройства заключался в растворении цинковой пластины, соединённой с медным проводником. Физик придал приспособлению вертикальную форму и разместил химические вещества поочерёдно. В итоге получился как бы слоёный пирог. Между пластинами цинка и меди заливался электролит.

Полуметровый столб Вольта подключался к замкнутой цепи, причём медный вывод считался плюсовым, а цинковый минусовым. Таким образом, Вольт, не поняв действительной причины возникновения тока, практически пришёл к созданию гальванического элемента, действие которого основывалось именно на превращении химической энергии в электрическую.

Несмотря на то что Вольт так и не смог понять действительную причину появления тока его прибор стал популярен среди учёных исследовавших электричество. Как выяснилось впоследствии «вольтов столб» стал прототипом гальванической батареи. В 1830 году русский учёный Петров на базе изобретения француза создал источник, выдающий 1,7 киловольта. Длина его установки составляла 12 метров, а мощность 85 ватт.

Сегодня под источником тока понимают генератор способный преобразовывать различного рода матерею в электричество, то есть создавать электромагнитное поле.

Следует отметить, что в электротехнике источники разделяют на два вида: тока и напряжения.

Отличия их в следующем:

  • генератор тока выдаёт постоянный поток электронов в независимости от напряжения и, по сути, является конденсатором с бесконечной ёмкостью;
  • источник напряжения обеспечивает постоянную разность потенциалов и похож на аккумулятор.

Но на самом деле эти различия чисто теоретические, на практике же отличия не существуют. Это связано с тем, что изготовить идеальный прибор невозможно. То есть такой, на который не влияет нагрузка приёмника, а внутреннее сопротивление нулевое.

Классификация приборов

Наиболее верным, с точки зрения науки, источнику тока даёт определение теория электрических цепей. Согласно ей под ним понимают двухполюсник, прохождение через который упорядоченных зарядов не зависит от приложенного потенциала на его выводах. В то же время в электротехнике им называют любой источник электрического поля.

Все существующие источники тока разделяют по виду преобразуемой ими энергии. Иными словами, по виду трансформируемой материи в силу, которая затем совершает работу по перемещению элементарных носителей зарядов. Существующие типы генераторов электротока можно представить таблицей:

Механические В их принципе работы используется преобразование двигательной энергии в электрическую. Трансформирование происходит в специальных устройствах — турбогенераторах. По сути, это машины, приводящиеся в работу газовым или паровым потоком. Отдельно стоит отметить гидрогенераторы — использующие преобразование энергии падающей воды.
Тепловые Электрический ток генерируется из-за возникновения разности температур при контакте металлов или полупроводников. Природные свойства заставляют носители зарядов переходить с нагретого вещества. Значение тока пропорционально разности температур. Такие устройства не могут обеспечить большую мощность, поэтому используются в качестве токовых датчиков (термопары). Хотя при этом существуют альтернативные источники, использующие распад изотопов.
Световые Разработки такого вида источников начались в конце ХХ века — солнечные батареи. В их работе используется свойство полупроводников генерировать электричество при бомбардировке их квантами света.
Химические Это большая группа генераторов тока, в основе которых применяется способность веществ при взаимодействии через электролит испускать энергию. По-другому их называют гальваническими. Например, к ним можно отнести аккумуляторы и простые батарейки.

Вне зависимости от типа устройства они все предназначены служить генераторами тока. Поэтому в схемах и технической литературе их обозначают одинаково. Условный знак сходен конденсатору только правая обкладка рисуется длиннее и обозначает положительный вывод.

Если источник состоит из нескольких приборов, то его обозначение, и реальное подключение, выполняют последовательным соединением минуса первого устройства к плюсу второго.

Идеальный и реальный генератор

Предполагается что в идеальном устройстве сопротивление, обусловленное внутренними характеристиками, бесконечно большое. Из-за этого параметры замкнутой сети не оказывают влияния на источник. Неограниченное увеличение сопротивления внешней электросети, подключённой к идеальному прибору тока, приводит к возрастанию напряжение на его зажимах. Отсюда следует, что увеличивается мощность, которая может развиваться до неограниченной величины. Поэтому идеальный генератор тока можно рассматривать как источник бесконечной мощности.

Вольт-амперная характеристика (ВАХ) преобразователя энергии представляет собой прямую линию, параллельную координатам U. Реальных же источников ВАХ будет пересекать обе оси. Точка пересечения соответствует нулевому току и напряжению. Такой режим работы приборов называют холостым ходом.

По сути, идеальный источник — это физическая абстракция. На самом деле любой электрический прибор обладает внутренним сопротивлением. Этот параметр обратно пропорционален мощности. Эквивалентная схема реального источника состоит из двух последовательно включённых генераторов ЭДС. Напряжение на клеммах находится как сумма падения разности потенциалов на внутреннем сопротивлении r и на нагрузке: E = ΔU + U.

Таким образом, формулы описывающие источники будут следующими:

  1. Идеального: U = I * R → P = I2 * R. Так как для токового прибора сила перемещения зарядов постоянна, то напряжение и мощность неограниченно буду расти при увеличении сопротивления.
  2. Реального: U = I (R * r/ (R + r)) → P = I2 * (R / (1 + R/r)2. Прибор, имеющий внутреннее сопротивление, эквивалентен источнику ЭДС.

Некоторым подобием идеального генератора тока может считаться устройство, состоящее из аккумулятора и последовательно подсоединённого к нему большого сопротивления. Им, может быть, пентод (электронная лампа). Обладая внутри сопротивлением несоизмеримо выше, чем импеданс внешней замкнутой цепи, эти радиоэлектронные приборы могут отдавать практически не изменяющийся по величине ток.

Таким образом, эти устройства выполняют свою главную роль в генерации электрического поля независимого от разности потенциалов, появившейся во внешней цепи.

Химические источники

Пожалуй, наиболее интересными для потребителя являются химические источники тока. Они характеризуются портативными размерами и работают на принципе прохождения окислительно-восстановительных реакций. Один из выводов принято называть анодом (плюс), а другой катодом (минус). На первом происходит окисление вещества, а на втором восстановлении. Пространство между электродами заполнено электролитом — диссоциатором раствора.

Сегодня производство может предложить несколько видов химических генераторов постоянного тока. Основные из них можно перечислить в таблице:

Тип Напряжение на выводах, В Ёмкость, мАч Градиент температур, °С
Солевый 1,5 1000 — 1100 -20 — 60
Щелочной 1,5 2400 — 2500 -30 — 60
Литий-тионилхлоридный 3,3 — 3,6 2000 — 2100 -55 — 85
Литий-диоксидмарганцевый 3 1500 — 1600 -20 — 85
Литий-диоксидсерный 2,6 — 2,9 800 — 900 -55 — 70

Анод таких источников изготавливают из лития, обладающего высоким отрицательным потенциалом по сравнению с другими проводниками. Такие источники обеспечивают питание нагрузки довольно продолжительное время. Самые лучший из них литий-тионилхлоридный элемент (Li/SOCl2).

Химические источники имеют ряд характеристик:

  1. Напряжение без подключения нагрузки.
  2. Ёмкость — величина, зависящая от выработки тока относящейся к единице объёма.
  3. Мощность.
  4. Ток саморазряда.

Потери ёмкости бывают вызваны не только подключением нагрузки, но и химическими реакциями, происходящим в спокойном состоянии элемента. Из-за небольшой мощности такие источники не используют в качестве тяговых. Для этой цели применяют никель-кадмиевые и никель-железные элементы. В них катод изготавливают из NiOOH, а анод из смеси кадмия с железом. В процессе заряда-разряда электролит в аккумуляторе не испаряется. Протекающую реакцию можно описать так: 2 Ni (OOH) + Cd + 2 Н2О = 2 Ni (OH)2 + Cd (OH)2.

Щелочными аккумуляторами называется устройство работающее на никель-кадмиевых и никель-металгидридных соединениях. В нём используется гидроксид калия. Но самыми популярными остаются свинцовые, в которых серная кислота является электролитом.

В сообщениях на тему об источниках электрического тока часто упоминают так называемую сахарную батарею. Работает она на сахарозе, и при разложении образует одну только воду. Какова её ёмкость неизвестно, так как прототип ещё находится на стадии разработки.

Источник

Виды источников тока

Источники тока используют для длительного поддержания электрического поля и получения электрического тока. Все они могут иметь различные принципы работы, внешний вид, конструкцию и размеры.

Источники тока – это устройства:
— способные создавать и поддерживать электрический ток;
— в них сторонние силы совершают работу по перемещению зарядов против электрических сил;
— а механическая, внутренняя, химическая или иная энергия превращается в электрическую.

Какие виды источников тока существуют

Энергия не может возникать из ничего. Об этом говорит закон сохранения энергии. Во всех без исключения источниках, электроэнергия создается за счет других ее видов.

В зависимости от того, какая именно энергия превращается в электрическую, выделяют такие виды (рис. 1) источников:

  1. механические – генераторы,
  2. тепловые – термопары, термогенераторы,
  3. световые (фотоэлектрические) – солнечные батареи и фотоэлементы,
  4. химические – гальванические элементы и аккумуляторы.

Рассмотрим подробнее эти виды.

Механические источники

Электрофорная машина – один из механических источников тока (рис. 2), применяемых более столетия.

С помощью этого устройства механическая энергия вращающихся дисков преобразовывается в электрическую энергию. При этом, происходит разделение положительных и отрицательных зарядов.

Превращение энергии вращения (механической) в энергию электрического тока происходит в различных генераторах.

В конструкции любого из них присутствуют элементы, создающие магнитное поле в пространстве вокруг проводника.

Например, электрический генератор для велосипеда (рис. 3), включает в себя кольцевой магнит и проволочную обмотку, расположенную рядом с ним.

Во время движения велосипеда магнит, расположенный внутри, вращается. Изменяющееся магнитное поле заставляет двигаться электроны по обмотке. Если к ее выводам подключить лампочку, она загорится, так как по цепи потечет электрический ток.

Мускульной силы человека хватает, чтобы зажечь лампочку для карманного фонаря. Однако, ее недостаточно, чтобы вырабатывать больше электроэнергии. Например, чтобы нагреть утюг и одновременно с этим зажечь несколько бытовых ламп накаливания.

Читайте также:  Расчет схемы для переменного тока

Поэтому, для бытовых нужд и нужд промышленности в электрическую энергию превращают энергию сгорающего топлива, а не энергию сокращения мускул.

На тепловых, атомных и гидроэлектростанциях установлены мощные генераторы. Они могут отдавать потребителям токи в тысячи Ампер. А масса некоторых достигает десятков тонн.

На таких электростанциях превращение энергии происходит в несколько этапов. Сначала энергия горящего топлива превращается во внутреннюю энергию горячей воды, а затем — в механическую и, в конечном итоге, в электрическую.

Существуют, так же, устройства, предназначенные для бытового использования. Например, небольшие генераторы, массой в несколько килограммов, оснащенные бензиновым мотором (рис. 4).

Они, так же, преобразуют внутреннюю энергию топлива в механическую энергию вращения вала двигателя, который соединяется с генератором. А затем энергия вращения с помощью генератора превращается в электрическую энергию.

Тепловые источники

К тепловым относят различные термоэлементы. Термоэлемент — это прибор в котором, тепловая энергия, получаемая от нагревателя, превращается сначала во внутреннюю энергию вещества, а затем — в электрическую энергию.

Один из таких элементов называют термопарой (рис. 5). Термопара состоит из двух различных металлических проволок, спаянных вместе. Если нагреть место их соприкосновения, то на свободных концах проволочек можно обнаружить электрическое напряжение (ссылка).

Если свободные концы термопары присоединить к потребителю тока, то под действием тепловой энергии по замкнутой цепи побегут электроны, то есть, возникнет электрический ток.

Таким образом, эта незамысловатая конструкция преобразовывает внутреннюю энергию нагреваемых металлов в электрическую энергию.

Фотоэлектрические источники

Атомы некоторых веществ под действием видимого света способны терять электроны. Например, селен, кремний, оксиды цинка, меди, висмута. На основе этих и, некоторых других веществ создают источники, генерирующие электрический ток под действием (рис. 6) света.

Эти источники используют фотоэлектрический эффект (сокращенно — фотоэффект) (ссылка). В них энергия света преобразуется в электрическую.

Существует два вида фотоэффекта – внутренний, который используется в полупроводниках (ссылка) и внешний, используемый в вакуумных фотоэлементах на основе различных металлов.

Вакуумные фотоэлементы

В вакуумном фотоэлементе свет попадает на пластинку металла и выбивает электроны с ее поверхности. Такую пластинку называют катодом.

Выбитые электроны улавливаются другим электродом. Его называют анодом и обычно выполняют в виде металлической сетки.

Оба электрода находятся в стеклянном баллоне из которого удалили воздух. Дело в том, что молекулы воздуха могли бы помешать движению электронов, вылетевших из пластинки. Чтобы этого не происходило, воздух из баллона откачивают (рис. 7).

Таким образом, под воздействием света между катодом и анодом в вакууме возникает поток заряженных частиц. Они движутся направлено от катода к аноду. Значит, в фотоэлементе под действием света возникает электрический ток. Так световая энергия переходит в электрическую.

Солнечные батареи

Еще одним источником тока, в котором ток возникает за счет световой энергии, являются, так называемые, солнечные батареи. Их изготавливают из полупроводниковых пластин (рис. 8).

Падающий свет из полупроводника электроны не выбивает. А вызывает переход электронов в такое состояние, в котором у них появляется дополнительная энергия и они могут свободно передвигаться по полупроводнику, создавая электрический ток.

Химические источники

Если опустить два кусочка различных металлов (например, железа и меди) в емкость с проводящей жидкостью, можно получить химический источник тока.

В качестве проводящей жидкости можно использовать, например, лимонный сок. Воткнув в лимон два гвоздика из различных металлов (рис. 9) и подключив к ним гальванометр, можно обнаружить, что через гальванометр потечет электрический ток.

Такую конструкцию можно считать простейшим химическим источником тока. Гвоздики в нем — это электроды, а лимонная кислота – электролит.

Примечания:

  1. Проводящие жидкости называют электролитами.
  2. Существует, так называемый ряд электрохимических напряженый металлов. Наибольшее напряжение дают источники, построенные с применением металлов, расположенных в различных концах данного ряда.

Самым первым химических источником тока был Вольтов столб.

Алессандро Вольта и его первый гальванический элемент

Дело в том, что до исследований, проведенных А. Вольта, способ получить электрический ток был известен. Однако, эксперименты с электричеством, проводимые в лабораториях другими учеными, создавали ток всего на доли секунды. Источников, способных создавать ток, длившийся хотя бы единицы секунд, не существовало.

В 1800 году Алессандро Вольта изобрел первый прибор, создававший электрический ток продолжительное время. Этот прибор в честь создателя называют Вольтовым столбом.

Ученый определил, что для получения гальванического (электрического) эффекта нужны два разных метала и проводящая жидкость.

Он длительное время потратил на эксперименты, использовал различные металлы и исследовал их свойства.

В процессе работы Вольта сделал вертикальный столбик, укладывая поочередно медные монеты и цинковые пластинки. Между металлами он укладывал кожаные кружочки, вымоченные в рассоле (рис. 10).

Так он создал первую в мире электрическую батарею. Принцип ее работы — превращение химической энергии в электрическую.

Соединяя проволокой два конца собранного столбика, он наблюдал ее нагревание и так определял действие электрического тока.

А чтобы сравнить, больше, или меньше электричества вырабатывал тот или иной столбик, Алессандро пользовался своим языком. Попросту, касался языком выводов созданного им гальванического элемента.

Такой столбик, при высоте, равной половине метра, вырабатывал напряжение, которое было довольно чувствительным.

В марте 1800 года Вольта направил письмо в Лондонское Королевское общество, в котором подробно описал результаты своей работы. А уже в июне оно было признано сенсационным среди ученых того времени.

Наполеон пригласил А. Вольта в Париж и лично присутствовал во время доклада и опыта, демонстрируемого им, а после наградил изобретателя.

Это изобретение сделало автора знаменитым. А благодаря ему в скором времени были совершены другие открытия в области физики.

Какие открытия были совершены благодаря столбу Вольта

В том же году с помощью Вольтова столба вода была разложена на водород и кислород. Это сделали Карлайл и Николсон.

А спустя три года, в 1803 году, Василий Петров создал самый большой в мире столб. Он выдавал напряжение 1700 вольт и содержал более 4000 медных и цинковых кругов. Этот столб помог получить электрическую дугу, которая применяется в электросварке металлов.

После работ Петрова в России стали применять электрические запалы для взрывчатых веществ.

А спустя еще четыре года, в 1807 году, ученым по фамилии Дэви был открыт металлический калий.

Благодаря способности Вольтова столба создавать электрический ток продолжительное время – в течение нескольких часов, началось широкое применение электричества.

По истечении этого времени, на металлах появлялся окисел, препятствующий выработке электрического тока. Нужно было разбирать конструкцию и протирать металлы, избавляя их от этого окисла. А кусочки кожи необходимо было время от времени смачивать рассолом.

Сухой гальванический элемент — батарейка

Значительно позже открытия Вольта, во второй половине 1880-х годов, инженером из Германии Карлом Гасснером был создан сухой гальванический элемент.

Сухим элемент был назван потому, что в качестве электролита в нем использовалась не жидкость, а гелеобразный состав. Такие элементы можно наклонять и даже переворачивать, не боясь пролить электролит. Поэтому, они значительно удобнее жидкостных.

Внутри элемента происходят химические превращения. Эти превращения являются экзотермическими, так как протекают с выделением энергии. Затем внутренняя энергия источника переходит в электрическую.

К примеру, в современном сухом гальваническом элементе (рис. 11), цинк реагирует с хлоридом аммония и при этом получает отрицательный электрический заряд.

Протекая, такие реакции вызывают расходование некоторых частей источника. Например, цинкового электрода.

Из-за этого, в гальванических элементах химические реакции будут необратимыми. Так как, спустя некоторое время, для нормального протекания химических превращений, не будет хватать ресурсов.

Когда скорость химических реакций замедляется, элемент перестает вырабатывать электрический ток. В таких случаях говорят, что элемент разрядился – «села батарейка».

Отработанные гальванические элементы нужно утилизировать. Это позволит использовать вновь некоторые их компоненты, а не загрязнять окружающую среду.

Мировая промышленность выпускает ассортимент стандартизированных элементов питания (рис. 12).

Например, тип АА – пальчиковая батарейка, или ААА – тонкая пальчиковая. Так же, существуют типоразмеры, обозначаемые C D и N. Они имеют ЭДС 1,5 Вольта.

Существуют другие и типы, например, «квадратная» батарейка 3R12, имеющая ЭДС 4,5 Вольт и используемая в карманных фонариках. А, так же, небольшая батарейка вида pp3 с ЭДС 9 Вольт, часто называемая «Крона» или «Корунд».

Гальванические элементы на электрических схемах обозначают специальными значками.

Аккумуляторы и их виды

Устройство аккумулятора внешне напоминает устройство гальванического элемента. Присутствует корпус, в котором находятся две пластины из разных металлов. Одна служит положительным электродом, а другая – отрицательным. Эти пластины помещены в электролит (рис. 13).

Однако, аккумуляторы, в отличие от гальванических элементов, являются многоразовыми устройствами.

Свое название они получили из-за того, что могут аккумулировать, то есть, накапливать электрическую энергию. А затем, отдавать накопленную энергию потребителям.

Химические реакции в аккумуляторах могут протекать в двух направлениях (зарядка — разрядка).

Перед использованием аккумулятор необходимо зарядить. Для этого используют специальные источники тока, которые называют зарядными устройствами. Они пропускают через аккумулятор ток зарядки.

Под воздействием этого тока в аккумуляторе протекают химические реакции, во время которых он накапливает электрические заряды. Один электрод заряжается положительно, а другой – отрицательно.

После, подключив к заряженному аккумулятору потребитель тока, можно использовать накопленную им энергию.

Называть аккумуляторы принято:
— по видам используемых жидкостей — кислотные, щелочные.
— либо по названию металлов, используемых в качестве электродов — свинцовые, железоникелевые, литиевые, и т. п.

В качестве пластин — электродов используют металлы: свинец, железо, литий, титан, кобальт, кадмий, никель, цинк, серебро, алюминий.

Существуют аккумуляторы с гелеобразным электролитом. Такие аккумуляторы можно наклонять в различные стороны, не боясь утечки электролита. Например, литий-полимерные батареи, используемые в мобильных телефонах.

Читайте также:  Ток затвора igbt транзистора

Примечание: Чем больше геометрические размеры электродов источника, тем большую силу тока в полезной нагрузке он может обеспечить. Поэтому, аккумуляторы для автомобилей с ЭДС 12 и 24 Вольта, рассчитанные на большие токи нагрузки, имеют массу от 10 килограммов и большую.

Аналогия между источником тока и водяным насосом

Аналогию с потоком жидкости часто применяют по отношению к электрическому току.

Независимо от того, какой вид энергии превращается в электрическую, принцип работы источника тока чем-то напоминает работу водяного насоса. Различия в том, что источник тока перекачивает заряды, а не жидкость.

Рассмотрим замкнутый контур, состоящий из трубы и водяного насоса, который способен привести в движение воду, так, чтобы она начала циркулировать по трубе (рис. 14а).

Частицы воды будут двигаться и, ток воды будет циркулировать за счет разности давлений, которую будет создавать и поддерживать насос.

На рисунке 14 кружком с треугольником обозначен насос. Направление движения воды отмечено стрелкой. По левую сторону от насоса давление обозначено \(\large P_<1>\), по правую сторону — \(\large P_<2>\) (рис. 14а).

С помощью неравенства

отмечено, что давление слева от насоса будет больше давления справа.

Подобно движению частиц воды, заряды придут в движение и электрический ток будет циркулировать по замкнутой цепи за счет разности потенциалов, которую будет создавать включенная в эту цепь батарейка (рис. 14б) — источник тока.

Сила, перемещающая заряды во внешней цепи, появляется благодаря тому, что источник тока создает разность потенциалов на своих выводах и электрическое поле.

Слева и справа от источника отмечены потенциалы \(\large \varphi_<1>\) и \(\large \varphi_<2>\). При чем, потенциал слева от источника больше потенциала справа.

Это отмечено неравенством

\[\large \varphi_ <1>> \varphi_<2>\]

Обратите внимание: источник тока (сторонние силы) заставляет двигаться электроны – отрицательно заряженные частицы, от точки с меньшим потенциалом, в точку с потенциалом большим, а электрический ток направлен в противоположную сторону — от «+» к «-».

Разность потенциалов так же называют электрическим напряжением.

\[\large \Delta \varphi = \varphi_ <2>— \varphi_ <1>= U \]

\(\large \varphi \left( B \right) \) – потенциал, измеряется в Вольтах;

\(\large U \left( B \right) \) – напряжение, измеряется в Вольтах;

Источник

Бурыкин Валерий

Жизнь в динамике

Генератор тока (источник тока). Различия и сходства стабилизаторов тока и напряжения.

Стабилизатор напряжения.


Рис. 1 Схема идеального источника напряжения.


Рис. 2 Функциональная схема реального источника напряжения.

Генератор тока.


Рис. 3 Функциональная схема идеального источника тока.


Рис. 4 Практические схемы простых генераторов тока на биполярных транзисторах.

Что нужно для расчёта источника тока.

Пример расчета простого генератора тока на биполярном транзисторе

Пример расчета:


Рис. 7 Генератор тока с внутренним источником напряжения.


Рис. 8 Генератор тока с дифференциальным усилителем.


Рис. 9 Регулируемый генератор тока.


Рис. 10 Функциональная схема стабилизатора напряжения.


Рис. 11 Простой источник опорного напряжения.


Рис. 12 Схема ИОН с повышенной стабильностью Uоп.


Рис. 13 Один из вариантов подключения датчиков к генератору тока.

10 response to «Генератор тока (источник тока). Различия и сходства стабилизаторов тока и напряжения.»

By: Александр Posted: 03.05.2020

Здравствуйте. Скажите,как посчитали: При Rбал. = 2 кОм и дельта Uпит. = 18 В, дельта Uоп. составит 0,53 В.

Динамическое сопротивление стабилитрона:
rст = 60 Ом (См. таблицу выше)

dI = dU/2кОм = 9мА
dUоп. = dI * rст. = 0.009 * 60 = 0.54 В
Простите на 0,01V ошибся. Но я считал навскидку.

By: АЛЕКС Posted: 16.01.2020

А во! — Вразумте дядько разницу между генератором тока и напряжения или как там ЭДС, а также, что подразумить глядя на батарейку — это источник тока и источник ЭДС, а где там вооще то есть напряжение и что мы в первую очередь можем определить и измерить.
Может это курица и яйцо ;))

То есть дядько Вам сейчас в своём ответе должен пересказать всю статью?
Там есть объяснение в чём разница.
А к чему Вы приплели здесь ЭДС. Это вообще овощ с другого огорода и к созданию электронных схем никакого отношения не имеет.
Если Вам это точно интересно то вот Вам ссылка: https://samelectrik.ru/chto-takoe-eds-obyasnenie-prostymi-slovami.html

By: triak Posted: 01.08.2020

нас в институте учили так — если внутреннее сопротивление источника близко к нулю, — это источник напряжения.
Если внутреннее сопротивление источника близко к бесконечности, — это источник тока.
Любая реальная батарейка, аккум или выход выпрямителя — где-то между.
Пока при снижении сопротивления нагрузки (т.е. увеличении нагрузки) напряжение на ней не падает (а только растёт ток через неё) — это она питается от хорошего источника напряжения.
Если при изменении величины нагрузки остаётся стабильным ток через неё (по при этом меняется напряжение, и ИСТОЧНИК НЕ ПЕРЕГРЕВАЕТСЯ и не сгорает) — она питается от хорошего источника тока

Ну так в статье как раз об этом и рассказано. Только вот в статье дано математическое обоснование всему этому и примеры расчетов.
Что касается батарейки, аккумуляторов, солнечных элементов, различных электрогенераторов без схем управления и т.д. и т.п., то они действительно находятся между генератором напряжения и генератором тока. Называются такие источники источниками ЭДС.

By: Алекс Posted: 15.01.2020

Упс:)
<>
— Из тогот, что Uстаб=Uбэ+Uэ и постоянном напряжением Uiсточ. МОЖНО сделать вывод:, — что повышая Rнагр ток проходящий через Rэ будет падать и ни о какой стабилизации тока нет и речи касательно самых первых примитивных схем. Источнику негде взять повышение напряжения соразмерно повышения Rнагр.

УПС:)
А Вы статью вообще читали в каком состоянии?
Ведь в ней об этом говорится и в расчётах это учитывается.
Да, есть граничные условия для напряжения питания и максимальной величины Rнагр.
При определённом Uпит. есть некоторый диапазон 0

By: Юрий Posted: 28.04.2019

Идеального генератор тока и напряжения в природе не существует.Все зависит он нагрузки, когда мы можем говорить об одном или о другом.Точнее об соотношении нагрузки и внутреннего сопротивления источника.То,что вы приводите в конце статьи- это перевод .Возможно даже машинный.Что же к этому придираться?

Я придираюсь к тем кто публикует такие переводы.
Или их также публикуют машины?

Но на самом деле если Вы наберёте в поиске запрос «генератор тока»
То таких, как Вы говорите «переводов» найдёте море, да практически
все результаты поиска будут из них состоять.

Источник

Электрический ток, источники электрического тока: определение и сущность

В чём секрет такого массового использования электричества? Ведь в природе существуют и другие источники энергии, более дешевые, чем электричество. Оказывается всё дело в транспортировке.

Электрическую энергию можно доставить практически везде:

  • к производственному цеху;
  • квартире;
  • на поле;
  • в шахту, под воду и т. д.

Электроэнергию, накопленную аккумулятором, можно носить с собой. Мы пользуемся этим ежедневно, беря с собой сотовый телефон. Ни один другой вид энергии не обладает такими универсальными свойствами как электричество. Разве это не является достаточной причиной для того, чтобы глубже изучить природу и свойства электричества?

Источники и признаки постоянного тока

Движение зарядов в электрической цепи обеспечивают источники тока. Для постоянного тока источниками могут быть:

  • батарейки или аккумуляторы;
  • генераторы постоянного тока;
  • преобразователи и выпрямители импульсов переменного тока.

Основные химические источники электроэнергии

Гальванические элементы вырабатывают постоянный ток в результате электрохимической реакции.

Машины постоянного тока производят его с помощью электромагнитной индукции и выпрямляют в обмотках коллектора.

Схемы преобразователей и полупроводниковые выпрямители на транзисторах или высоковольтных диодах так же могут выдавать ток, характеристики которого не меняются во времени. Преобразователи могут регулировать частоту и напряжение, оставляя неизменным ток.

По каким признакам определяют наличие тока, если нет измерительных приборов? Это можно выяснить по его воздействию на проводник. Такие действия можно разделить на три вида:

  • магнитные;
  • химические;
  • тепловые.

Если через проводник, из которого выполнена обмотка катушки, пропустить электроток, то катушка станет притягивать металлические элементы. На этом принципе работают большие электромагниты, задействованные при погрузке металла в морских портах.

Химическое действие, по которому можно судить о наличии тока, – это процесс электролиза. При нём на электродах, подключенных к источнику, начинает оседать вещество. Эти процессы используются в гальваностегии или гальванопластики.

При подключении к двухполюснику проводника с высоким сопротивлением электрическому току он начинает нагреваться и отдавать тепло. Например, чтобы электроны двигались через нихромовую спираль, совершается работа с выделением тепла. Это свойство проводника используется при изготовлении нагревательных приборов.

Важно! Источник тока отличается от источника напряжения тем, что первый отдаёт одинаковый ток, независимо от сопротивления нагрузки, второй –снабжает потребителя напряжением, которое не изменяется при любой нагрузке. Квартирная розетка 220 В – источник напряжения, сварочный аппарат – токовый ресурс.

Как устроен обычный генератор?

В начале девятнадцатого века Г.Х. Эрстед обнаружил, что при прохождении тока через проводник возникало поле магнитного происхождения. А чуть позже Фарадей открыл, что при пересечении силовых линий этого поля в проводник наводится ЭДС, которая вызывает ток. ЭДС меняется в зависимости от скорости движения и самих проводников, а также от напряженности поля. При пересечении ста миллионов силовых линий за секунду наведенная ЭДС становилась равной одному Вольту. Понятно, что ручное проведение в магнитном поле не способно дать большой электрический ток. Источники электрического тока этого вида намного более эффективно показали себя с намоткой провода на большую катушку или производства ее в форме барабана. Катушку насаживали на вал между магнитом и вращаемой водой или паром. Такой механический источник тока присущ обычным генераторам.

Источники электрического тока, изобретение электромашины

Источники питания 24 и 12 Вольт

Читайте также:  Как получить чисто постоянный ток

Выработка электричества с помощью генераторов – основное направление в производстве электроэнергии. Механические источники поделились на два вида генераторов:

  • машины, вырабатывающие постоянный ток;
  • генераторы, производящие переменный ток.

Источники переменного тока и постоянного – это генераторы, которые превращают механическую энергию вращения в электрическую. Заявление Эмиля Ленца, русского учёного, в 1833 году послужило толчком для работ над созданием генераторов. Ленц объявил о возможной взаимности магнитоэлектрических явлений. Это означало, что двигатели постоянного и переменного тока могли не только вращаться при подаче напряжения соответствующей природы, но и при вращении начинать вырабатывать это напряжение.

Электробезопасность

Несмотря на то что электричество прочно вошло в нашу жизнь, не следует забывать об электробезопасности. Высокие напряжения опасны для жизни, а короткие замыкания становятся причиной пожаров.

При выполнении ремонтных работ необходимо строго соблюдать правила безопасности: не работать под высоким напряжением, использовать защитную одежду и специальные инструменты, применять ножи заземления и т.п.

В быту используйте только такую электротехнику, которая рассчитана на работу в соответствующей сети. Никогда не ставьте «жучки» вместо предохранителей.

Помните, что мощные электролитические конденсаторы имеют большую электрическую емкость. Накопленная в них энергия может вызвать поражение даже спустя несколько минут после отключения от сети.

Принцип действия

Подключаем трансформатор тока

Переменный – это ток, у которого величина и направление меняются во временном диапазоне. Основным принципом действия генераторов переменного тока является закон электромагнитной индукции – возникновение движения электронов в проводнике во время прохождения магнитного потока через его замкнутый контур.


Принцип действия генератора переменного (слева) и постоянного тока (справа)

Действие генераторов постоянного тока основано на законе Фарадея и проявлении ЭДС.

Когда к проводнику, имеющему внутри вращающийся постоянный магнит, подключить нагрузку, то по ней потечёт переменный ток. Это происходит из-за смены мест полюсов магнита. Для получения постоянного тока нужно эту нагрузку подключать с такой скоростью, с какой вращается магнит. Для этого предназначен в нём коллектор, который закрепляется на роторе и вращается с той же частотой. Постоянное напряжение с коллектора снимают графитные щётки. ЭДС падает до нуля, когда пластины коллектора переключаются, но не изменяет своей полярности, так как успевает подключиться к другому проводнику.

Великий Тесла

электрическая цепь состоит из источника тока

Гениальный ученый из Сербии Никола Тесла, посвятив свою жизнь электричеству, сделал много открытий, которые мы используем и сегодня. Многофазные электрические машины, асинхронные электрические моторы, передача энергии через многофазный переменный ток — это далеко не весь перечень изобретений великого ученого.

Многие уверены, что явление в Сибири, получившее название Тунгусский метеорит, на самом деле вызвал именно Тесла. Но, наверное, одним из самых загадочных изобретений является трансформатор, способный получать напряжение до пятнадцати миллионов вольт. Необычным является как его устройство, так и неподдающиеся известным законам расчеты. Но в те времена начали развивать вакуумную технику, в которой не было неясностей. Поэтому об изобретении ученого на время забыли.

Но сегодня, с появлением теоретической физики, к его работам снова возобновился интерес. Эфир признали газом, на который распространяются все законы газовой механики. Именно оттуда черпал энергию великий Тесла. Стоит отметить, что эфирная теория была очень распространена в прошлом среди многих ученых. Лишь с возникновением СТО — специальной теории относительности Эйнштейна, в которой он опровергал существование эфира, — о нем забыли, хотя сформулированная позже общая теория не оспаривала его как такового.

Но пока остановимся подробнее на электрическом токе и устройствах, которые повсеместно распространены сегодня.

Работа источника тока

Перемещая электрические заряды по участку цепи, электрический ток выполняет работу. Она складывается из работы кулоновских сил и работы сторонних сил:

Работа источникаэто работа сторонних сил по переносу электрических зарядов вдоль проводника в течение времени:

Аист = Астор = ε * I * t,

где:

  • ε – ЭДС (В);
  • I – ток (А);
  • t – время (с).

Работа электротока определяет степень превращения электроэнергии в её другие формы.

Химический источник тока

Химические источники питания постоянного тока – это семейство устройств и аппаратов, которые выдают напряжение на своих клеммах в результате внутренних химических процессов окисления или гальванизации. Их работа основана на реакциях химических веществ, которые, вступая во взаимодействие между собой, производят постоянный электроток.

К сведению. Процессы, протекающие в химических источниках (ХИТ), идут без тепловых или механических воздействий. Это выделяет их в особый ряд среди устройств, генерирующих напряжения постоянной полярности.

Некоторые виды химических источников тока

Термины и определения подробно описаны в ГОСТ Р МЭК 60050-482-2011, введённом в действие 01.07.2012 года. В нём сокращённо обозначены химические источники тока – ХИТ.

Разделение по видам ХИТ производят в следующей градации:

  • первичные;
  • топливные;
  • аккумуляторы.

Это различие проведено по способу действия источника.


Химические источники тока

Элементы однократного применения – первичные источники. В них заложен конечный запас реагентов, которые вступят в реакцию и перестанут вырабатывать энергию по окончании процесса. Это различные батарейки типа АА.

Топливные ХИТ способны работать постоянно, но требуют поступления новой дозы веществ и удаления отработанных продуктов. По сути, это гальваническая ячейка, куда подводятся раздельно топливо и окислитель, они вступают в реакцию на двух электродах. В электролите растворяется топливо, и происходит катодное окисление. Это практически прецизионный лабораторный процесс.


Схема работы топливного элемента

Вторичные элементы, которые имеют возможность использоваться много раз, после подзаряда или перезаряда называются аккумуляторами. Если к таким устройствам подключить ток, то они снова регенерируются и аккумулируют энергию. Они нашли самое широкое применение в питании мобильных устройств и механизмов.


Аккумуляторный источник тока

Электрические аккумуляторы

Это источник постоянного тока многоразового использования, который действует не постоянно, а до следующего заряда. Они по своей химической природе подразделяются на типы:

  • свинцово-кислотные;
  • литий-ионные (литиевые);
  • никель-кадмиевые;
  • никелево-железные.

Свинцово-кислотные модели применяются в автомобилях, источниках бесперебойного питания, транспорте, промышленности, в отрасли связи и телекоммуникаций.

Литий-ионные батареи нашли широкое применение в мобильной связи, электроинструментах, системах телекоммуникаций, а также автономном и аварийном электроснабжении. Вот только небольшой перечень спектра их составов:

  • литий-титанатовый;
  • тионилхлоридный;
  • литий-кобальтовый;
  • литий-марганцевый;
  • литий-фосфат железный;
  • литий-полимерный;
  • литий-диоксид серный;
  • литий-диоксид марганцевый.


Литий-ионные источники тока

Интересно. Никель-кадмиевые щелочные аккумуляторы применяются в авиации, речном и морском судоходстве, в электрокарах.


Никель-кадмиевые аккумуляторы

Никелево-железные щелочные – очень надёжный тип источника. Пагубные для свинцово-кислотных батарей глубокие разряды, частые недозаряды не выводят их из строя. Они используются в тяговых транспортных цепях, в цепях резервного питания.


Тяговый никель-железный аккумулятор

Гальванические элементы

Это ряд химических источников тока, которые называются батарейками. Напряжение батареек зависит от количества единиц, в неё входящих, и типа металлов, которые в ней применяются. Напряжение может быть в пределах от 1,5 до 4,5 вольт. В металлический цилиндр вставлены сетки из металлов, на которые с помощью напыления наносится окислитель. Электролитом выступает кислота либо соли калия или натрия. По мере прекращения реакции ток в батарее снижается. Дальнейшему восстановлению батарея не подлежит.


Гальванический элемент, схема работы

Ограничения на установку подстанций

Любой проводник, по которому течет ток, вырабатывает электрическое поле. Источник энергии является излучателем электромагнитных волн. Вокруг мощных установок, на подстанциях или вблизи генераторных устройств оказывается влияние на здоровье человека. Поэтому были приняты меры по ограничению строящихся объектов вблизи жилых зданий.

электрическое поле источник энергии

На законодательном уровне установлены фиксированные расстояния до электрических объектов, за пределами которых живой организм находится в безопасности. Запрещены постройки мощных подстанций вблизи домов и на пути следования людей. Мощные установки должны иметь ограждения и закрытые входы.

Высоковольтные линии монтируются высоко над постройками и выносятся за пределы поселений. Для исключения влияния электромагнитных волн в жилой зоне источники энергии закрываются заземленными металлическими экранами. В простейшем случае используется сетка из проволоки.

Идеальный источник тока

Если ток, проходящий через двухполюсник и снимаемый с его контактов, не изменяется от величины напряжения на этих контактах, то это идеальный источник тока. Закон Ома, утверждающий, что сила тока на участке цепи находится в прямой зависимости от напряжения и обратно пропорциональна сопротивлению, ссылается на такой эталон. Формула:

I = U/R, где:

  • I – ток, А;
  • U – напряжение, В;
  • R – сопротивление, Ом.

В этом случае подразумевается, что внутреннее сопротивление источника близко или равно бесконечности. Это значит, что внешние параметры цепи, изменяющие напряжение на выходе двухполюсника, не изменяют ток.

Внимание! Мощность на выводах источника будет повышаться с увеличением сопротивления нагрузки, при неизменном токе это даёт увеличение мощности P = U*I. В этом случае можно говорить об идеальном источнике мощности.

Источник любого типа далёк от идеального генератора. Правильно подобранный и неповреждённый источник тока прослужит долго. Главное, чтобы эксплуатация проходила в рекомендуемом режиме. Так как большинство изделий связано с химическими процессами, то хранение и утилизация этой продукции выполняются по экологическим нормам и правилам.

Откуда берется питание потребителей

Источники электрической энергии получают напряжение после преобразования силы ветра, кинетического движения, потока воды, результата ядерной реакции, тепла от горения газа, топлива или угля. Широко распространены теплоэлектростанции, гидроэлектростанции. Постепенно сокращается количество атомных станций как не совсем безопасных для проживающих поблизости людей.

источники электрической энергии

Может использоваться химическая реакция, эти явления мы наблюдаем в аккумуляторах автомобилей и бытовых приборов. Батарейки к телефонам работают по тому же принципу. Ветровики применяются в местах с постоянным ветром, где источники электрической энергии содержат в конструкции обычный генератор высокой мощности.

Для питания целого города порой одной станции недостаточно, и источники электрической энергии комбинируются. Так, на крышах домов в теплых странах устанавливаются солнечные батареи, которые питают отдельные помещения. Постепенно экологически чистые источники заменят станции, загрязняющие атмосферу.

Источник