Меню

Якорь машины постоянного тока состоит из следующих основных частей



Электрический двигатель постоянного тока

Эра электродвигателей берёт своё начало с 30-х годов XIX века, когда Фарадей на опытах доказал способность вращения проводника, по которому проходит ток, вокруг постоянного магнита. На этом принципе Томасом Девенпортом был сконструирован и испытан первый электродвигатель постоянного тока. Изобретатель установил своё устройство на действующую модель поезда, доказав тем самым работоспособность электромотора.

Практическое применение ДПТ нашёл Б. С. Якоби, установив его на лодке для вращения лопастей. Источником тока учёному послужили 320 гальванических элементов. Несмотря на громоздкость оборудования, лодка могла плыть против течения, транспортируя 12 пассажиров на борту.

Лишь в конце XIX столетия синхронными электродвигателями начали оснащать промышленные машины. Этому способствовало осознание принципа преобразования электродвигателем постоянного тока механической энергии в электричество. То есть, используя электродвигатель в режиме генератора, удалось получать электроэнергию, производство которой оказалось существенно дешевле от затрат на выпуск гальванических элементов. С тех пор электродвигатели совершенствовались и стали завоёвывать прочные позиции во всех сферах нашей жизнедеятельности.

Устройство и описание ДПТ

Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.

Самый простой ДПТ состоит из следующих основных узлов:

Схематическое изображение простейшего ДПТ

  1. Двух обмоток с сердечниками, соединенных последовательно. Данная конструкция расположена на валу и образует узел, называемый ротором или якорем.
  2. Двух постоянных магнитов, повёрнутых разными полюсами к обмоткам. Они выполняют задачу неподвижного статора.
  3. Коллектора – двух полукруглых, изолированных пластин, расположенных на валу ДПТ.
  4. Двух неподвижных контактных элементов (щёток), предназначенных для передачи электротока через коллектор до обмоток возбуждения.

Рисунок 1. Схематическое изображение простейшего электродвигателя постоянного тока.

Рассмотренный выше пример – это скорее рабочая модель коллекторного электродвигателя. На практике такие устройства не применяются. Дело в том, что у такого моторчика слишком маленькая мощность. Он работает рывками, особенно при подключении механической нагрузки.

Статор (индуктор)

В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.

Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:

  • с независимым возбуждением обмоток;
  • соединение параллельно обмоткам якоря;
  • варианты с последовательным возбуждением катушек ротора и статора;
  • смешанное подсоединение.

Схемы подключения наглядно видно на рисунке 2.

Схемы подключения обмоток статора

Рисунок 2. Схемы подключения обмоток статора ДПТ

У каждого способа есть свои преимущества и недостатки. Часто способ подключения диктуется условиями, в которых предстоит эксплуатация электродвигателя постоянного тока. В частности, если требуется уменьшить искрения коллектора, то применяют параллельное соединение. Для увеличения крутящего момента лучше использовать схемы с последовательным подключением обмоток. Наличие высоких пусковых токов создаёт повышенную электрическую мощность в момент запуска мотора. Данный способ подходит для двигателя постоянного тока, интенсивно работающего в кратковременном режиме, например для стартера. В таком режиме работы детали электродвигателя не успевают перегреться, поэтому износ их незначителен.

Ротор (якорь)

В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.

В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.

Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.

Ротор с тремя обмоткамиРисунок 3. Ротор с тремя обмотками Якорь со многими обмоткамиРисунок 4. Якорь со многими обмотками

Подобные роторы довольно часто встречаются в небольших маломощных электродвигателях.

Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.

Схема электромотора с многообмоточным якорем

Рисунок 5. Схема электромотора с многообмоточным якорем

Коллектор

Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.

Самый простой коллектор состоит из двух, изолированных полукруглых пластин. Каждая из них в определённый момент контактирует со щёткой, с которой снимается напряжение. Одна ламель всегда подсоединена к плюсу, а вторая – к минусу. При повороте вала на 180º пластины коллектора меняются местами, вследствие чего происходит новая коммутация со сменой полярности.

Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.

В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.

Принцип работы

Ещё со школьной скамьи мы помним, что на провод под напряжением, расположенный между полюсами магнита, действует выталкивающая сила. Происходит это потому, что вокруг проволоки образуется магнитное поле по всей его длине. В результате взаимодействия магнитных полей возникает результирующая «Амперова» сила:

F=B×I×L, где B означает величину магнитной индукции поля, I – сила тока, L – длина провода.

Вектор «Амперовой» всегда перпендикулярен до линий магнитных потоков между полюсами. Схематически принцип работы изображён на рис. 6.

Принцип работы ДПТ

Рис. 6. Принцип работы ДПТ

Если вместо прямого проводника возьмём контурную рамку и подсоединим её к источнику тока, то она повернётся на 180º и остановится в в таком положении, в котором результирующая сила окажется равной 0. Попробуем подтолкнуть рамку. Она возвращается в исходное положение.

Поменяем полярность тока и повторим попытку: рамка сделала ещё пол-оборота. Логично припустить, что необходимо менять направление тока каждый раз, когда соответствующие витки обмоток проходят точки смены полюсов магнитов. Именно для этой цели и создан коллектор.

Схематически можно представить себе каждую якорную обмотку в виде отдельной контурной рамки. Если обмоток несколько, то в каждый момент времени одна из них подходит к магниту статора и оказывается под действием выталкивающей силы. Таким образом, поддерживается непрерывное вращение якоря.

Типы ДПТ

Существующие электродвигатели постоянного тока можно классифицировать по двум основным признакам: по наличию или отсутствию в конструкции мотора щеточно-коллекторного узла и по типу магнитной системы статора.

Рассмотрим основные отличия.

По наличию щеточно-коллекторного узла

Двигатели постоянного тока для коммутации обмоток, которых используются щёточно-коллекторные узлы, называются коллекторными. Они охватывают большой спектр линейки моделей электромоторов. Существуют двигатели, в конструкции которых применяется до 8 щёточно-коллекторных узлов.

Функции ротора может выполнять постоянный магнит, а ток от электрической сети подаётся непосредственно на обмотки статора. В таком варианте отпадает надобность в коллекторе, а проблемы, связанные с коммутацией, решаются с помощью электроники.

В таких бесколлекторных двигателях устранён один из недостатков –искрение, приводящее к интенсивному износу пластин коллектора и щёток. Кроме того, они проще в обслуживании и сохраняют все полезные характеристики ДПТ: простота в управлении связанном с регулировкой оборотов, высокие показатели КПД и другие. Бесколлекторные моторы носят название вентильных электродвигателей.

По виду конструкции магнитной системы статора

В конструкциях синхронных двигателей существуют модели с постоянными магнитами и ДПТ с обмотками возбуждения. Электродвигатели серий, в которых применяются статоры с потоком возбуждения от обмоток, довольно распространены. Они обеспечивают стабильную скорость вращения валов, высокую номинальную механическую мощность.

О способах подключения статорных обмоток шла речь выше. Ещё раз подчеркнём, что от выбора схемы подключения зависят электрические и тяговые характеристики двигателей постоянного тока. Они разные в последовательных обмотках и в катушках с параллельным возбуждением.

Управление

Не трудно понять, что если изменить полярность напряжения, то направление вращения якоря также изменится. Это позволяет легко управлять электромотором, манипулируя полярностью щеток.

Механическая характеристика

Рассмотрим график зависимости частоты от момента силы на валу. Мы видим прямую с отрицательным наклоном. Эта прямая выражает механическую характеристику электродвигателя постоянного тока. Для её построения выбирают определённое фиксированное напряжение, подведённое для питания обмоток ротора.

Примеры механических характеристик ДПТ

Примеры механических характеристик ДПТ независимого возбуждения

Регулировочная характеристика

Такая же прямая, но идущая с положительным наклоном, является графиком зависимости частоты вращения якоря от напряжения питания. Это и есть регулировочная характеристика синхронного двигателя.

Построение указанного графика осуществляется при определённом моменте развиваемом ДПТ.

Регулировочная характеристика ДПТ

Пример регулировочных характеристик двигателя с якорным управлением

Читайте также:  Как измеряют сопротивление постоянному току разъединительных контактов вторичных цепей кру

Благодаря линейности характеристик упрощается управление электродвигателями постоянного тока. Поскольку сила F пропорциональна току, то изменяя его величину, например переменным сопротивлением, можно регулировать параметры работы электродвигателя.

Регулирование частоты вращения ротора легко осуществляется путём изменения напряжения. В коллекторных двигателях с помощью пусковых реостатов добиваются плавности увеличения оборотов, что особенно важно для тяговых двигателей. Это также один из эффективных способов торможения. Мало того, в режиме торможения синхронный электродвигатель вырабатывает электрическую энергию, которую можно возвращать в энергосеть.

Области применения

Перечислять все области применения электродвигателей можно бесконечно долго. Для примера назовём лишь несколько из них:

  • бытовые и промышленные электроинструменты;
  • автомобилестроение – стеклоподъёмники, вентиляторы и другая автоматика;
  • трамваи, троллейбусы, электрокары, подъёмные краны и другие механизмы, для которых важны высокие параметры тяговых характеристик.

Преимущества и недостатки

К достоинствам относится:

  • Линейная зависимость характеристик электродвигателей постоянного тока (прямые линии) упрощающие управление;
  • Легко регулируемая частота вращения;
  • хорошие пусковые характеристики;
  • компактные размеры.

У асинхронных электродвигателей, являющихся двигателями переменного тока очень трудно достичь таких характеристик.

Недостатки:

  • ограниченный ресурс коллектора и щёток;
  • дополнительная трата времени на профилактическое обслуживание, связанное с поддержанием коллекторно-щёточных узлов;
  • ввиду того, что мы пользуемся сетями с переменным напряжением, возникает необходимость выпрямления тока;
  • дороговизна в изготовлении якорей.

По перечисленным параметрам из недостатков в выигрыше оказываются модели асинхронных двигателей. Однако во многих случаях применение электродвигателя постоянного тока является единственно возможным вариантом, не требующим усложнения электрической схемы.

Видео в дополнение к написанному



Источник

Электрические машины постоянного тока

1. Устройство электрической машины постоянного тока

Электрическая машина постоянного тока состоит из двух основных частей: неподвижной части ( индуктора ) и вращающейся части ( якоря с барабанной обмоткой).
На рис. 1 изображена конструктивная схема машины постоянного тока

Индуктор состоит из станины 1 цилиндрической формы, изготовленной из ферромагнитного материала, и полюсов с обмоткой возбуждения 2, закрепленных на станине. Обмотка возбуждения создает основной магнитный поток.
Магнитный поток может создаваться постоянными магнитами, укрепленными на станине.
Якорь состоит из следующих элементов: сердечника 3, обмотки 4, уложенной в пазы сердечника, коллектора 5.
Рис. 1
Сердечник якоря для уменьшения потерь на вихревые точки набирается из изолированных друг от друга листов электротехнической стали.

2. Принцип действия машины постоянного тока

Рассмотрим работу машины постоянного тока в режиме генератора на модели рис.2,

где 1 — полюсы индуктора, 2 — якорь, 3 — проводники, 4 — контактные щетки.
Проводники якорной обмотки расположены на поверхности якоря. Внешние поверхности проводников очищены от изоляции, а на эти поверхности проводников наложены неподвижные контактные щетки.
Контактные щетки размещены на линии геометрической нейтрали, проведенной посредине между полюсами.
Приведем якорь машины во вращение в направлении, указанном стрелкой.
Рис. 2
Определим направление ЭДС, индуктированных в проводниках якорной обмотки по правилу правой руки.

На рис.2 крестиком обозначены ЭДС, направленные от нас, точками — ЭДС, направленные к нам. Соединим проводники между собой так, чтобы ЭДС в них складывались. Для этого соединяют последовательно конец проводника, расположенного в зоне одного полюса с концом проводника, расположенного в зоне полюса противоположной полярности (рис. 3)

Два проводника, соединенные последовательно, образуют один виток или одну катушку. ЭДС проводников, расположенных в зоне одного полюса, различны по величине. Наибольшая ЭДС индуктируется в проводнике, расположенном под срединой полюса, ЭДС, равная нулю, — в проводнике, расположенном на линии геометрической нейтрали.
Рис. 3
Если соединить все проводники обмотки по определенному правилу последовательно, то результирующая ЭДС якорной обмотки равна нулю, ток в обмотке отсутствует. Контактные щетки делят якорную обмотку на две параллельные ветви. В верхней параллельной ветви индуктируется ЭДС одного направления, в нижней параллельной ветви — противоположного направления. ЭДС, снимаемая контактными щетками, равна сумме электродвижущих сил проводников, расположенных между щетками.
На рис. 4 представлена схема замещения якорной обмотки.

В параллельных ветвях действуют одинаковые ЭДС, направленные встречно друг другу. При подключении к якорной обмотке сопротивления в параллельных ветвях возникают одинаковые токи , через сопротивление RH протекает ток IЯ.
Рис. 4
ЭДС якорной обмотки пропорциональна частоте вращения якоря n2 и магнитному потоку индуктора Ф

где Се — константа.
В реальных электрических машинах постоянного тока используется специальное контактное устройство — коллектор. Коллектор устанавливается на одном валу с сердечником якоря и состоит из отдельных изолированных друг от друга и от вала якоря медных пластин. Каждая из пластин соединена с одним или несколькими проводниками якорной обмотки. На коллектор накладываются неподвижные контактные щетки. С помощью контактных щеток вращающаяся якорная обмотка соединяется с сетью постоянного тока или с нагрузкой.

3. Работа электрической машины постоянного тока
в режиме генератора

Любая электрическая машина обладает свойством обратимости, т.е. может работать в режиме генератора или двигателя. Если к зажимам приведенного во вращение якоря генератора присоединить сопротивление нагрузки, то под действием ЭДС якорной обмотки в цепи возникает ток

где U — напряжение на зажимах генератора;
Rя — сопротивление обмотки якоря.

Уравнение (2) называется основным уравнением генератора . С появлением тока в проводниках обмотки возникнут электромагнитные силы.
На рис. 5 схематично изображен генератор постоянного тока, показаны направления токов в проводниках якорной обмотки.

Воспользовавшись правилом левой руки, видим, что электромагнитные силы создают электромагнитный момент Мэм, препятствующий вращению якоря генератора.
Чтобы машина работала в качестве генератора, необходимо первичным двигателем вращать ее якорь, преодолевая тормозной электромагнитный момент, возникающий по правилу Ленца.

4. Генераторы с независимым возбуждением.
Характеристики генераторов

Магнитное поле генератора с независимым возбуждением создается током, подаваемым от постороннего источника энергии в обмотку возбуждения полюсов.
Схема генератора с независимым возбуждением показана на рис. 6.
Магнитное поле генераторов с независимым возбуждением может создаваться
от постоянных магнитов (рис. 7).

Зависимость ЭДС генератора от тока возбуждения называется характеристикой холостого хода E = Uхх = f (Iв) .
Характеристику холостого хода получают при разомкнутой внешней цепи (Iя) и при постоянной частоте вращения (n2 = const)
Характеристика холостого хода генератора показана на рис. 8.
Из-за остаточного магнитного потока ЭДС генератора не равна нулю при токе возбуждения, равном нулю.
При увеличении тока возбуждения ЭДС генератора сначала возрастает пропорционально.
Соответствующая часть характеристики холостого хода будет прямолинейна. Но при дальнейшем увеличении тока возбуждения происходит магнитное насыщение машины, отчего кривая будет иметь изгиб. При последующем возрастании тока возбуждения ЭДС генератора почти не меняется. Если уменьшать ток возбуждения, кривая размагничивания не совпадает с кривой намагничивания из-за явления гистерезиса.
Зависимость напряжения на внешних зажимах машины от величины тока нагрузки
U = f (I) при токе возбуждения Iв = const называют внешней характеристикой генератора.

Внешняя характеристика генератора изображена на рис. 9.

С ростом тока нагрузки напряжение на зажимах генератора уменьшается из-за увеличения падения напряжения в якорной обмотке.

5. Генераторы с самовозбуждением.
Принцип самовозбуждения генератора
с параллельным возбуждением

Недостатком генератора с независимым возбуждением является необходимость иметь отдельный источник питания. Но при определенных условиях обмотку возбуждения можно питать током якоря генератора.
Самовозбуждающиеся генераторы имеют одну из трех схем: с параллельным, последовательным и смешанным возбуждением. На рис. 10 изображен генератор с параллельным возбуждением.

Обмотка возбуждения подключена параллельно якорной обмотке. В цепь возбуждения включен реостат Rв. Генератор работает в режиме холостого хода.
Чтобы генератор самовозбудился, необходимо выполнение определенных условий.
Первым из этих условий является наличие остаточного магнитного потока между полюсами. При вращении якоря остаточный магнитный поток индуцирует в якорной обмотке небольшую остаточную ЭДС.
Рис. 10
Вторым условием является согласное включение обмотки возбуждения . Обмотки возбуждения и якоря должны быть соединены таким образом, чтобы ЭДС якоря создавала ток, усиливающий остаточный магнитный поток. Усиление магнитного потока приведет к увеличению ЭДС. Машина самовозбуждается и начинает устойчиво работать с каким-то током возбуждения Iв = const и ЭДС Е = const, зависящими от сопротивления Rв в цепи возбуждения.
Третьим условием является то, что сопротивление цепи возбуждения при данной частоте вращения должно быть меньше критического . Изобразим на рис. 11 характеристику холостого хода генератора E = f (Iв) (кривая 1) и вольт — амперную характеристику сопротивления цепи возбуждения Uв = Rв·Iв, где Uв — падение напряжения в цепи возбуждения. Эта характеристика представляет собой прямую линию 2, наклоненную к оси абсцисс под углом γ (tg γ

Ток обмотки возбуждения увеличивает магнитный поток полюсов при согласном включении обмотки возбуждения. ЭДС, индуцированная в якоре, возрастает, что приводит к дальнейшему увеличению тока обмотки возбуждения, магнитного потока и ЭДС. Рост ЭДС от тока возбуждения замедляется при насыщении магнитной цепи машины.
Рис. 11

Читайте также:  Защита электродвигателя от перегрузки по току своими руками

Падение напряжения в цепи возбуждения пропорционально росту тока. В точке пересечения характеристики холостого хода машины 1 с прямой 2 процесс самовозбуждения заканчивается. Машина работает в устойчивом режиме.
Если увеличим сопротивление цепи обмотки возбуждения, угол наклона прямой 2 к оси тока возрастает. Точка пересечения прямой с характеристикой холостого хода смещается к началу координат. При некотором значении сопротивления цепи возбуждения Rкр, когда
γ = γкр, самовозбуждение становится невозможным. При критическом сопротивлении вольт — амперная характеристика цепи возбуждения становится касательной к прямолинейной части характеристики холостого хода, а в якоре появляется небольшая ЭДС.

6. Работа электрической машины постоянного тока
в режиме двигателя. Основные уравнения

Под действием напряжения, подведенного к якорю двигателя, в обмотке якоря появится ток Iя. При взаимодействии тока с магнитным полем индуктора возникает электромагнитный вращающий момент

где CM — коэффициент, зависящий от конструкции двигателя.
На рис. 12 изображен схематично двигатель постоянного тока, выделен проводник якорной обмотки.

Ток в проводнике направлен от нас. Направление электромагнитного вращающего момента определится по правилу левой руки. Якорь вращается против часовой стрелки. В проводниках якорной обмотки индуцируется ЭДС, направление которой определяется правилом правой руки. Эта ЭДС направлена встречно току якоря, ее называют противо-ЭДС.
Рис. 12

В установившемся режиме электромагнитный вращающий момент Мэм уравновешивается противодействующим тормозным моментом М2 механизма, приводимого во вращение.

На рис. 13 показана схема замещения якорной обмотки двигателя. ЭДС направлена встречно току якоря. В соответствии со вторым законом Кирхгофа , откуда

Рис.13 Уравнение (3) называется основным уравнением двигателя .

Из уравнения (3) можно получить формулы:

Магнитный поток Ф зависит от тока возбуждения Iв, создаваемого в обмотке возбуждения. Из формулы (5) видно, что частоту вращения двигателя постоянного тока n2 можно регулировать следующими способами:

Чтобы изменить направление вращения двигателя на обратное (реверсировать двигатель), необходимо изменить направление тока в обмотке якоря или индуктора.

7. Механические характеристики электродвигателей
постоянного тока

Рассмотрим двигатель с параллельным возбуждением в установившемся режиме работы (рис. 14). Обмотка возбуждения подключена параллельно якорной обмотке.

Механической характеристикой двигателя называется зависимость частоты вращения якоря n2 от момента на валу M2 при U = const и Iв = const.
Уравнение (6) является уравнением механической характеристики двигателя с параллельным возбуждением.
Рис. 14

Эта характеристика является жесткой. С увеличением нагрузки частота вращения такого двигателя уменьшается в небольшой степени (рис. 15).

где k — коэффициент пропорциональности.
Момент на валу двигателя пропорционален квадрату тока якоря.

Источник

Устройство машины постоянного тока

Электротехническая промышленность в настоящее время выпускает электрические машины постоянного тока для работы в различных усло­виях. Корабельные машины имеют особенности конструкции отдельных узлов, но общая конструктивная схема этих машин одинакова. На ри­сунке (1.4) приведены продольный и поперечный разрез машины нор­мального исполнения. Машина постоянного тока состоит из 2–х основ­ных частей: неподвижной – статора и вращающейся – якоря. Между ни­ми всегда имеется воздушный зазор.

Продольный и поперечный разрез машины (электродвигателя) постоянного тока.

Рис. 1.4 — ДПТ в разрезе

Статор, являющийся индуктором, т.е. такой частью машины, в котором наводится магнитное поле, сос­тоит из станины I, главных 2 и добавочных 3 полюсов. К статору относятся также подшипниковые щиты 7 с подшипниками 11. На статоре крепятся щеточный аппарат 9 и коробка выводов 10.

Якорь состоит из сердечника якоря 4 и коллектора 8, насажен­ных на вал 6. В машинах с самовентиляцией на валу крепится венти­лятор 12.

Станина – служит в качестве магнитопровода и одновременно является конструктивной основой, к которой крепятся главные и добавочные полосы и подшипниковые щиты. Она представляет собой полый цилиндр, отлитый или сваренный из чугуна или стали. У крупных машин стани­на делается разъемной. На кораблях для удобства обслуживания и ремонта применяются также машины с поворотной станиной. Часть ста­нины, по которой замыкаются магнитные потоки главных и добавочных полюсов, называется ярмом 1. Вместе со станиной отливаются лапы 13 для крепления машины к фундаменту. На станине устанавливается один или несколько рымов 14 для подъема машины.

Главные полюсы предназначены для создания в машине магнитного по­тока необходимой величины. Главный полюс (рисунок 1.5) состоит из сер­дечника 1 и катушек обмоток возбуждения 2,3. Со стороны, обращенной к якорю, сердечник заканчивается полюсным наконечником 4, с помощью которого обеспечивается требуемое распределение магнитной индукции в воздушном зазоре.

Главный полюс статора в разрезе

Сердечни к полюсов набирается из листов электротехнической стали толщиной 0,5?1,0 мм., покрытых изоляционным лаком для уменьшения потерь от вихревых токов, вызванных пульсацией магнитного потока из–за зубчатости якоря. Листы стали спрессовывают и скрепляют шпильками. Катушки обмоток возбуждения наматываются на изолирующий кар­кас 5, а затем надеваются на сердечник. По отношению к обмотке яко­ря обмотки возбуждения могут включаться параллельно или последо­вательно. Катушки параллельной обмотки 2 состоят из большого чис­ла витков провода малого сечения. Катушки последовательной обмот­ки 3 состоят из малого числа витков провода большого сечения, по которым проходит большой ток якоря. Для улучшения изоляции катуш­ки компаундируют, т.е. пропитывают изоляционными лаками (компаун­дами) в вакууме при повышенной температуре, а затем сушат в специ­альных печах. Полюс в собранном виде крепится к станине болта­ми 6.

Добавочные полюсы служат для улучшения коммутации машины, т.е. обеспечивают безыскровую работу щеток и коллектора. Они состоят из сердечника 1 и полюсной катушки 5 (рисунок 1.6) и устанавливаются между главными полюсами по линии геометрической нейтрали. Сердеч­ник имеет наконечник 2 определенной формы. Катушка изготавливает­ся из полосовой меди большого сечения, так как она включается пос­ледовательно в цепь якоря и по ней проходит большой ток. Величина зазора ? между полюсом и якорем регулируется при наладке ра­боты машины с помощью магнитных и немагнитных прокладок 4 между полюсом и станиной. Добавочные полюсы крепятся к станине болтами 3.

Добавочные полюсы служат для улучшения коммутации машины

Якорь состоит из сердечника магнитопровода, обмотки 5, вала 6 и конструктивных деталей для их крепления.

Сердечник якоря представляет собой стальной цилиндр, набранный из штампованных листов 1 (рисунок 1.7) электротехнической стали толщи­ной 0,5 мм, которые изолируются друг от друга лаком для уменьше­ния потерь от вихревых токов.

Сердечник якоря. Одна из большого числа пластин якоря.

В листах штампуются пазы для размещения в них обмотки якоря и отверстия для насаживания сердечника на вал якоря, для стяжных шпилек и осевой вентиляции. Пакет железа якоря крепится на валу шпонкой, а с торцов стягивается нажимными кольцами. В боль­ших машинах якорь состоит из нескольких пакетов штампованных лис­тов, между которыми делаются промежутки для лучшего охлаждения ма­шины (радиальная вентиляция). Часть сердечника якоря, занятая па­зами, называется зубцовой зоной.

Обмотка якоря выполняется из изолированного провода круглого или прямоугольного сечения. Она состоит из отдельных элементов – сек­ций (рисунок 1.8), образованных из одного или нескольких витков.

Обмотка якоря выполняется из изолированного провода круглого или прямоугольного сечения

Сек­ции изготавливаются по шаблонам. Часть секции 1, заложенная в пазы сердечника якоря, называется пазовой или активной частью. Часть секции 2, расположенная вне сердечника – в воздухе и соединяющая активные части, называется лобовой частью (лобовые соединения). Концы секций припаиваются к коллекторным пластинам. Для крепления секций в пазах применяются деревянные, гетинаксовые или текстоли­товые клинья. Кроме витковой изоляции обмотка имеет пазовую изо­ляцию от сердечника. Лобовые части закрепляются с помощью прово­лочного бандажа.

Электроизоляционные материалы, применяемые для изоляции об­моток, по степени термостойкости делятся на классы, которые допус­кают определенную температуру нагрева. В машинах постоянного тока применяются в основном классы А, В, С и Н. Коллектор (рисунок 1.9) набирается из медных пластин I, изолиро­ванных друг от друга и от вала, на котором он крепится, с помощью миканитовых прокладок 8 и манжет 5,7. Состороны, обращенной к валу, пластины имеют форму ласточкиного хвоста 2. В два конусооб­разных углубления коллектора вставляются изолированные нажимные конусы 3,4, которые стягивают коллекторные пластины в осевом нап­равлении. В собранном виде коллектор спрессовывают в горячем сос­тоянии, после чего обтачивают для придания ему строго цилиндричес­кой формы. В зависимости от размера якоря и коллектора концы сек­ций обмотки впаиваются в коллекторные пластины непосредственно или через специ

Коллектор (рисунок 1.9) набирается из медных пластин I, изолиро­ванных друг от друга и от вала, на котором он крепится, с помощью миканитовых прокладок 8 и манжет 5,7. Состороны, обращенной к валу, пластины имеют форму ласточкиного хвоста 2.

Коллектор электродвигателя постоянного тока в разрезе

В два конусооб­разных углубления коллектора вставляются изолированные нажимные конусы 3,4, которые стягивают коллекторные пластины в осевом нап­равлении. В собранном виде коллектор спрессовывают в горячем сос­тоянии, после чего обтачивают для придания ему строго цилиндричес­кой формы. В зависимости от размера якоря и коллектора концы сек­ций обмотки впаиваются в коллекторные пластины непосредственно или через специальные медные соединения – петушки 9. Коллектор жестко крепится на валу ротора рядом с сердечником якоря.

Читайте также:  Джон бедини зарядка аккумуляторов холодным током

Щеточное устройств о – предназначено для обеспечения электрической связи между неподвижными зажимами, соединенными с внешней цепью, и вращающейся обмоткой якоря (через коллектор) (рисунок 1.10).

Щеточное устройство электродвигателя постоянного тока

Оно состоит из щеток 1, щеткодержателей 3, пальцев 5, траверсы 6 и соединительных шин. Непосредственный контакт с коллектором 2 имеет щетка. Она выполняется обычно из специальным образом обработан­ной смеси угля, графита и других компонентов в виде прямоугольной призмы и помещается в обойму щеткодержателя 4. Щетка может пере­мещаться в обойме в радиальном по отношению к коллектору направ­лении и для плотного прилегания прижимается к нему пружиной через нажимной рычаг. Щеткодержатели крепятся к пальцам 5, которые за­делываются в траверсу 6 через изоляционные втулки 7. На одном пальце может быть от 2 до 10 щеток, которые для равномерного из­носа коллектора располагаются на его поверхности в шахматном по­рядке и соединяются с пальцами медными гибкими тросиками. Число пальцев всегда равно числу главных полюсов. Пальцы, имеющие оди­наковую полярность, соединяются посредством соединительной шины, от которой делается отвод в клемную коробку машины или к обмотке дополнительного полюса.

Траверса может крепиться к подшипниковым щитам, станине или фундаментной плите. Крепление позволяет поворачивать всю систему щеток относительно станины.

Клемная коробка . В клемной коробке устанавливается изоляционная панель с клеммами, к которым подсоединяются выводы обмоток машины для соединения с внешней электрической сетью.

Источник

Генераторы постоянного тока.Якорь машины.Обмотка якоря

Станина выполняется из литой стали, сердечники главных полюсов собираются из отдельных стальных листов толщиной 1-2 мм, сердечники дополнительных полюсов выполняются стальными массивными. Крепле­ние главных и дополнительных полюсов к станине осуществляется болта­ми. На главных полюсах размещаются, как правило, две обмотки возбуж­дения: основная 3, подключаемая или к сети, или параллельно обмотке якоря, и дополнительная 2, включаемая последовательно в цепь якоря че­рез щетки.

Также последовательно в цепь якоря машины подключается и обмотка 15 дополнительных полюсов. Назначение обмоток возбуждения главных полюсов, как это следует из их названия, — создание основного магнитного потока машины. Обмотки дополнительных полюсов служат для улучше­ния условий работы коллектора или, как говорят, для улучшения коммута­ции.

Якорь состоит

из магнитопровода, называемого сердечником 6 яко­ря, обмотки 5 якоря, уложенной в пазы сердечника, коллектора 7, к кото­рому подключаются выводы обмотки якоря и вала 19, объединяющего на­званные выше элементы.

Магнитопровод набирается из лакированных листов электротехниче­ской стали толщиной 0,5 мм и впрессовывается непосредственно на вал или при больших диаметрах якоря машины — на цилиндрическую втулку. Коллек­тор состоит из ряда изолированных друг от друга медных коллекторных пластин. Он собирается отдельно и затем в сборе впрессовывается на вал через изолирующую втулку. Обмотка якоря выполняется в виде отдельных секций, концы которых впаиваются в специальные выступы (петушки) коллекторных пластин. При помощи коллектора секции обмотки якоря соединя­ются между собой последовательно, образуя замкнутую цепь. Различают петлевые обмотки якоря, при которых выводы секций присоединяют к со­седним коллекторным пластинам, а секции между собой соединяют на коллекторе (рис.), и волновые, у которых соединение выводов секций с коллектором и соединение секций между собой осуществляется как бы волнообразно (рис. 2.2, б). Число коллекторных пластин равно числу сек­ций обмотки.

Вращение якоря

Вращение якоря машины в воздушном пространстве между полюсами обес­печивается подшипниковыми щитами 9 и 17 при помощи насаженных на вал подшипников 14. Подшипниковый щит 9, установленный со стороны коллектора, называют передним. Между задним подшипниковым щитом 17 и сердечником на валу якоря машины устанавливается крылатка вентилятора 18, обеспечивающая охлаждение генератора. Для входа и выхода охлаждаю­щего воздуха в подшипниковых щитах предусмотрены отверстия, которые закрываются защитными кожухами с сеткой. Отверстия в переднем под­шипниковом щите служат также для осмотра и обслуживания коллектора и щеточного узла.

Соединение якоря с сетью постоянного тока и обмотками полюсов осуществляется с помощью щеток 12, установленных в щеткодержателях 13, которые, в свою очередь, крепятся на специальных пальцах. Пальцы скрепляются на траверсе 11, которая крепится к переднему подшипнико­вому щиту или к станине. В щеткодержателях предусматривается возможность регулировать давление щетки на коллектор при помощи пружин. Общее количество щеточных пальцев равно числу полюсов, причем поло­вина из них имеет положительную полярность, другая — отрицательную. Щеточные группы одной полярности соединяются между собой сборными нишами. Щеточный узел делит обмотку якоря на несколько параллельных ветвей, число которых зависит от типа обмотки и обычно обозначается 2а.

Соединение машины с внешней цепью осуществляется через короб­ку выводов 10, в которой располагается клеммная плата с обозначениями выводом всех обмоток. Для подъема и перемещения машины в верхней части станины устанавливается рым-болт 8. На корпусе станины крепится также табличка завода-изготовителя, на которой указываются обмоточные данные и основные параметры машины.

Серьезным недостатком машин постоянного тока является их отно­сительно высокая сложность и недостаточная надежность щеточно-коллекторного узла, требующего постоянного обслуживания.

Режимы работы генератора

Одна и та же машина постоянного тока может работать как в режиме генератора, так и в режиме двигателя, то есть обладает свойством обрати­мости. В генераторном режиме энергия, подводимая к машине с вала от приводного двигателя, преобразуется в электрическую, а в двигательном режиме осуществляется обратное преобразование электрической энергии, подводимой от сети постоянного тока, в механическую энергию, переда­ваемую исполнительному механизму.

Использование генератора постоянного тока

Генераторы постоянного тока используются на практике в качестве резервных источников энергии для зарядки аккумуляторных батарей, вхо­дят в состав электромашинных обратимых преобразователей для связи систем переменного и постоянного токов и т.д

С точки зрения эксплуатации первостепенное значение имеет выбор мирки щеток. Наиболее предпочтительными являются электрографитные щетки марок ЭГ4, ЭГ8, ЭГ14, ЭГ61, ЭГ74, которые применяют для машин щ средними и затрудненными условиями коммутации.

Такие причины, как биение коллектора, плохая обработка его по­верхности, выступание миканита, вибрации щеток и щеткодержателей, особенно отрицательно сказываются на коммутации быстроходных ма­шин

Значительное влияние на коммутацию оказывают и условия эксплуа­тации — загрязнение коллектора, влажность воздуха, атмосферное давле­ние, наличие в окружающем воздухе химических веществ. Следует иметь в виду, что коммутация заметно ухудшается при снижении атмосферного давления.

При правильном выборе марки щеток и правильной эксплуатации на коллекторе в результате электролиза образуется политура, состоящая из пленки окислов меди. Наличие такой политуры является свидетельством нормальной коммутации машины.

Мероприятия по устранению причин искрения механического харак­тера требуют неукоснительного выполнения. К ним прежде всего относят­ся поддержание коллектора, щеток и всей машины в исправном состоянии, строгое соблюдение требований инструкции по эксплуатации, своевремен­ное проведение регламентных работ.

Для устранения причин искрения электромагнитной природы в про­цессе изготовления и настройки машины предусматривают следующие ме­роприятия:

  • устанавливают дополнительные полюсы, магнитное поле которых компенсирует реактивную ЭДС (ЭДС самоиндукции и взаимоиндукции) в коммутируемых секциях;
  • в полюсных наконечниках главных полюсов крупных машин уста­навливают компенсирующие обмотки, которые включают последовательно с обмоткой якоря, но так, что они компенсируют поле реакции якоря;
  • смещают щетки с линии геометрической нейтрали таким образом, чтобы коммутируемая секция оказалась на линии физической нейтрали;
  • применяют специальные твердые углеграфитовые щетки с повы­шенным сопротивлением.

Нормальным при работе машины постоянного тока считается слабое точечное искрение под небольшой частью щетки (1 ‘/ 4 балла). Искрение под всем краем щетки (2 балла) допускается только при переходных режи­мах и кратковременных перегрузках. Сильное искрение (3 балла) ни при каких условиях не допускается. При возникновении такого искрения ма­шина должна быть немедленно отключена от сети и подвергнута осмотру и при необходимости — ремонту.

Коммутация сопровождается еще одним неблагоприятным с точки зрения эксплуатации процессом — созданием электромагнитных колебаний высокой частоты (1-3 кГц), что создает значительные радиопомехи. Для устранения радиопомех, особенно при плохой коммутации, в цепь якоря включаются индуктивно-емкостные фильтры, при этом используются соб­ственные индуктивности обмоток машины, а конденсаторы размещают в коробке выводов и подключают с одной стороны к выводам обмотки до­полнительных полюсов, с другой — к корпусу.

Источник