Меню

Выпрямители переменного тока как выбрать



Выпрямитель тока

Выпрямители электрического тока представляют собой различные преобразователи сигналов. Согласно характеру устройства, могут быть полупроводниками на базе диодов или транзисторов, механическими либо вакуумными. Функция агрегата – превращение переменного сигнала, идущего ко входу, в постоянный на выходе. Большая часть подобных устройств может создать пульсирующий электрический ток, оставляя на выходе пульсации. Поэтому требуется дополнительно доукомплектовывать цепь фильтрами, которые бы сглаживали колебания. Устройство, которое преобразует постоянный ток в переменный, называется инвертором и применяется в источниках бесперебойного питания и аккумуляторах.

Выпрямитель тока, схема с одним мостом

Какие бывают выпрямители

Построение устройств, выпрямляющих переменный ток, базируется на функции итогового агрегата. При необходимости только выравнивать колебания сборка на печатных платах производится за счет неуправляемых полупроводниковых элементов – диодов. Таким образом строятся простейшие выравнивающие элементы.

При необходимости изменений уровня мощности, которая передается на принимающее оборудование, устройство собирают с использованием контролируемых вентилей (тиристоров). Такие выпрямители тока требуются для работы некоторых двигателей, работающих за счет электричества. За счет регулировки подаваемого напряжения изменяется скорость вращения ротора.

N-фазные выпрямители

В подобных устройствах насчитывают более 3 фаз для выпрямления тока. Другие конструктивные особенности различаются. Многофазный выпрямитель может состоять как из полноценного моста, так и из четверти и половины. По количеству входов и распараллеливанию их делят на раздельные, объединенные звездами или кольцами. Кроме того, существуют последовательные виды.

Принцип работы выпрямителей сигналов

Что такое выпрямитель? Устройство работает за счет свойств полупроводниковых радиоэлементов по пропусканию тока исключительно от анода к катоду. Поэтому при прохождении через устройство синусоиды переменного тока происходит обрезка отрицательной части волны. Таким образом на выходе радиоэлемента остается только положительная полуволна. Электрический ток подобного типа называется однополупериодным с пульсациями. От анода к катоду проходит сигнал только ½ всего времени. Колебания происходят от нуля до максимального значения.

Строение двухполупериодных устройств базируется на мосту из четырех вентилей, которые приводят к попаданию всех полуволн. При этом отрицательная полуволна инвертируется. Фактически строение двухполупериодных выпрямителей аналогично двум или более однополупериодным с катодами, направленными один на другой.

Классификация по назначению и устройству

Выпрямители переменного тока разделяют на несколько различных видов, в зависимости от характеристик, использования периодов переменного тока, схем, по количеству фаз и типу пропускающего элемента. В общем виде классификация имеет следующий вид:

  • По количеству периодов, задействованных в работе (одно,- и двухполупериодные, а также с полным и неполным использованием волны);
  • По типажу устройства делят на включающие электронный мост, умножающие напряжение, с наличием или отсутствием трансформаторов;
  • По количеству фаз разделяют на однофазные, двух, трех,- и N-фазные;
  • Согласно типу устройства, пропускающего синусоиду, делят на полупроводниковые диодные и тиристорные, механические и вакуумные, ртутные;
  • По виду пропускаемой волны делят на импульсные, аналоговые и цифровые.

Однополупериодный выпрямитель (четвертьмост)

Представляет собой простейшее устройство, преобразовывающее сигнал из переменного электрического тока в постоянный. Таким образом происходит сглаживание уровня сигнала. Схема построена на одном полупроводниковом вентиле (диоде). Редко применяется в промышленности, так как для питания автоматики и аппаратуры требуется добавление в цепь питания фильтров, которые бы сглаживали полуволну. Поэтому размеры и масса устройств на базе данного выпрямителя выходят слишком значительными. Не подходит к электрическому току с промышленной частотой сигнала в 50-60 Герц.

Такая схема выпрямителя используется в импульсных БП. Требуется для компьютерной техники и с высокой частотой сигнала – около 10 Герц. Также применяется в промышленности для выпрямления высокочастотного тока.

Устройство отличается следующими достоинствами:

  • Высокая частота пульсация;
  • Повышенная нагрузка на выпрямляющее устройство;
  • Ухудшение работы трансформатора вследствие намагничивания;
  • Невысокий показатель соотношения габаритов к мощности.

Однополупериодный выпрямитель

Два четвертьмоста параллельно

Данная схема состоит из двух четвертьмостов с одним периодом, которые работают независимо один от одного, на одну мощность. Принцип работы заключается в распараллеливании полуволны на 2 части. При первом временном промежутке происходит на одну половину, затем через часть схемы.

Два полных моста последовательно

Это двухфазная схема, которая включает два последовательных диодных моста. При этом электродвижущая сила равняется удвоенной относительно полного моста с одной фазой. Относительно сопротивление увеличивается в 4 раза.

Двухполупериодный выпрямитель, мостовая схема

В таком устройстве диодные мосты подключается ко вторичной обмотке трансформирующего прибора. Полупроводниковые элементы работают попарно, каждый со своей очередностью, пропуская только положительную или отрицательную полуволну. Таким образом частота колебания мощности, которая была выпрямлена, вдвое выше частоты тока в сети.

Три полных моста параллельно (12 диодов)

Это менее распространенная схема, состоящая из 12 параллельно соединенных диодов. По большинству характеристик значительно превосходит другие выпрямители напряжения. При прохождении электрического тока через всю схему исходящее напряжение выходит без пульсаций.

Три полных моста последовательно

Последовательная схема с двенадцатью диодами представляет собой трехфазный выпрямитель тока. Сопротивление в ней эквивалентно трем диодным мостам, в каждом из которых уровень сопротивления равен 3R. Таким образом, общий уровень препятствия движению заряженных частиц приблизительно равен 9R. В то время как частота колебаний в 6 раз выше, чем такая же от поступающего сигнала. Достоинством такого выпрямителя является наибольшая средняя электродвижущая сила, поэтому он часто используется в источниках мощности с большим выходным напряжением.

Читайте также:  Диаметр электрода 5мм сила тока

Трехфазная схема выпрямления

Устройства с тремя входящими фазами являются достаточно распространенными. Они обрезают часть волны, за счет чего значительно снижают колебания. Наиболее популярна трехдиодная схема Миткевича и шестидиодная схема Ларионова.

Трехфазные выпрямители

Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича последовательно (6 диодов)

Такая схема нередко называется шестифазной. По свойствам похожа на выпрямитель, состоящий из трех полных диодных блоков, соединенных последовательно. Однако в данной схеме значительно повышается уровень эквивалентного сопротивления. Последовательная схема состоит из 6 диодов и резистора, поэтому относительный ток через каждый из проводящих элементов вдвое выше.

Модификации с гальванической развязкой

Накопительные элементы могут быть добавлены в схему для улучшения выходных характеристик. Применение конденсаторов и батарей позволит однопериодному выпрямителю во время отрицательной полуволны продолжать подавать на выход напряжение, которое накопилось во время положительной. Кроме того, накопление мощности на конденсаторе приводит к снижению максимального напряжения полуволны на выходе. Подобные схемы часто используются в усилителях.

Как происходит выпрямление переменного тока

Действие над полуволнами осуществляется за счет использования свойств полупроводниковых либо механических вентилей. За счет PN перехода диод пропускает ток только в том случае, если на аноде напряжение выше, чем на катоде. Поэтому при прохождении через полупроводниковый элемент остается только положительная полуволна. При использовании диодных мостов каждый элемент работает попарно, выдавая на выход положительное и отрицательное напряжение раздельно.

Среднее значение выпрямленного напряжения

Усредненный показатель сглаженного напряжения для выпрямителя рассчитывается по формуле:

Формула

В однополупериодных простейших схемах, которые построены на одном диоде (четверть моста), значение приблизительно равно 0.45 от входящего напряжения в вольтах.

Для чего постоянный ток

Переменный ток не подходит для некоторых задач. Аккумуляторные батареи возможно заряжать только постоянным током. То же самое касается электролизных установок. Также это требуется для работы осветительных приборов и большинства компактных устройств: компьютеров и телефонов.

Основные соотношения для выпрямителя

Главные параметры для выпрямителя выбираются в момент времени. Расчет величин происходит по образной формуле:

Соотношения для выпрямителя

Где:

  • Um – параметр, соответствующий колебаниям синусоиды переменного тока;
  • U – текущее значение напряжения на синусоиде;
  • U2 – текущая величина мощности в обмотке трансформатора;
  • Ud – усредненный показатель выпрямленной мощности;
  • Udo – константа, которая отвечает за постоянное сглаженное напряжение без подачи питания.

Средний ток диодов

Полупроводниковые радиоэлементы обладают выпрямляющими свойствами. Поэтому их важнейшей характеристикой считается средний ток. Данная величина представляет собой усредненную за время работы сглаженного постоянного тока через полупроводниковый период. В вентилях выпрямительного типа значение может достигать от сотых частей до 100 и выше Ампер.

Мостовой удвоитель напряжения

Схема сходна по структуре с мостом Гретца, однако дополнительно устанавливаются накопительные элементы. Это позволяет суммировать напряжение на выходе из мощности, накопленной конденсаторами за время прохождения тока. Удвоение представляет собой преобразование низкочастотного переменного напряжения в высокочастотное постоянное.

Удвоитель напряжения

Выпрямитель – это устройство, которое превращают переменный ток, полученный из сети, в нужный постоянный. При этом электрический ток на выходе может обладать сниженной амплитудой колебаний либо быть полностью сглаженным. Таким образом, устройства, требующие для работы постоянного напряжения, получают питание. Используется для зарядки большинства аккумуляторов, например, в зарядном устройстве Рассвет, сварочных аппаратах и электросиловых установках. Класс устройства определяется количеством диодов.

Видео

Источник

Выпрямители: Особенности выбора выпрямительных диодов

При выборе диодов выпрямителя необходимо учитывать целый набор факторов, определяемых: принципиальной схемой выпрямителя, частотой и величиной входного переменного напряжения, величинами напряжения и тока нагрузки, условиями эксплуатации (температура, влажность, устойчивость входного напряжения и т.п.), характером нагрузки (емкостная, индуктивная), наличием коммутационных перегрузок в цепи нагрузки, параметрами применяемого трансформатора и т.д.

В первую очередь необходимо рассчитать значение максимального обратного напряжения, прикладываемого к силовым диодам при работе выпрямителя выбранного типа, а также оценить среднее значение протекающего через них прямого тока (это можно сделать по приближенным формулам, приводимым в таб. 3.4-1). Полученные таким образом значения необходимо откорректировать в зависимости от характера нагрузки.

Таб. 3.4-1. Режимы работы диодов в различных выпрямителях

Режимы работы диодов в различных выпрямителях

При наличии активно-емкостной нагрузки (а это чаще всего именно так) амплитудное и действующее значения тока силовых диодов могут существенно превышать его расчетное среднее значение. Так, например, при допустимом уровне пульсаций на выходе порядка 0,1% в однофазном мостовом выпрямителе с емкостным фильтром амплитудное значение тока выпрямительных диодов может достигать \( <15>\cdot I_<пр ср max>\) . В целях исключения перегрузки диодов по величине действующего и амплитудного значений токов и их перегрева, необходимо ужесточить требования к максимальному прямому среднему току (\(I_<пр ср max>\)) применяемых диодов. Практически, для однополупериодного выпрямителя используется коэффициент 2,2, а для двухполупериодного 1,1 (т.е. используемые диоды должны иметь значение \(I_<пр ср max>\) как минимум в 1,1 раза большее, чем это следует из значений, полученных по формулам из таб. 3.4-1).

Читайте также:  Принцип измерения сопротивления мостом постоянного тока

Величина максимально допустимого повторяющегося обратного напряжения (\(U_<обр и п max>\)) используемых диодов также подвержена влиянию нагрузки (характер этого влияния может быть вычислен по формулам, приводимым далее). Во избежание ее превышения в начальный момент времени после включения выпрямителя и во время его работы (в т.ч. и на холостом ходу), силовые диоды должны выбираться с некоторым запасом и по этому параметру.

Опираясь на найденные значения \(I_<пр ср max>\) и \(U_<обр и п max>\) (не забывая также о предполагаемой частоте входного переменного напряжения), по таблицам справочных данных производят предварительный выбор силовых диодов. Немаловажное значение для характеристик выпрямителя имеет тип выбранных выпрямительных диодов. Напомним, что в качестве выпрямительных могут использоваться кремниевые, германиевые или арсенид-галлиевые диоды с \(p\)‑\(n\)‑переходом (в т.ч. лавинные диоды), а также кремниевые или арсенид-галлиевые диоды с переходом Шоттки.

Германиевые выпрямительные диоды довольно широко использовались 10..20 лет назад. В настоящее время они практически полностью вытеснены более совершенными кремниевыми и арсенид-галиевыми приборами. И только в некоторых довольно редких случаях немногие положительные свойства германиевых диодов могут обусловить их применение в выпрямителях. Основными свойствами германиевых диодов с \(p\)-\(n\)-переходом являются:

  • низкое прямое падение напряжения (на германиевом диоде при максимально допустимом прямом токе падение напряжения приблизительно в два раза меньше, чем на аналогичном кремниевом диоде), что является существенным, но, к сожалению, единственным преимуществом перед кремниевыми выпрямительными диодами;
  • существование явно выраженного тока насыщения при обратном включении диода;
  • значительно большая величина обратного тока по сравнению с аналогичными кремниевыми диодами;
  • пробивное напряжение уменьшается с ростом температуры (большие обратные токи германиевых диодов являются причиной теплового характера их пробоя), а значение этого напряжения меньше пробивных напряжений кремниевых диодов.
  • верхний предел диапазона рабочих температур германиевых диодов составляет приблизительно 75 °C, что значительно ниже по сравнению с тем же параметром кремниевых диодов.

Существенным недостатком германиевых диодов является то, что они плохо выдерживают даже кратковременные импульсные перегрузки по обратному напряжению. Определяется это механизмом пробоя германиевых диодов — тепловым пробоем, происходящим при шнуровании тока с выделением большой удельной мощности в месте пробоя.

Кремниевые выпрямительные диоды с \(p\)-\(n\)-переходом — это наиболее распространенный в настоящее время вид диодов, применяемых во всех классах выпрямителей (однако они постепенно вытесняются более эффективными диодами с переходом Шоттки). Их основные свойства:

  • максимально допустимые прямые токи кремниевых диодов различных типов составляют 0,1. 1600 А, падение напряжения на диодах при этих токах не превышает обычно 1,5 В;
  • с увеличением температуры прямое падение напряжения уменьшается;
  • обратная ветвь ВАХ кремниевых диодов не имеет ярко выраженного участка насыщения;
  • пробой кремниевых диодов имеет лавинный характер, поэтому пробивное напряжение с увеличением температуры увеличивается (для некоторых типов кремниевых диодов при комнатной температуре пробивное напряжение может составлять 1500. 2000 В);
  • диапазон рабочих температур для кремниевых выпрямительных диодов ограничен значениями –60. +125 °C.

Лавинный характер пробоя кремниевых диодов позволил создать такие приборы, которые безболезненно переносят многократные перегрузки по обратному напряжению — лавинные диоды. Если условия эксплуатации разрабатываемого выпрямителя очень тяжелы с точки зрения стабильности питающего напряжения или тока нагрузки (что возможно при коммутации различных емкостей и индуктивностей в цепях нагрузки), то применение лавинных диодов становится практически неизбежным. Они обеспечивают гашение кратковременных импульсов высокого напряжения, проникающих в выпрямитель из внешних цепей. Альтернативой использованию лавинных диодов может быть добавление в выпрямитель стабилитрона или ограничителя напряжения (см. раздел “Диоды в ограничителях напряжения”).

Выпрямительные диоды, изготовленные из материала с большой шириной запрещенной зоны, обладают существенными преимуществами в свойствах и параметрах. С этой точки зрения, относительно недавно появившиеся выпрямительные диоды с \(p\)-\(n\)-переходом из арсенида галлия являются очень перспективными приборами. Параметры выпускаемых арсенид-галлиевых выпрямительных диодов пока еще далеки от теоретически возможных (например, для диодов типа АД112 максимально допустимый прямой ток равен всего 300 мА, а максимально допустимое обратное напряжение — 50 В), поэтому очевидно, что новые приборы такого типа будут значительно превосходить своих предшественников.

К основным свойствам арсенид-галлиевых приборов следует отнести:

  • значительный диапазон рабочих температур (до 250 °C);
  • лучшие частотные свойства (арсенид-галлиевые диоды могут работать в качестве выпрямителей малой мощности до частоты 1 МГц и выше);
  • повышенное (более 3 В) падение напряжения при прямом смещении.
Читайте также:  Примеры решения задач однофазных цепей переменного тока

Выпрямительные диоды с барьером Шоттки — наиболее перспективный вид полупроводниковых выпрямительных диодов. Они могут изготавливаться из кремния или арсенида галлия. Очевидно, что по мере совершенствования и удешевления технологии изготовления диоды с барьером Шоттки будут все более вытеснять выпрямительные диоды с \(p\)-\(n\)-переходом. Основными свойствами выпрямительных диодов Шоттки являются:

  • малое падение напряжения при прямом смещении (около 0,6 В);
  • большая максимально допустимая плотность тока, что связано как с меньшим падением напряжения на диоде, так и с особенностями его конструкции, обуславливающими хороший отвод тепла от выпрямляющего перехода;
  • способность выдерживать значительные перегрузки по току по сравнению с аналогичными диодами с \(p\)-\(n\)-переходом;
  • кремниевые и особенно арсенид-галлиевые диоды Шоттки имеют пока относительно маленькие значения пробивных напряжений (20. 70 В), но по мере совершенствования технологии их изготовления этот недостаток постепенно устраняется.

Источник

Как выбрать выпрямитель тока?

Выпрямители тока — это устройства, преобразующие переменное напряжение сети в постоянное. Их использование необходимо при подключении к сети электронной или транзисторной аппаратуры, а также приборов, для работы которых необходимо отличное от стандартного напряжение.

Различают несколько видов этих устройств:

  • электроконтактные,
  • кенотронные,
  • ртутные,
  • газотронные,
  • полупроводниковые и другие.

Также существует разделение выпрямителей на однополупериодные и двухполупериодные. Первые предназначены для подключения устройств малой мощности с емкостными и индуктивными сглаживающими фильтрами. Вторые используются для питания более мощных приборов и обеспечивают более высокую пульсацию выпрямленного тока.

По числу фаз выпрямители разделяются на:

  • однофазные для электрооборудования малой мощности;
  • двухфазные для приборов средней мощности;
  • трехфазные для мощного промышленного оборудования;
  • многофазные.

В зависимости от уровня преобразуемого напряжения различают: низковольтные (до 100 В), средневольтовые (220—1000 В) и высоковольтные (более 1000 В) приборы.

Разновидностью выпрямителей тока являются инверторы — устройства, которые выполняют обратную функцию: преобразовывают постоянное напряжение в переменное.

Самое широкое применение находят следующие виды выпрямителей тока:

  1. устройства для зарядки аккумуляторов;
  2. полупроводниковые приборы для обеспечения постоянным током гальванических ванн, промышленных станков, очистного и другого оборудования;
  3. универсальные полупроводниковые устройства, преобразующие трехфазный переменный ток в постоянный.

Выпрямители тока от компании «Штиль»

Если вы хотите получить квалифицированный ответ на вопрос, как выбрать выпрямитель тока, обращайтесь к специалистам компании «Штиль». Наше предприятие является производителем этого оборудования и может предложить вам устройства для решения самых разных задач. В каталоге представлены устройства для бытового и промышленного использования, рассчитанные на подключение разного по мощности оборудования.

Обратившись к нам, вы получите рекомендацию по выбору оптимального по параметрам выпрямителя тока и сможете купить качественное и надежное устройство по выгодной цене с гарантией от производителя.

Источник

Выпрямители: разновидности, схемы, формулы и функции расчета

рис. 2.73 аВ маломощных источниках питания (до нескольких сотен ватт) обычно используют однофазные выпрямители. В мощных источниках целесообразно применять трехфазные выпрямители.

Выпрямители имеют следующие основные параметры: а) среднее значение выходного напряжения uвых

где Т − период напряжения сети (для промышленной сети − 20 мс);

  • среднее значение выходного тока iвыx и Iср= 1/T· T ∫iвыхdt
  • коэффициент пульсаций выходного напряжения ε = Um/ Uср, где Um — амплитуда низшей (основной) гармоники выходного напряжения. Часто коэффициент пульсаций измеряют в процентах.

Обозначим его через ε %: ε % = Um/Uср · 100%

Указанные параметры являются наиболее важными при использовании выпрямителя.

  1. Параметры выпрямителей
  2. Однофазный однополупериодный выпрямитель
  3. Двухполупериодный выпрямитель со средней точкой
  4. Однофазный мостовой выпрямитель
  5. Схема трехфазного выпрямителя с нулевым выводом
  6. Схема трехфазного мостового выпрямителя (схема Ларионова)

Параметры выпрямителей

При проектировании выпрямителя широко применяются также следующие параметры, характеризующие его внутренние особенности:

  1. действующее значение Uвх входного напряжения выпрямителя;
  2. максимальное обратное напряжение Uобр.макс на отдельном диоде или тиристоре (т. е. на вентиле). Это напряжение принято выражать через напряжение Uср;
  3. среднее значение Iд.ср тока отдельного вентиля;
  4. максимальное (амплитудное) значение Iд.макс тока отдельного вентиля.

Токи Iд.ср и Iд.макс принято выражать через Iср. Значение Uобр.макс используется для выбора вентиля по напряжению. Значения

Iд.сри Iд.макс используются для выбора вентиля по току. Здесь следует иметь в виду, что вследствие малой тепловой инерционности полупроводникового вентиля он может выйти из строя даже в том случае, когда его средний ток I д.срм мал, но велик максимальный ток Iд.макс.

Однофазный однополупериодный выпрямитель

Он является простейшим и имеет схему, изображенную на рис. 2.73, а. В таком выпрямителе ток через нагрузку протекает лишь в течение полупериода сетевого напряжения (рис. 2.73, б).

рис. 2.73 а

рис. 2.73 б

Исходя из приведенных выше определений, получим основные параметры:

Источник