Меню

Вынужденные электрические колебания переменный ток презентация



переменный электрический ток
презентация к уроку по физике (11 класс) по теме

алексеева екатерина владимировна

переменный электрический ток

Скачать:

Вложение Размер
prezentatsiya_fizika_11_klass.pptx 374.19 КБ

Предварительный просмотр:

Подписи к слайдам:

Учитель физики МШГУ алексеева екатерина владимировна Презентация по физике

Темы презентации 1) Переменный электрический ток . 2) Активное сопротивление . Действующие значения силы тока и напряжения . 3) Конденсатор в цепи переменного тока . 4) Катушка индуктивности в цепи переменного тока .

Как нам известно, ток (электрический) бывает переменным и постоянным . Переме́нный ток (англ. alternating current — переменный ток) — электрический ток, который периодически изменяется по модулю и направлению . В настоящее время очень широко используется переменный электрический ток. Его можно получить с помощью электрогенераторов переменного тока с применением эффекта электромагнитной индукции. На рисунке изображена примитивная установка для выработки переменного тока. Принцип действия установки прост. Проволочная рамка вращается в однородном магнитном поле с постоянной скоростью. Своими концами рамка закреплена на кольцах, вращающихся вместе с ней. К кольцам плотно прилегают пружины, выполняющие роль контактов. Через поверхность рамки непрерывно будет протекать изменяющийся магнитный поток, но поток, создаваемый электромагнитом, останется постоянным. В связи с этим в рамке возникнет ЭДС индукции. Под переменным током также подразумевают ток в обычных одно- и трёхфазных сетях. В этом случае мгновенные значения тока и напряжения изменяются по гармоническому закону. Переменный электрический ток

Переменный ток в осветительной сети квартиры, применяемый па заводах и фабриках и т. д., представляет собой не что иное, как вынужденные электромагнитные колебания. Данные колебания напряжения легко обнаружить с помощью осциллографа.(рис . 4.8) Стандартная частота промышленного переменного тока равна 50 Гц. Это означает, что на протяжении 1 с ток 50 раз идет в одну сторону и 50 раз — в противоположную. Частота 50 Гц принята для промышленного тока во многих странах мира. В США принята частота 60 Гц. Если напряжение на концах цепи меняется по гармоническому закону, то и напряженность электрического поля внутри проводников будет также меняться гармонически . Переменное напряжение в гнездах розетки осветительной сети создается генераторами на электростанциях. Проволочную рамку, вращающуюся в постоянном однородном магнитном поле, можно рассматривать как простейшую модель генератора переменного тока. Поток магнитной индукции Ф, пронизывающий проволочную рамку площадью S, пропорционален косинусу угла а между нормалью к рамке и вектором магнитной индукции (рис. 4.9): Ф = BScos а При равномерном вращении рамки угол а увеличивается прямо пропорционально времени: а=2П nt , где n – частота вращения . Поэтому поток магнитной индукции меняется гармонически : Ф = BS cos 2 П nt , Здесь 2П n число колебаний магнитного потока за 2П с . Это ЦИКЛИЧЕСКАЯ ЧАСТОТА колебаний w=2 П n = > Ф = BScoswt

Согласно закону электромагнитной индукции ЭДС индукции в рамке равна взятой со знаком «-» скорости изменения потока магнитной индукции, т. е. производной потока магнитной индукции по времени: Если к рамке подключить колебательный контур, то угловая скорость w вращения рамки определит частоту w колебаний значений ЭДС, напряжения на paзличныx участках цепи и силы тока. Если напряжение меняется с циклической частотой , то и сила тока в цепи будет меняться с той же частотой. Но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае сила тока і в любой момент времени (мгновенное значение силы тока) определяется по формуле Здесь I m — амплитуда силы тока, т. е. максимальное по модулю значение силы тока, а — разность (сдвиг) фаз между колебаниями силы тока и напряжения.

Активное сопротивление . Действующие значения силы тока и напряжения . Перейдем к более детальному рассмотрению процессов, которые происходят в цепи, подключенной к источнику переменного напряжения. Сила тока в цени с резистором. Пусть цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R (рис. 4.10). Эту величину, которую мы до сих пор называли электрическим сопротивлением или просто сопротивлением, теперь будем называть активным сопротивлением. Сопротивление R называется активным, потому что при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от генератора. Эта энергия превращается во внутреннюю энергию проводников — они нагреваются. Будем считать, что напряжение на зажимах цепи меняется по гармоническому закону: u = U m cos w t

Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому для нахождения мгновенного значения силы тока можно применить закон Ома : В проводнике с активным сопротивлением колебания силы тока совпадают по фазе с колебаниями напряжения (рис. 4.1 7 ), а амплитуда силы тока определяется равенством Мощность в цепи с резистором. В цепи переменного тока промышленной частоты ( v = 50 Гц) сила тока и напряжение изменяются сравнительно быстро. Поэтому при прохождении тока по проводнику, например по нити электрической лампочки, количество выделенной энергии также будет быстро меняться со временем. Но этих быстрых изменений мы не замечаем . Как правило, нам нужно бывает знать среднюю мощность тока на участке цепи за большой промежуток времени, включающий много периодов. Для этого достаточно найти среднюю мощность за один период. Под средней за период, мощностью переменного тока понимают отношение суммарной энергии, поступающей в цепь за период, к периоду. Мощность в цепи постоянного тока на участке с сопротивлением R определяется формулой : P = I 2 R. (4.18)

На протяжении очень малого интервала времени переменный ток можно считать практически постоянным. Поэтому мгновенная мощность в цепи переменного тока на участке, имеющем активное сопротивление R, определяется формулой : P = i 2 R. (4.19) Найдем среднее значение мощности за период. Для этого сначала преобразуем формулу (4.19), подставляя в нее выражение (4.16) для силы тока и используя известное из математики соотношение

Средняя мощность равна первому члену в формуле (4.20) Величина, равная квадратному корню из среднего значения квадрата силы тока, называется действующим значением силы переменного тока. Действующее значение силы переменного тока обозначается через I : Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время. Действующее значение переменного напряжения определяется аналогично действующему значению силы тока:

Заменяя в формуле (4.17) амплитудные значения силы тока и напряжения на их действующие значения, получаем закон Ома для участка цепи переменного тока с резистором Как и при механических колебаниях, в случае электрических колебаний обычно нас не интересуют значения силы тока, напряжения и других величин в каждый момент времени. Важны общие характеристики колебаний, такие, как амплитуда, период, частота, действующие значения силы тока и напряжения, средняя мощность. Именно действующие значения силы тока и напряжения регистрируют амперметры и вольтметры переменного тока. Кроме того, действующие значения удобнее мгновенных значений еще и потому, что именно они непосредственно определяют среднее значение мощности Р переменного тока: P = I 2 R = UI.

Конденсатор в цепи переменного тока Постоянный ток не может идти по цепи, содержащей конденсатор. Ведь фактически при этом цепь оказывается разомкнутой, так как обкладки конденсатора разделены диэлектриком. Переменный же ток может идти по цепи, содержащей конденсатор. В этом можно убедиться с помощью простого опыта. Пусть у нас имеются источники постоянного и переменного напряжений, причем постоянное напряжение на зажимах источника равно действующему значению переменного напряжения. Цепь состоит из конденсатора и лампы накаливания (рис. 4.13), соединенных последовательно. При включении постоянного напряжения (переключатель повернут влево, цепь подключена к точкам АА’) лампа не светится. Но при включении переменного напряжения (переключатель повернут вправо, цепь подключена к точкам ВВ’) лампа загорается, если емкость конденсатора достаточно велика.

Как же переменный ток может идти по цепи, если она фактически разомкнута (между пластинами конденсатора заряды перемещаться не могут)? Все дело в том, что происходит периодическая зарядка и разрядка конденсатора под действием переменного напряжения. Ток, идущий в цепи при перезарядке конденсатора, нагревает нить лампы. Установим, как меняется со временем сила тока в цепи, содержащей только конденсатор, если сопротивлением проводов и обкладок конденсатора можно пренебречь (рис. 4.14). Напряжение на конденсаторе Сила тока, представляющая собой производную заряда по времени , равна: Следовательно, колебания силы тока опережают по фазе колебания напряжения на конденсаторе на (рис. 4.15).

I m = U m C (4.29) Амплитуда силы тока равна: Если ввести обозначение : и вместо амплитуд силы тока и напряжения использовать их действующие значения, то получим : Величину X c , обратную произведению C циклической частоты на электрическую емкость конденсатора, называют емкостным сопротивлением . Действующее значение силы тока связано с действующим значением напряжения на конденсаторе точно так же, как связаны согласно закону Ома сила тока и напряжение для участка цепи постоянного тока. Чем больше емкость конденсатора, тем больше ток перезарядки. Это легко обнаружить по увеличению накала лампы при увеличении емкости конденсатора. В то время как сопротивление конденсатора постоянному току бесконечно велико, его сопротивление переменному току имеет конечное значение X c . С увеличением емкости оно уменьшается. Уменьшается оно и с увеличением частоты Сопротивление цепи с конденсатором обратно пропорционально произведению циклической частоты на электроемкость. Колебания силы тока опережают по фазе колебания напряжения на

КАТУШКА ИНДУКТИВНОСТИ В ЦЕПИ ПЕРЕМЕННОГО ТОКА Индуктивность в цепи влияет на силу переменного тока. Это можно доказать с помощью простого опыта. Соберем цепь из катушки с большой индуктивностью и электрической лампы накаливания (рис. 4.16). С помощью переключателя можно подключить эту цепь либо к источнику постоянного напряжения, либо к источнику переменного напряжения. При этом постоянное напряжение и действующее значение переменного напряжения должны быть равны. Опыт показывает, что лампа светится ярче при постоянном напряжении. Следовательно, действующее значение силы переменного тока в рассматриваемой цепи меньше силы постоянного тока. Объясняется это различие явлением самоиндукции. Если напряжение быстро меняется, то сила тока не будет успевать достигнуть тех значений, которые она приобрела бы с течением времени при постоянном напряжении. Следовательно, максимальное значение силы переменного тока (его амплитуда) ограничивается индуктивностью цепи и будет тем меньше, чем больше индуктивность и чем больше частота приложенного напряжения.

Определим силу тока в цепи, содержащей катушку, активным сопротивлением которой можно пренебречь (рис. 4.17). Для этого предварительно найдем связь между напряжением на катушке и ЭДС самоиндукции в ней. Если сопротивление катушки равно нулю, то и напряженность электрического поля внутри проводника в любой момент времени должна быть равна нулю. Иначе сила тока, согласно закону Ома, была бы бесконечно большой. Равенство нулю напряженности поля оказывается возможным потому, что напряженность вихревого электрического поля порождаемого переменным магнитным полем, в каждой точке равна по модулю и противоположна по направлению напряженности кулоновского поля создаваемого в проводнике зарядами, расположенными на зажимах источника и в проводах цепи. Из равенства = — k i следует, что удельная работа вихревого поля (т. е. ЭДС самоиндукции е і ) равна по модулю и противоположна по знаку удельной работе кулоновского поля. Учитывая, что удельная работа кулоновского поля равна напряжению на концах катушки, можно записать: е і = — u . При изменении силы тока по гармоническому закону : i = I m sin t ЭДС самоиндукции равна: e і = — L i ‘ = — L l m cos t. Так как u = — е і , то напряжение на концах катушки оказывается равным

Следовательно, колебания напряжения на катушке опережают по фазе колебания силы тока на или, что то же самое, колебания силы тока отстают по фазе от колебаний напряжения на (рис . 4.18) Амплитуда силы тока в катушке равна: и вместо амплитуд силы тока и напряжения использовать их действующие значения, то получим: Величину X L , равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением. Согласно формуле (4.35) действующее значение силы тока связано с действующим значением напряжения и индуктивным сопротивлением соотношением, подобным закону Ома для цепи постоянного тока. Индуктивное сопротивление зависит от частоты Постоянный ток вообще «не замечает» индуктивности катушки. При = 0 индуктивное сопротивление равно нулю (X L = 0). Чем быстрее меняется напряжение, тем больше ЭДС самоиндукции и тем меньше амплитуда силы тока. Катушка индуктивности оказывает сопротивление переменному току. Это сопротивление, называемое индуктивным, равно произведению циклической частоты на индуктивность. Колебания силы тока в цепи с индуктивностью отстают по фазе от колебаний напряжения на

Источник

Презентация «Переменный ток» 11 класс

Код для использования на сайте:

Скопируйте этот код и вставьте себе на сайт

Для скачивания поделитесь материалом в соцсетях

После того как вы поделитесь материалом внизу появится ссылка для скачивания.

Подписи к слайдам:

Основные параметры переменного тока – период, частота и амплитуда.

Ссылка на видеоролик

Синусоидальный ток Наиболее распространён в электротехнике синусоидальный ток. Это периодический переменный ток, изменяющийся по закону синуса: где ω – угловая частота; ψ – начальная фаза переменного синусоидального тока (фаза в момент времени t = 0).

i = Im · sin (ωt + Ψ),

где i – значение тока в любой момент времени t;

Im – мгновенное значение синусоидального тока;

ω = 2πf = 2π/T,

Задача №1 За 5 мс магнитный поток, пронизывающий контур, убывает с 9 до 4 мВб. Найти ЭДС индукции в контуре.

Какая ЭДС самоиндукции возникает в катушке с индуктивностью 68 мГн,если ток силой 3,8 А исчезнет в неё за 0,012 с ?

Задача №1 За 5 мс магнитный поток, пронизывающий контур, убывает с 9 до 4 мВб. Найти ЭДС индукции в контуре

Какая ЭДС самоиндукции возникает в катушке с индуктивностью 68 мГн,если ток сило 3,8 А исчезнет в неё за 0,012 с ?

ε=- L*ΔI/Δt = 68*10^-3*3,8/12*10^-3 = 215,3 В

В России, как и в большинстве стран мира, стандартная частота переменного тока в электротехнике 50 Гц. В США и Канаде – 60 Гц. В Японии же используются оба варианта. В западной части применяется частота 60 Гц, а в восточной – 50 Гц. Так случилось, потому что в 1895 г. для Токио были закуплены генераторы немецкой компании AEG, а немного позже для Осаки — американские генераторы General Electric. Так как приведение этих сетей к единому стандарту оказалось весьма дорогостоящим делом, то всё было оставлено как есть, а между сетями установили четыре преобразователя частоты.

Томас Алва Эдисон

Основанная Эдисоном в 1878 г. компания «Edison Electric Light» занималась строительством электростанций постоянного тока.

В 1887 г. в США по системе Эдисона работало более 100 электростанций постоянного тока. Но расстояние, на которое удавалось передавать электричество, не превышало 1,5 км.

В 1882 г. Тесла изобрёл многофазный электродвигатель и счетчик переменного тока, отсутствие которого ранее было одним из препятствий в развитии технологий переменного тока.

Изобретенные Тесла трансформаторы давали возможность получать любое напряжение. А это позволяло передавать переменный ток на большие расстояния.

Какой ток лучше, постоянный или переменный? Споры на эту тему начались в 80-х годах XIX века и превратились в «войну токов», начало которой было положено двумя великими людьми – американским изобретателем Томасом Эдисоном и сербом по происхождению, инженером и физиком Николой Тесла.

Источник

Презентация по физике на тему «Переменный ток»

Описание разработки

Преимущества эл. энергии:

Можно передавать по проводам

Легко превращать в другие виды энергии

Легко получать из других видов энергии

Презентация по физике на тему Переменный ток

Переменный ток представляет собой ВЫНУЖДЕННЫЕ ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ.

Ток, меняющийся по величине и по направлению называется Переменный ток.

Переменный ток можно получить при вращении рамки в магнитном поле.

Полную информацию смотрите в файле.

Содержимое разработки

ПЕРЕМЕННЫЙ ТОК

ПЕРЕМЕННЫЙ ТОК

Преимущества эл. энергии: Можно передавать по проводам Можно трансформировать Легко превращать в другие виды энергии Легко получать из других видов энергии

Преимущества эл. энергии:

ПЕРЕМЕННЫЙ ТОК Что представляет собой? Что называют? Как получить?

  • Можно передавать по проводам
  • Можно трансформировать
  • Легко превращать в другие виды энергии
  • Легко получать из других видов энергии

ПЕРЕМЕННЫЙ ТОК

Что представляет собой?

Переменный ток представляет собой ВЫНУЖДЕННЫЕ ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ.

Переменный ток представляет собой ВЫНУЖДЕННЫЕ ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ.

Ток, меняющийся по величине и по направлению называется Переменный ток.

Ток, меняющийся по величине и по направлению называется Переменный ток.

Переменный ток можно получить при вращении рамки в магнитном поле.

Переменный ток можно получить при вращении рамки в магнитном поле.

 При вращении рамки в магнитном поле сила тока меняется 4 раза по величине, и 2 раза по направлению.

При вращении рамки в магнитном поле сила тока меняется 4 раза по величине, и 2 раза по направлению.

Характеристики тока: На протяжении 1 секунды ток 10 0 раз течет в одну сторону, и 10 0 раз в противоположную.

На протяжении 1 секунды ток 10 0 раз течет в одну сторону, и 10 0 раз в противоположную.

 Пусть в однородном магнитном поле с индукцией В вращается с постоянной угловой скоростью ω проволочная рамка площадью S . Поток вектора магнитной индукции, пронизывающий рамку, определяется по формуле: Ф= BScosα α=ω t , Ф= BScosωt

Пусть в однородном магнитном поле с индукцией В вращается с постоянной угловой скоростью ω проволочная рамка площадью S .

Поток вектора магнитной индукции, пронизывающий рамку, определяется по формуле: Ф= BScosα

α=ω t , Ф= BScosωt

 Действующее значение - такое значение постоянного тока, которое за одинаковое время выделяет такое же количество теплоты .

Действующее значение — такое значение постоянного тока, которое за одинаковое время выделяет такое же количество теплоты .

Задача: Рассчитайте максимальное значение напряжения? U Д =220 В U max =308 В

Рассчитайте максимальное значение напряжения?

U Д =220 В U max =308 В

-70%

Источник

Презентация по физике на тему «Переменный электрический ток» (11 класс)

Переменный ток

Описание презентации по отдельным слайдам:

План занятия Переменный ток и его получение. Мгновенное и максимальное значения ЭДС, напряжения и силы переменного тока. График изменения ЭДС, напряжения и силы переменного тока. Однофазные цепи переменного тока.

Понятие вынужденных электромагнитных колебаний. Вынужденные электрические колебания — это периодические изменения силы тока в контуре и других электрических величин под действием переменной ЭДС от внешнего источника.

Переменный ток Переменный ток — это ток, периодически изменяющийся со временем. Он представляет собой вынужденные электрические колебания, происходящие в электрической цепи под действием периодически изменяющейся внешней ЭДС. Периодом переменного тока называется промежуток времени, в течение которого сила тока совершает одно полное колебание. Частотой переменного тока называется число колебаний переменного тока за секунду. Чтобы в цепи существовал синусоидальный ток, источник в этой цепи должен создавать переменное электрическое поле, изменяющееся синусоидально. На практике синусоидальная ЭДС создается генераторами переменного тока, работающими на электростанциях.

При вращении рамки магнитный поток меняется по закону:

Переменный ток По закону электромагнитной индукции Найдем производную от магнитного потока Введем обозначение: -амплитуда ЭДС

Уравнение колебания ЭДС будет иметь вид: Если цепь замкнуть, то по цепи пойдет ток. Промышленная частота переменного тока 50Гц

Графики колебаний тока и напряжения

Действующие значения СИЛЫ ТОКА. Тепловое действие тока не зависит от направления тока, поэтому по нему можно сравнивать действия переменного и постоянного токов. Расчет и опыт показывает, что за время Т переменный ток выделяет в проводнике теплоту, равную Если по тому же проводнику пропустить такой постоянный ток, чтобы в проводнике выделилось такое же количество теплоты, то . Тогда: — действующее значение силы тока

Действующие значения ЭДС и напряжения Действующее значение ЭДС: Действующее значение напряжения:

Задача №1. Магнитный поток в рамке равномерно вращающейся в однородном магнитном поле, изменяется по закону косинуса. Найти зависимость ЭДС индукции от времени. Определить амплитудное, действующее значение ЭДС, период и частоту тока. Дано:

Задача №2. прямоугольная рамка площадью 400 кв.см. имеет 100 витков. Она вращается в однородном магнитном поле с индукцией 0,01 Тл. Каково максимальное значение ЭДС, если ось вращения перпендикулярна линиям индукции.

Резистор в цепи переменного тока Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным сопротивлением. Напряжение на концах цепи меняется по закону

Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому можно считать, что мгновенное значение силы тока определяется законом Ома: Следовательно, в проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения, а амплитуда силы тока равна амплитуде напряжения, деленной на сопротивление:

Катушка в цепи переменного тока Пусть в цепь переменного тока включена идеальная катушка. При изменениях силы тока по гармоническому закону : В катушке возникает ЭДС самоиндукции ЭДС самоиндукции в катушке в любой момент времени равна по модулю и противоположна по знаку напряжению на концах катушки, созданному внешним генератором: е=-u

Напряжение Следовательно, при изменении силы тока в катушке по гармоническому закону напряжение на ее концах изменяется тоже по гармоническому закону, но со сдвигом фазы: Следовательно, колебания напряжения на катушке индуктивности опережают колебания силы тока на π/2 Амплитуда колебаний Напряжения равна:

Отношение амплитуды колебаний напряжения на катушке к амплитуде колебаний силы тока в ней называется индуктивным сопротивлением : Закон Ома для участка цепи: В отличие от электрического сопротивления проводника в цепи постоянного тока, индуктивное сопротивление не является постоянной величиной, характеризующей данную катушку. Оно прямо пропорционально частоте переменного тока.

Задача № 3. катушка включена в цепь переменного тока с частотой 50 Гц. При напряжении 125 В сила тока в цепи 2,5 А. какова индуктивность катушки.

Конденсатор в цепи переменного тока При изменениях напряжения на обкладках конденсатора по гармоническому закону: Заряд на его обкладках изменяется по закону: Электрический ток в цепи возникает в результате изменения заряда конденсатора: i=q’

Поэтому колебания силы тока в цепи происходят по закону: Следовательно, колебания напряжения на обкладках конденсатора в цепи переменного тока отстают по фазе от колебаний силы тока на π/2 (рис. ). Это означает, что в момент, когда конденсатор начинает заряжаться, сила тока максимальна, а напряжение равно нулю.

амплитуда колебаний силы тока: Отношение амплитуды колебаний напряжения на конденсаторе к амплитуде колебаний силы тока называют емкостным сопротивлением конденсатора: Емкостное сопротивление конденсатора, как и индуктивное сопротивление катушки, не является постоянной величиной. Оно обратно пропорционально частоте переменного тока. закона Ома для участка цепи:

Задача №4. Конденсатор включен в цепь переменного тока стандартной частоты. Напряжение в сети 220 В. Сила тока в цепи конденсатора 2,5 А.какова емкость конденсатора?

Домашнее задание Выучить основные формулы Решить задачи №№ 962,963,967,975,978.

  • Все материалы
  • Статьи
  • Научные работы
  • Видеоуроки
  • Презентации
  • Конспекты
  • Тесты
  • Рабочие программы
  • Другие методич. материалы

Презентация по физике на тему «Переменный электрический ток» включает себя следующие вопросы:

1. Понятие вынужденных электрических колебаний.

2. Получение переменного тока.

3. Понятие действующего значения тока и напряжения.

4.Приводятся примеры решения задач по теме «переменный ток»

5. Рассматриваются цепи переменного тока:

а)Резистор в цепи переменного тока.

б) конденсатор в цепи переменного тока.

в) катушка в цепи переменного тока.

Данная презентация может быть использована преподавателями физики 11 класса физико-математического профиля, а также преподавателями физики 1 курса колледжей.

Номер материала: ДБ-1357664

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Читайте также:  По заданным параметрам электросхемы рассчитайте общее сопротивление цепи общий ток