Меню

Впервые обнаружил взаимодействие проводника с током с магнитной стрелкой



Контрольная работа по физике Электромагнитные явления 8 класс

Контрольная работа по физике Электромагнитные явления для учащихся 8 класса с ответами. Тест включает в себя 4 варианта, в каждом по 8 заданий.

1 вариант

1. К магнитной стрелке (северный полюс затемнён, см. ри­сунок), которая может поворачиваться вокруг верти­кальной оси, перпендикулярной плоскости чертежа, поднесли постоянный магнит. При этом стрелка

Контрольная работа по физике Электромагнитные явления 1 вариант 1 задание

1) повернётся на 180°
2) повернётся на 90° по часовой стрелке
3) повернётся на 90° против часовой стрелки
4) останется в прежнем положении

2. Какое утверждение верно?

А. Магнитное поле возникает вокруг движущихся зарядов.
Б. Магнитное поле возникает вокруг неподвижных зарядов.

1) А
2) Б
3) А и Б
4) Ни А, ни Б

3. На каком рисунке правильно изображена картина маг­нитных линий магнитного поля длинного проводника с постоянным током, направленным перпендикулярно плоскости чертежа на нас?

Контрольная работа по физике Электромагнитные явления 1 вариант 3 задание

4. При увеличении силы тока в катушке магнитное поле

1) не изменяется
2) ослабевает
3) исчезает
4) усиливается

5. Какое утверждение верно?

А. Северный конец магнитной стрелки компаса пока­зывает на географический Южный полюс.
Б. Вблизи географического Северного полюса располагается южный магнитный полюс Земли.

1) А
2) Б
3) А и Б
4) Ни А, ни Б

6. Квадратная рамка расположена в магнитном поле в плоскости магнитных линий так, как показано на ри­сунке. Направление тока в рамке показано стрелками. Как направлена сила, действующая на сторону аb рам­ки со стороны магнитного поля?

Контрольная работа по физике Электромагнитные явления 1 вариант 6 задание
Контрольная работа по физике Электромагнитные явления 1 вариант 6 задание Ответы

7. Установите соответствие между научными открытиями и именами учёных, которым эти открытия принадле­жат. К каждой позиции первого столбца подберите соответ­ствующую позицию второго.

А) Впервые обнаружил взаимодействие проводника с током и магнитной стрелки
Б) Построил первый электромобиль
В) Первым объяснил природу намагниченности железа

1) А. Ампер
2) М. Фарадей
3) Х. Эрстед
4) В. Якоби
5) Д. Джоуль

8. Магнитная сила, действующая на горизонтально распо­ложенный проводник, уравновешивает силу тяжести. Определите плотность материала проводника, если его объём 0,4 см 3 , а магнитная сила равна 0,034 Н.

2 вариант

1. К магнитной стрелке (северный полюс затемнён, см. ри­сунок), которая может поворачиваться вокруг верти­кальной оси, перпендикулярной плоскости чертежа, поднесли постоянный магнит. При этом стрелка

Контрольная работа по физике Электромагнитные явления 2 вариант 1 задание

1) повернётся на 180°
2) повернётся на 90° по часовой стрелке
3) повернётся на 90° против часовой стрелки
4) останется в прежнем положении

2. Какое утверждение верно?

А. Магнитное поле можно обнаружить по действию на движущийся заряд.
Б. Магнитное поле можно обнаружить по действию на неподвижный заряд.

1) А
2) Б
3) А и Б
4) Ни А, ни Б

3. Что представляют собой магнитные линии магнитного поля тока?

1) Линии, исходящие от проводника и уходящие в бесконечность
2) Замкнутые кривые, охватывающие проводник
3) Кривые, расположенные около проводника
4) Линии, исходящие от проводника и заканчиваю­щиеся на другом проводнике

4. При внесении железного сердечника в катушку с током магнитное поле

1) не изменяется
2) ослабевает
3) исчезает
4) усиливается

5. Какое утверждение верно?

А. Северный конец магнитной стрелки компаса показывает на географический Северный полюс.
Б. Вблизи географического Северного полюса располагается южный магнитный полюс Земли.

1) А
2) Б
3) А и Б
4) Ни А, ни Б

6. В однородном магнитном поле находится рамка, по которой начинает течь ток. Сила, действующая на нижнюю сторону рамки, направлена

Контрольная работа по физике Электромагнитные явления 2 вариант 6 задание
Контрольная работа по физике Электромагнитные явления 2 вариант 6 задание Ответы

7. Установите соответствие между физическими явления­ми и техническими устройствами, в которых эти явле­ния используются. К каждой позиции первого столбца подберите соответ­ствующую позицию второго.

А) Взаимодействие магнитной стрелки и постоянных магнитов
Б) Действие магнитного по­ля на проводник с током
В) Взаимодействие электромагнита с железными опилками

1) Электродвигатель
2) Компас
3) Звонок
4) Радиоприёмник
5) Магнитный сепаратор

8. Магнитная сила, действующая на горизонтально распо­ложенный проводник, уравновешивает силу тяжести. Определите объём проводника, если он изготовлен из латуни и магнитная сила равна 0,034 Н. Плотность ла­туни 8500 кг/м 3 .

3 вариант

1. К магнитной стрелке (северный полюс затемнён, см. ри­сунок), которая может поворачиваться вокруг верти­кальной оси, перпендикулярной плоскости чертежа, поднесли постоянный магнит. При этом стрелка

Контрольная работа по физике Электромагнитные явления 3 вариант 1 задание

1) повернётся на 180°
2) повернётся на 90° по часовой стрелке
3) повернётся на 90° против часовой стрелки
4) останется в прежнем положении

2. Какое утверждение верно?

А. Вокруг электрических зарядов существует электри­ческое поле.
Б. Вокруг неподвижных зарядов существует магнитное поле.

1) А
2) Б
3) А и Б
4) Ни А, ни Б

3. На каком рисунке правильно изображена картина маг­нитных линий магнитного поля длинного проводника с постоянным током, направленным перпендикулярно плоскости чертежа от нас?

Контрольная работа по физике Электромагнитные явления 2 вариант 3 задание

4. При уменьшении силы тока в катушке магнитное поле

1) не изменяется
2) ослабевает
3) исчезает
4) усиливается

5. Какое утверждение верно?

А. Северный конец магнитной стрелки компаса пока­зывает на географический Северный полюс.
Б. Вблизи географического Северного полюса располагается северный магнитный полюс Земли.

1) А
2) Б
3) А и Б
4) Ни А, ни Б

6. Квадратная рамка расположена в магнитном поле в плоскости магнитных линий так, как показано на ри­сунке. Направление тока в рамке показано стрелками. Как направлена сила, действующая на сторону dc рам­ки со стороны магнитного поля?

Контрольная работа по физике Электромагнитные явления 3 вариант 6 задание
Контрольная работа по физике Электромагнитные явления 3 вариант 6 задание Ответы

7. Установите соответствие между научными открытиями и учёными, которым эти открытия принадлежат. К каждой позиции первого столбца подберите соответ­ствующую позицию второго.

А) Впервые обнаружил взаимодействие проводника с током и магнитной стрелки
Б) Построил первый электродвигатель
В) Первым объяснил природу намагниченности железа

1) Х. Эрстед
2) Д. Джоуль
3) В. Якоби
4) М. Фарадей
5) А. Ампер

8. Магнитная сила, действующая на горизонтально распо­ложенный проводник, уравновешивает силу тяжести. Определите величину магнитной силы, если объём про­водника 0,4 см 3 , а плотность материала проводника 8500 кг/м 3 .

4 вариант

1. К магнитной стрелке (северный полюс затемнён, см. ри­сунок), которая может поворачиваться вокруг верти­кальной оси, перпендикулярной плоскости чертежа, поднесли постоянный магнит. При этом стрелка

Контрольная работа по физике Электромагнитные явления 4 вариант 1 задание

1) повернётся на 180°
2) повернётся на 90° по часовой стрелке
3) повернётся на 90° против часовой стрелки
4) останется в прежнем положении

2. Какое утверждение верно?

А. Вокруг движущихся зарядов существует магнитное поле.
Б. Вокруг неподвижных зарядов существует электри­ческое поле.

1) А
2) Б
3) А и Б
4) Ни А, ни Б

3. Что произойдёт с направлением магнитных линий маг­нитного поля прямолинейного тока при изменении на­правления тока?

1) Направление линий останется прежним
2) Направление линий изменится на противо­положное
3) Нельзя дать однозначного ответа
4) Зависит от величины тока

4. При удалении железного сердечника из катушки с то­ком магнитное поле

1) не изменяется
2) ослабевает
3) исчезает
4) усиливается

5. Какое утверждение верно?

А. Северный конец магнитной стрелки компаса пока­зывает на географический Южный полюс.
Б. Вблизи географического Северного полюса располагается южный магнитный полюс Земли.

1) А
2) Б
3) А и Б
4) Ни А, ни Б

6. В однородном магнитном поле находится рамка, по ко­торой начинает течь ток. Сила, дейст­вующая на верхнюю сторону рамки, направлена

Контрольная работа по физике Электромагнитные явления 4 вариант 6 задание
Контрольная работа по физике Электромагнитные явления 4 вариант 6 задание Ответы

7. Установите соответствие между физическими явления­ми и техническими устройствами, в которых эти явле­ния используются. К каждой позиции первого столбца подберите соответ­ствующую позицию второго.

А) Взаимодействие магнитной стрелки и постоянных маг­нитов
Б) Действие магнит­ного поля на про­водник с током
В) Взаимодействие электромагнита с железными опил­ками

1) Радиоприёмник
2) Звонок
3) Электродвигатель
4) Магнитный сепаратор
5) Компас

8. Магнитная сила, действующая на горизонтально распо­ложенный проводник, уравновешивает силу тяжести. Определите плотность материала проводника, если его объём 0,2 см 3 , а магнитная сила равна 0,021 Н.

Читайте также:  Измерение переменного тока измерительной головкой

Ответы на контрольную работу по физике Электромагнитные явления
1 вариант
1-4
2-1
3-4
4-4
5-2
6-2
7-341
8. 8500 кг/м 3
2 вариант
1-1
2-1
3-2
4-4
5-3
6-4
7-215
8. 0,4 см 3
3 вариант
1-1
2-1
3-3
4-2
5-1
6-1
7-135
8. 0,034 Н
4 вариант
1-4
2-3
3-2
4-2
5-2
6-3
7-534
8. 10 500 кг/м 3

Источник

Опыт Эрстеда. Магнитное поле тока. Взаимодействие магнитов. Действие магнитного поля на проводник с током

1. Опыт Эрстеда заключается в следующем. На столе располагают магнитную стрелку, которая ориентируется с севера на юг в магнитном поле Земли, и параллельно ей сверху проводник, соединённый с источником тока (см. рис. 81). При замыкании цепи стрелка повернётся на 90° и встанет перпендикулярно проводнику.

При размыкании цепи стрелка вернётся в первоначальное положение. Если изменить направление тока на противоположное, то стрелка повернётся в обратную сторону. Опыт Эрстеда доказывает, что вокруг проводника, по которому течёт электрический ток, существует магнитное поле, которое действует на магнитную стрелку.

Опыт Эрстеда показал существование взаимосвязи между электрическими и магнитными явлениями.

Об этой взаимосвязи свидетельствует и опыт, известный как опыт Ампера. Если по двум длинным параллельно расположенным проводникам пропустить электрический ток в одном направлении, то они притянутся друг к другу; если направление тока будет противоположным, то проводники оттолкнутся друг от друга. Это происходит потому, что вокруг одного проводника возникает магнитное поле, которое действует на другой проводник с током. Если ток будет протекать только по одному проводнику, то проводники не будут взаимодействовать.

Таким образом, вокруг движущихся электрических зарядов или вокруг проводника с током существует магнитное поле. Магнитное поле действует на движущиеся заряды. На неподвижные заряды магнитное поле не действует.

Силовой характеристикой магнитного поля является величина, называемая магнитной индукцией. Обозначается магнитная индукция буквой ​ \( B \) ​. Магнитная индукция является векторной величиной, т.е. имеет определённое направление. Это наглядно проявляется в опыте со взаимодействием параллельных проводников с током. Направление вектора магнитной индукции совпадает с направлением северного полюса магнитной стрелки в данной точке поля.

2. Обнаружить магнитное поле вокруг проводника с током можно с помощью либо магнитных стрелок, либо железных опилок, которые в магнитном поле намагничиваются и становятся магнитными стрелками. На рисунке 87 изображён проводник, пропущенный через лист картона, на который насыпаны железные опилки. При прохождении по проводнику электрического тока опилки располагаются вокруг него по концентрическим окружностям.

Линии, вдоль которых располагаются в магнитном поле магнитные стрелки или железные опилки, называют линиями магнитной индукции. Направление, которое указывает северный полюс магнитной стрелки, принято за направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линии магнитной индукции в каждой точке поля.

Как следует из результатов опыта Эрстеда и опыта по взаимодействию параллельных проводников с током, направление линий вектора магнитной индукции (и линий магнитной индукции) зависит от направления тока в проводнике. Направление линий магнитной индукции можно определить с помощью правила буравчика. Для линейного проводника оно следующее: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.

3. Если пропустить электрический ток по катушке, то опилки расположатся, как показано на рисунке 88.

Картина линий магнитной индукции свидетельствует о том, что катушка с током становится магнитом. Если катушку с током подвесить, то она повернётся южным полюсом на юг, а северным — на север (рис. 89).

Следовательно, катушка с током имеет два полюса: северный и южный. Определить полюса, которые появляются на её концах можно, если известно направление электрического тока в катушке. Для этого пользуются правилом буравчика: если направление вращения ручки буравчика совпадает с направлением тока в катушке, то направление поступательного движения буравчика совпадает с направлением линий магнитной индукции внутри катушки (рис. 90).

4. Тела, длительное время сохраняющие магнитные свойства, или намагниченность, называют постоянными магнитами. Поднося магнит к железным опилкам, можно заметить, что они притягиваются к концам магнита и практически не притягиваются к его середине. Те места магнита, которые производят наиболее сильное магнитное действие, называются полюсами магнита. Магнит имеет два полюса: северный — N и южный — S. Принято северный полюс магнита окрашивать синим цветом, а южный — красным. Если полосовой магнит разделить на две части, то каждая из них окажется магнитом с двумя полюсами.

Положив на постоянный магнит лист бумаги или картона и насыпав на него железные опилки, можно получить картину его магнитного поля (рис. 91). Линии магнитной индукции постоянных магнитов замкнуты, все они выходят из северного полюса и входят в южный, замыкаясь внутри магнита.

Магнитные стрелки и магниты взаимодействуют между собой. Разноимённые магнитные полюсы притягиваются друг к другу, а одноимённые — отталкиваются. Взаимодействие магнитов объясняется тем, что магнитное поле одного магнита действует на другой магнит и, наоборот, магнитное поле 2-го магнита действует на 1-й.

Причиной наличия у веществ магнитных свойств является движение электронов, существующих в каждом атоме. При своём движении вокруг атома электроны создают магнитные поля. Если эти поля имеют одинаковую ориентацию, то вещество, например железо или сталь, намагничены достаточно сильно.

5. Магнитное поле действует на проводник с током. Доказать это можно с помощью эксперимента (рис. 92).

Если в поле подковообразного магнита поместить проводник длиной ​ \( l \) ​, подвешенный на тонких проводах, соединить его с источником тока, то при разомкнутой цепи проводник останется неподвижным. Если замкнуть цепь, то по проводнику пойдёт электрический ток, и проводник отклонится в магнитном поле от своего первоначального положения. При изменении направления тока проводник отклонится в противоположную сторону. Таким образом, на проводник с током, помещённый в магнитное поле, действует сила, которую называют силой Ампера.

Экспериментальное исследование показывает, что сила Ампера прямо пропорциональна длине проводника ​ \( l \) ​ и силе тока ​ \( I \) ​ в проводнике: ​ \( F\sim Il \) ​. Коэффициентом пропорциональности в этом равенстве является модуль вектора магнитной индукции ​ \( B \) ​. Соответственно, ​ \( F=BIl \) ​.

Сила, действующая на проводник с током, помещённый в магнитное поле, равна произведению модуля вектора магнитной индукции, силы тока и длины той части проводника, которая находится в магнитном поле.

В таком виде зависимость силы, действующей на проводник с током в магнитном поле, записыватся в том случае, если линии магнитной индукции перпендикулярны проводнику с током.

Формула силы Ампера, позволяет раскрыть смысл понятия вектора магнитной индукции. Из выражения для силы Ампера следует: ​ \( B=\frac \) ​, т.е. магнитной индукцией называется физическая величина, равная отношению силы, действующей на проводник с током в магнитном поле, к силе тока и длине проводника, находящейся в магнитном поле.

Из приведённой формулы понятно, что магнитная индукция является силовой характеристикой магнитного поля.

Единица магнитной индукции ​ \( [В] = [F]/[I][l] \) ​. ​ \( [B] \) ​ = 1 Н/(1 А · 1 м) — 1 Н/(А · м) = 1 Тл. За единицу магнитной индукции принимают магнитную индукцию такого поля, в котором на проводник длиной 1 м действует сила 1 Н при силе тока в проводнике 1 А.

Направление силы Ампера определяют, пользуясь правилом левой руки: если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре пальца направлены по направлению тока в проводнике, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник (рис. 93).

Читайте также:  Как рассчитать силу тока постоянного напряжения

6. Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся (рис. 94), потому, что на стороны рамки действует сила Ампера. При этом сила, действующая на сторону рамки ​ \( ab \) ​, противоположна силе, действующей на сторону ​ \( cd \) ​.

Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. Для этого к концам рамки припаяны полукольца, по которым скользят контакты, соединённые с источником тока. При повороте рамки на 180° меняются контактные пластины, которых касаются полукольца и, соответственно, направление тока в рамке.

В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.

1) 1 — S, 2 — N
2) 1 — А, 2 — N
3) 1 — S, 2 — S
4) 1 — N, 2 — S

2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?

1) 1 — северному полюсу; 2 — южному
2) 1 — южному; 2 — северному полюсу
3) и 1, и 2 — северному полюсу
4) и 1, и 2 — южному полюсу

3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка

1) повернётся на 90°
2) повернётся на 180°
3) повернётся на 90° или на 180° в зависимости от значения силы тока
4) не изменит свое положение

4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?

5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?

1) вправо
2) влево
3) на нас из-за плоскости чертежа
4) от нас за плоскость чертежа

6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки

1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный
2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный
3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный
4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный

7. Два параллельно расположенных проводника подключили параллельно к источнику тока.

Направление электрического тока и взаимодействие проводников верно изображены на рисунке

8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная

1) вправо →
2) влево ←
3) вверх ↑
4) вниз ↓

9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена

1) вверх ↑
2) вниз ↓
3) направо →
4) налево ←

10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?

1) вверх ↑
2) вправо →
3) вниз ↓
4) влево ←

11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.

1) Вокруг неподвижных зарядов существует магнитное поле.
2) Вокруг неподвижных зарядов существует электростатическое поле.
3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный.
4) Магнитное поле существует вокруг движущихся зарядов.
5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.

12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).

Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится.
2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо.
3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А.
4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз.
5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.

Часть 2

13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.

Источник

Магнитное взаимодействие токов

Магнитные явления были известны еще в древнем мире. Компас был изобретен более 4500 лет тому назад. В Европе он появился приблизительно в XII веке новой эры. Однако только в XIX веке была обнаружена связь между электричеством и магнетизмом и возникло представление о магнитном поле.

Первыми экспериментами (проведены в 1820 г.), показавшими, что между электрическими и магнитными явлениями имеется глубокая связь, были опыты датского физика Ханса Эрстеда. Эти опыты показали, что на магнитную стрелку, расположенную вблизи проводника с током, действуют силы, которые стремятся ее повернуть. В том же году французский физик Андре Ампер наблюдал силовое взаимодействие двух проводников с токами и установил закон взаимодействия токов.

По современным представлениям, проводники с током оказывают силовое действие друг на друга не непосредственно, а через окружающие их магнитные поля.

Источниками магнитного поля являются движущиеся электрические заряды. Магнитное поле возникает в пространстве, окружающем проводники с током, подобно тому, как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле. Магнитное поле постоянных магнитов также создается электрическими микротоками, циркулирующими внутри молекул вещества (гипотеза Ампера).

Ученые XIX века пытались создать теорию магнитного поля по аналогии с электростатикой, вводя в рассмотрение так называемые магнитные заряды двух знаков (например, северный N и южный S полюса магнитной стрелки). Однако опыт показывает, что изолированных магнитных зарядов не существует.

Магнитное поле токов принципиально отличается от электрического поля. Магнитное поле, в отличие от электрического, оказывает силовое действие только на движущиеся заряды (токи).

Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности электрического поля. Такой характеристикой является вектор магнитной индукции который определяет силы, действующие на токи или движущиеся заряды в магнитном поле.

За положительное направление вектора принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно ориентирующийся в магнитном поле. Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства определить направление вектора . Такое исследование позволяет наглядно представить пространственную структуру магнитного поля. Аналогично силовым линиям в электростатике можно построить линии магнитной индукции, в каждой точке которых вектор направлен по касательной. Пример линий магнитной индукции полей постоянного магнита и катушки с током приведен на рис. 1.16.1.

Читайте также:  Реле поворотов 6 вольт переменный ток

Линии магнитной индукции полей постоянного магнита и катушки с током. Индикаторные магнитные стрелки ориентируются по направлению касательных к линиям индукции

Обратите внимание на аналогию магнитных полей постоянного магнита и катушки с током. Линии магнитной индукции всегда замкнуты, они нигде не обрываются. Это означает, что магнитное поле не имеет источников – магнитных зарядов. Силовые поля, обладающие этим свойством, называются вихревыми. Картину магнитной индукции можно наблюдать с помощью мелких железных опилок, которые в магнитном поле намагничиваются и, подобно маленьким магнитным стрелкам, ориентируются вдоль линий индукции.

Для того, чтобы количественно описать магнитное поле, нужно указать способ определения не только направления вектора но и его модуля. Проще всего это сделать, внося в исследуемое магнитное поле проводник с током и измеряя силу, действующую на отдельный прямолинейный участок этого проводника. Этот участок проводника должен иметь длину Δl, достаточно малую по сравнению с размерами областей неоднородности магнитного поля. Как показали опыты Ампера, сила, действующая на участок проводника, пропорциональна силе тока I, длине Δl этого участка и синусу угла α между направлениями тока и вектора магнитной индукции:

Эта сила называется силой Ампера. Она достигает максимального по модулю значения Fmax, когда проводник с током ориентирован перпендикулярно линиям магнитной индукции. Модуль вектора определяется следующим образом:

Модуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действующей на прямой проводник с током, к силе тока I в проводнике и его длине Δl:

В общем случае сила Ампера выражается соотношением:

Это соотношение принято называть законом Ампера.

В системе единиц СИ за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется Тесла (Тл).

Тесла – очень крупная единица. Магнитное поле Земли приблизительно равно 0,5·10 –4 Тл. Большой лабораторный электромагнит может создать поле не более 5 Тл.

Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику. Для определения направления силы Ампера обычно используют правило левой руки: если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы, действующей на проводник (рис. 1.16.2).

Правило левой руки и правило буравчика

Если угол α между направлениями вектора и тока в проводнике отличен от 90°, то для определения направления силы Ампера более удобно пользоваться правилом буравчика: воображаемый буравчик располагается перпендикулярно плоскости, содержащей вектор и проводник с током, затем его рукоятка поворачивается от направления тока к направлению вектора Поступательное перемещение буравчика будет показывать направление силы Ампера (рис. 1.16.2). Правило буравчика часто называют правилом правого винта.

Одним из важных примеров магнитного взаимодействия является взаимодействие параллельных токов. Закономерности этого явления были экспериментально установлены Ампером. Если по двум параллельным проводникам электрические токи текут в одну и ту же сторону, то наблюдается взаимное притяжение проводников. В случае, когда токи текут в противоположных направлениях, проводники отталкиваются.

Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот.

Опыты показали, что модуль силы, действующей на отрезок длиной Δl каждого из проводников, прямо пропорционален силам тока I1 и I2 в проводниках, длине отрезка Δl и обратно пропорционален расстоянию R между ними:

В Международной системе единиц СИ коэффициент пропорциональности k принято записывать в виде:

где μ – постоянная величина, которую называют магнитной постоянной. Введение магнитной постоянной в СИ упрощает запись ряда формул. Ее численное значение равно

μ = 4π·10 –7 H/A 2 ≈ 1,26·10 –6 H/A 2 .

Формула, выражающая закон магнитного взаимодействия параллельных токов, принимает вид:

Отсюда нетрудно получить выражение для индукции магнитного поля каждого из прямолинейных проводников. Магнитное поле прямолинейного проводника с током должно обладать осевой симметрией и, следовательно, замкнутые линии магнитной индукции могут быть только концентрическими окружностями, располагающимися в плоскостях, перпендикулярных проводнику. Это означает, что векторы и магнитной индукции параллельных токов I1 и I2 лежат в плоскости, перпендикулярной обоим токам. Поэтому при вычислении сил Ампера, действующих на проводники с током, в законе Ампера нужно положить sin α = 1. Из закона магнитного взаимодействия параллельных токов следует, что модуль индукции B магнитного поля прямолинейного проводника с током I на расстоянии R от него выражается соотношением

Для того, чтобы при магнитном взаимодействии параллельные токи притягивались, а антипараллельные отталкивались, линии магнитной индукции поля прямолинейного проводника должны быть направлены по часовой стрелке, если смотреть вдоль проводника по направлению тока. Для определения направления вектора магнитного поля прямолинейного проводника также можно пользоваться правилом буравчика: направление вращения рукоятки буравчика совпадает с направлением вектора если при вращении буравчик перемещается в направлении тока (рис. 1.16.3).

Магнитное поле прямолинейного проводника с током

Магнитное взаимодействие параллельных и антипараллельных токов

Рис. 1.16.4 поясняет закон взаимодействия параллельных токов.

Магнитное взаимодействие параллельных проводников с током используется в Международной системе единиц (СИ) для определения единицы силы тока – ампера:

Ампер – сила неизменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу магнитного взаимодействия, равную 2·10 –7 Н на каждый метр длины.

Источник

§ 57. Магнитное поле

В § 35 были описаны различные действия электрического тока, в том числе и магнитное, которое наблюдается всегда, когда существует электрический ток. Проявляется магнитное действие, например, в том, что между проводниками с током возникают силы взаимодействия, которые называются магнитными силами. Чтобы изучить магнитное действие тока, воспользуемся магнитной стрелкой. (Она, как известно, является главной частью компаса.) Напомним, что у магнитной стрелки имеется два полюса — северный и южный. Линию, соединяющую полюсы магнитной стрелки, называют её осью.

Магнитную стрелку ставят на остриё, чтобы она могла свободно поворачиваться.

Рассмотрим теперь опыт, показывающий взаимодействие проводника с током и магнитной стрелки. Такое взаимодействие впервые обнаружил в 1820 г. датский учёный Ханс Кристиан Эрстед. Его опыт имел большое значение для развития учения об электромагнитных явлениях.

Эрстед Ханс Кристиан

Эрстед Ханс Кристиан (1777—1851)
Датский физик. Обнаружил действие электрического тока на магнитную стрелку, что при вело к возникновению новой области физики — электромагнетизма.

Опыт Эрстеда

Опыт Эрстеда

Расположим проводник, включённый в цепь источника тока, над магнитной стрелкой параллельно её оси (рис. 93). При замыкании цепи магнитная стрелка отклоняется от своего первоначального положения (на рисунке показано пунктиром). При размыкании цепи магнитная стрелка возвращается в своё начальное положение. Это означает, что проводник с током и магнитная стрелка взаимодействуют друг с другом.

Взаимодействие проводника с током и магнитной стрелки

Рис. 93. Взаимодействие проводника с током и магнитной стрелки

Выполненный опыт наводит на мысль о существовании вокруг проводника с электрическим током магнитного поля. Оно и действует на магнитную стрелку, отклоняя её.

Магнитное поле существует вокруг любого проводника с током, т. е. вокруг движущихся электрических зарядов. Электрический ток и магнитное поле неотделимы друг от друга.

Таким образом, вокруг неподвижных электрических зарядов существует только электрическое поле, вокруг движущихся зарядов, т. е. электрического тока, существует и электрическое, и магнитное поле. Магнитное поле появляется вокруг проводника, когда в последнем возникает ток, поэтому ток следует рассматривать как источник магнитного поля. В этом смысле надо понимать выражения «магнитное поле тока» или «магнитное поле, созданное током».

Источник

Adblock
detector