Меню

Влияют ли трансформаторы тока



Точный учет: трансформаторы тока

Реализуемая в Российской Федерации политика энергосбережения, а также растущая стоимость электрической энергии требуют все большей и большей эффективности ее учета. С этой целью создаются автоматизированные системы учета электроэнергии, в штат предприятий принимаются специалисты для их обслуживания. Для создания и эксплуатации таких систем требуются не только дополнительные капиталовложения, но и решения для ряда технических задач, одна из которых будет рассмотрена в этой статье.

Низшим уровнем в иерархии автоматизированных систем учета является уровень информационно-измерительного комплекса (ИИК). Он включает в себя измерительные трансформаторы, счетчики электрической энергии, вторичные цепи измерительных трансформаторов. Очень важным на этапе построения ИИК является минимизация его погрешности, которая в большей мере зависит от правильного выбора измерительных трансформаторов тока (ТТ) и напряжения (ТН). Проблемы выбора ТН — отдельная тема, которая не затрагивается этим материалом. Стоит лишь отметить, что в отличие от ТТ их погрешности не зависят от изменяющейся нагрузки в контролируемой цепи. С ТТ все значительно сложнее.

Часто проектировщики и эксплуатирующие организации недостаточно серьезно относятся к выбору ТТ для учета. Выбирается ТТ с наилучшим классом точности, не заостряя внимания на других его параметрах. Так поступают будучи уверенными, что использование ТТ с наилучшим классом точности — уже экономия средств. Причиной этого является или неумение правильно выбрать ТТ, или желание сэкономить: устанавливаются трансформаторы тока имеющиеся в наличии, или выбираются ТТ, имеющие меньшую стоимость и более простые в установке, несмотря на ограниченность их метрологических характеристик. Результатом являются значительные финансовые потери, появляющиеся вследствие отсутствия точного учета.

Требования к применяемым в нашей стране трансформаторам тока регулирует ГОСТ 7746-2001 (1). В числе прочих характеристик этим стандартом задан ряд первичных токов и значения вторичных токов (1 и 5 А), с которыми ТТ могут быть изготовлены. Также регламентируются диапазоны измерений первичного тока, при которых должен быть сохранен класс точности: от 5-120% для классов точности 0,5 и 0,2, от 1-120% для классов 0,5S и 0,2S. Таким образом, классы точности с литерой «S» отличаются от прочих увеличенным диапазоном измерений в область минимальных значений (с 5% до 1%). Кроме того, существует требование ПУЭ (п.1.5.17) (2), согласно которому требуется выбирать коэффициент трансформации так, чтобы ток в максимальном режиме загрузки присоединения составлял не менее 40% тока счетчика, а в минимальном — не менее 5%. А ток счетчика, как правило, равняется вторичному току ТТ, поэтому приведенное выше требование можно смело отнести к обмотке учета измерительного трансформатора. Стоит отметить, что требование к минимальному режиму идет вразрез с ГОСТ 7746, т.к. делает нецелесообразным применение ТТ классов точности с литерой «S». Что касается требования 40% в максимальном режиме то оно, вероятно, основано на стремлении минимизировать погрешности ТТ классов без «S» (см. рис. 1), в то время как для классов 0,2S и 0,5S целесообразнее было бы применять критерий «20%», в связи с ростом погрешностей при уменьшении первичного тока ниже этой величины (см. рис.2).


Рис. 1. Токовая и угловая погрешности ТТ классов точности 0,2; 0,5; 1
Рис. 2. Токовая и угловая погрешности ТТ классов точности 0,2S; 0,5S

Итак, при выборе коэффициента трансформации ТТ необходимо «убить двух зайцев»: не только «вписаться» в указанный ГОСТ 7746-2001 диапазон, но и соблюсти требование ПУЭ.

Кроме того, фактическая нагрузка присоединения может быть значительно (в десятки и сотни раз) ниже его номинального тока, как часто случается в сетях распределительных компаний — сети были построены с учетом перспективы развития, которое так и не произошло. В таких случаях нужно обеспечить легитимный учет в области фактических нагрузок и предусмотреть возможность работы присоединения в режиме максимальной пропускной способности, чтобы в случае увеличения объемов транзита электрической энергии не пришлось менять ТТ. Использовать ТТ с завышенным коэффициентом экономически неэффективно, докажем это на конкретном примере. В расчет возьмем только токовую погрешность трансформатора тока, не принимая во внимание его угловую погрешность, а также погрешности других элементов измерительного комплекса — трансформаторов напряжения и счетчика. Имеем трансформатор тока класса точности 0,2S и коэффициентом трансформации обмотки учета 600/5. Используемая мощность силового трансформатора при напряжении 110 кВ равняется 10000 кВА, cos φ равен 0,8. Фактический ток в первичной цепи равен 52,5 А, т.е. 8,75% от номинального первичного тока. При заданной нагрузке токовая погрешность составит примерно 0,31% (см. рис.2), количество неучтенной электрической энергии в год — 217 248 кВ*ч. Принимая стоимость одного киловатт-часа равной 1 руб., получаем неучтенной электроэнергии на сумму 217 248 рублей. При погрешности 0,2 эта сумма составила бы 140 160 рублей, т.е. в полтора раза или на 77 088 рублей меньше. В масштабах распределительных сетевых компаний такое количество неучтенной электроэнергии с каждого силового трансформатора может вылиться в кругленькую сумму. А если загрузка по первичной стороне трансформаторов тока будет еще меньше — цифры будут значительно внушительней, см. табл. 1. Приведенная таблица применима для любого уровня напряжений — необходимо умножить используемую мощность на удельную величину, результатом будет являться годовое количество неучтенной электроэнергии в год, при заданной погрешности ТТ.

Таблица 1. Удельное количество неучтенной электрической энергии в год, в зависимости от погрешностей трансформатора тока классом точности 0,2S.

Первичный ток,%
номинального значения
Погрешности ТТ
класса 0,2S,%
Удельное количество
неучтенной э/э,
кВт*ч в год
1 ±0,75 52,56
5 ±0,35 24,528
20 ±0,2 14,016
100
120

Задача обеспечения легитимного учета при малых и номинальных нагрузках присоединений решаема. Отечественной и зарубежной промышленностью производятся трансформаторы тока с расширенным диапазоном измерений — от 0,2 до 200% от номинального тока. Погрешности этого диапазона регламентируются международным стандартом IEС 60044-1 (3)). В частности, для первичных токов свыше 120% номинального тока, погрешности приравнены к значениям, достигаемым при 120% номинала. Зачастую такого диапазона измерений производителям удается достичь применением материалов с высокой магнитной проницаемостью — для изготовления сердечников используются нанокристаллические (аморфные) сплавы, но иногда и применения таких сплавов не требуется. Но существует проблема документального обеспечения улучшенных характеристик: производители при утверждении типа ТТ как средства измерения декларируют испытания на соответствие ГОСТ 7746, т.е. от 1 до 120%. Таким образом, расширенный диапазон номинального тока не подтверждается ничем, кроме заверений заводов-изготовителей. Поэтому, при применении таких ТТ следует убедиться, что расширенный диапазон измерений указан в описании типа и эксплуатационной документации. Следует еще раз отметить, что ГОСТ 7746-2001 не регламентирует погрешностей ТТ при токе свыше 120% номинального. О необходимости внесения в него изменений в части диапазонов первичных токов, расширения значений других параметров передовыми специалистами говорится уже несколько лет (4) и предлагается ввести новые классы точности, однако ГОСТ 7746-2001 до настоящего времени применяется в неизменном виде.

Отдельно необходимо рассмотреть вопрос замены существующих ТТ. К выше обозначенной проблеме выбора коэффициента трансформации обмотки АИИС КУЭ прибавляется проблема сохранения коэффициентов трансформации других обмоток — к ним подключены существующие измерительные приборы, устройства противоаварийной автоматики, телемеханики и релейной защиты. Это, как правило, значительные по величине коэффициенты, определяемые максимальной пропускной способностью присоединений. Таким образом, требуются трансформаторы тока с различными коэффициентами трансформации обмоток АИИС КУЭ, измерений и РЗА. Необходимая кратность Ктт этих обмоток может составлять два, три и более. Такие трансформаторы производятся для уровней напряжений от 6 кВ и выше, но их ассортимент достаточно ограничен — чаще всего это ТТ с кратностью Ктт обмоток измерений и РЗА к Ктт обмотки учета равной двум. Это направление производителями освоено недостаточно, возможно ввиду традиционного подхода проектировщиков к выбору ТТ, хотя выгода при использовании таких ТТ налицо. Производству ТТ с разными коэффициентами обмоток мешают проблемы, связанные с конструкцией ТТ: в связи с тем, что число первичных витков для всех обмоток одинаково, необходимый коэффициент каждой из обмоток достигается варьированием количества ее вторичных витков, как следствие размеры вторичных обмоток увеличиваются и встает вопрос размещения их в габаритах корпуса трансформатора а также достижения требуемой термической и динамической стойкости. К примеру, для трансформаторов тока напряжением 35 кВ и выше изготовление ТТ с различными коэффициентами трансформации возможно при количестве ампервитков измерительной обмотки, большем или равном 1200 (в редких случаях от 600 ампервитков). Даже при наличии таких конструктивных сложностей, производителям удается изготавливать трансформаторы с кратными коэффициентами в широком диапазоне — от 50 до 3000 А. Сегодня предлагается в связи с появлением таких ТТ заменить термин «номинальный ток ТТ» на «номинальный первичный ток вторичной обмотки» (4).

Читайте также:  Плотность тока для проводника в трансформаторе

Кроме ТТ с расширенным диапазоном, и кратными коэффициентами трансформации, существуют ТТ с возможностью увеличения коэффициентов трансформации всех обмоток единовременно в два раза, путем изменения количества витков первичной обмотки. У ТТ с такой возможностью существует два первичных вывода, один из которых замыкает первичную обмотку на два витка, другой — на один. Когда замкнуты два витка, коэффициент трансформации понижен, при замыкании на один виток коэффициент трансформации увеличивается в два раза, в соответствии с известной формулой

Производятся и ТТ, у которых коэффициенты трансформации обмоток изменяются по вторичной стороне, используя различное количество ампервитков вторичной обмотки — так называемые ТТ с отпайками.

В настоящее время такие ТТ изготавливаются на напряжения от 10 кВ и выше, как с литой, так с масляной и элегазовой изоляцией.


Рис. 3. Отдельно стоящий
трансформатор тока

Вторичные обмотки существующих ТТ очень часто перегружены. Значение мощности вторичной нагрузки может составлять 150, а то и 200-300% номинальной мощности, а разгрузка ТТ прокладкой новых вторичных цепей кабелем большего сечения не всегда решает задачу. Эта проблема актуальнее всего для обмоток измерений, так как требуется их значительная точность. Поэтому наряду с вышеописанными параметрами ТТ должны иметь достаточно большую номинальную мощность вторичных обмоток, а также возможность изготовления с несколькими измерительными обмотками — тогда мощность нагрузки, которую можно подключить к ТТ, увеличивается кратно количеству измерительных обмоток. Общее число измерительных и релейных обмоток тоже ограничивается конструктивными особенностями отдельных видов ТТ и составляет от 1 до 6, в зависимости от уровня напряжения. С ростом уровня напряжения, увеличиваются габаритные размеры трансформатора — тем больше обмоток можно разместить внутри ТТ.

Также при замене ТТ необходимо учитывать, что коэффициент безопасности приборов должен быть как можно ниже, во избежание выхода из строя оборудования вторичных цепей при возникновении токов короткого замыкания. Это означает, что ток во вторичной цепи должен перестать расти раньше (сердечник должен насытиться), чем будут повреждены установленные во вторичных цепях приборы. Следует отметить, что несмотря на то, что зачастую производители ТТ декларируют возможность работы в классе точности даже при нулевой вторичной нагрузке, догрузка трансформаторов тока требуется, именно исходя из достижения требуемого коэффициента безопасности. Опытным путем доказано, что при уменьшении вторичной нагрузки ТТ его коэффициент безопасности увеличивается в несколько раз (5). Поэтому невозможно понять, на сколько же необходимо догрузить обмотку измерений ТТ для достижения требуемого коэффициента безопасности приборов. В связи с этим необходимо, чтобы изготовители ТТ на каждый производимый тип ТТ приводили кривую зависимости коэффициента безопасности от вторичной нагрузки, это требование тоже должно быть внесено в ГОСТ 7746-2001. Сейчас можно рекомендовать догружать ТТ как минимум до нижнего предела загрузки, регулируемого ГОСТ 7746-2001.


Рис.4. Трансформатор тока,
устанавливаемый на ввод силового
оборудования (встраиваемый ТТ).

Номинальная предельная кратность обмоток, в свою очередь, должна быть выше кратности тока короткого замыкания и не ниже кратности существующего ТТ, для обеспечения нормальной работы существующих релейных защит. Не стоит забывать и о проверке на термическую и динамическую стойкость трансформаторов тока напряжением свыше 1 кВ, выполняемую по ГОСТ Р 52736-2007 (7) — трансформатор не должен выйти из строя при коротких замыканиях в электроустановке.

Какие же ТТ наиболее функциональны? Все зависит от задачи, которая решается при выборе измерительных трансформаторов. Если необходима организация как цепей учета, так и измерения, релейных защит, автоматики и пр. — целесообразно применять отдельно стоящие ТТ (рис.3), так как их функционал гораздо более обширен, чем, например, у ТТ, устанавливаемых на ввод силового оборудования (встраиваемых) (рис.4). В частности, для уровня напряжения 110 кВ последние ограничены классами точности — для отечественных ТТ класс 0,2S достигается только при использовании трансформатора с номинальным первичным током от 600 А, при вторичном токе 5 А. Кроме того, если сравнить отдельно стоящий ТТ с встраиваемым по мощностям вторичных обмоток — встраиваемый также уступает. Поэтому, выгодно применять отдельно стоящие ТТ решении комплексных задач по организации одновременно вторичных цепей учета, измерений и РЗА, а также при новом строительстве объектов, при установке ТТ только для организации учета и при условии наличия больших токов в первичной цепи — целесообразно применение встраиваемых ТТ.

Конечно, большую роль играет стоимость трансформаторов и их монтажа. Здесь однозначно лидирующими являются встраиваемые ТТ наружной установки. Они дешевле в изготовлении, при монтаже не требуют установки отдельных опорных конструкций, а также обслуживания в период эксплуатации, так как имеют литую изоляцию. Но стоит еще раз обратить внимание на ограниченность их применения и недостаточный функционал, по сравнению с отдельно стоящими ТТ.

Выводы

  1. При выборе ТТ необходимо учитывать соотношение номинального первичного тока обмотки учета и фактической нагрузки. Использование ТТ с большими номинальными первичными токами при значении фактических нагрузок присоединений менее 20% от номинального первичного тока ТТ экономически нецелесообразно и приводит к тому, что часть транзита электрической энергии не учитывается, это может повлечь финансовые потери.
  2. Производимые промышленностью измерительные трансформаторы могут обеспечить точный учет и в области минимальных нагрузок присоединений, и при максимальной пропускной способности линии, используя расширенный диапазон измерений от 1 до 200%, при условии документального подтверждения работы ТТ в классе точности в этом диапазоне.
  3. При замене существующих ТТ доступны ТТ с различными Ктт обмоток или ТТ с отпайками — таким образом будет обеспечиваться достаточная точность учета и сохранение существующих коэффициентов трансформации обмоток измерений и РЗА. Также можно использовать ТТ с изменяемым количеством первичных витков. При этом необходимо помнить, что при переключении изменяется Ктт всех обмоток одновременно.
  4. Номинальная мощность обмоток изготавливаемых в настоящее время трансформаторов тока достигает 50-60 ВА — этого, как правило, достаточно для работы в допустимых классах точности. Также возможно производство ТТ с увеличенным количеством обмоток измерений и/или РЗА.
  5. Необходимо выбирать ТТ с как можно более низким коэффициентом безопасности приборов. Не нужно забывать о догрузке вторичных обмоток — с уменьшением их загруженности увеличивается коэффициент безопасности. Кроме того, необходимо, чтобы производители ТТ декларировали для каждого типа зависимость коэффициента безопасности приборов от вторичной нагрузки.
  6. При замене ТТ необходимо следить за тем, чтобы номинальная предельная кратность обмоток РЗА была не менее кратности существующих ТТ и выше кратности токов КЗ. Также необходимо осуществлять проверку на термическую и динамическую стойкость.
  7. Отдельно стоящие ТТ значительно функциональнее встраиваемых, поэтому их использование целесообразно при реконструкции распределительных устройств и новом строительстве. При установке ТТ только для учета и соблюдении условия наличия значительных токов в первичной цепи — возможно применение встраиваемых ТТ.
Читайте также:  Почему работает генератор переменного тока

Используемая литература

  1. ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».
  2. Правила устройства электроустановок, 7-е изд.
  3. IEС 60044-1 «INTERNATIONAL STANDARD. Instrument transformers — Part 1: Current transformers»
  4. М. Зихерман «Стандарты по измерительным трансформаторам. Новые требования».
  5. Легостов В.В., Легостов В.В. «Измерительные трансформаторы тока», ИЗМЕРЕНИЕ.RU № 12 2’06
  6. Афанасьев В.В. «Высоковольтные ТТ».
  7. ГОСТ Р 52736-2007 «Методы расчета термического и динамического действия тока короткого замыкания».

Серяков Андрей Александрович,
главный инженер проекта
Управления технического сопровождения
ООО «Инженерный центр «ЭНЕРГОАУДИТКОНТРОЛЬ»

Источник

Последствия при перегрузке трансформаторов тока (реальный пример)

Ноябрь 1st, 2015 Рубрика: Трансформаторы тока, Электрооборудование

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

В сегодняшней статье я хотел бы поделиться с Вами информацией по перегрузке трансформаторов тока и последствиями, возникающими при этом явлении.

В качестве примера я сошлюсь на реальный случай, который произошел буквально на днях на одной из распределительных подстанций.

В общем, дело было так. Низковольтная распределительная подстанция, щит 220 (В).

Прошу обратить внимание на то, что трехфазные сети с изолированной нейтралью и линейным напряжением 220 (В) и 500 (В) все еще используются у нас на производстве, поэтому особо не удивляйтесь.

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_1

На одном из фидеров ведется коммерческий учет электроэнергии с помощью счетчика ПСЧ-4ТМ.05МК.16, который подключен через два трансформатора тока ТОП-0,66 с коэффициентом трансформации 50/5. Сейчас про схему подключения я говорить не буду — на эту тему читайте отдельную статью: схемы подключения счетчиков электрической энергии через трансформаторы тока.

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_2

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_5

Для контроля тока нагрузки в фазе А подключен щитовой амперметр типа Э30, откалиброванный на коэффициент трансформации 50/5.

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_3

Вот принципиальная однолинейная схема этого присоединения.

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_6

Вот графики нагрузок за последние 2 месяца: сентябрь и октябрь. Эти данные я выгрузил из 30-минутных профилей мощности данного электросчетчика.

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_7

Средняя нагрузка за сентябрь составила 8,04 (А), максимальная нагрузка — 43,2 (А).

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_8

Средняя нагрузка за октябрь составила 11,7 (А), максимальная нагрузка — 103,05 (А).

Ничего не предвещало беды, пока потребитель однажды резко не увеличил потребляемую мощность. Как видите, с середины октября нагрузка стала частенько превышать 50 (А). Дело в том, что в это время потребитель приобрел и установил какой-то мощный станок. Соответственно, нагрузка на фидере резко возросла и порой превышала более 100% от номинального первичного тока наших ТТ.

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_14

Но всем известно, что у трансформаторов тока имеется некоторая перегрузочная способность и он способен кратковременно выдерживать некоторое увеличение нагрузки.

Существует единственный и действующий ГОСТ 7746-2001, по которым изготавливают трансформаторы тока и в котором упоминается про их допустимую перегрузку. В п.6.6.2 этого ГОСТа говорится следующее:

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_9

А вот эта самая таблица 10 (для наглядности я ее разбил на несколько частей).

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_10

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_12

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_15

Как видите, наибольший рабочий первичный ток не у всех ТТ превышает номинальный.

Чуть ниже по тексту в этом ГОСТе имеется примечание о том, что допускается кратковременно увеличивать первичный ток трансформаторов тока на 20% по отношению к его наибольшему рабочему первичному току, но по согласованию с производителем и не более 2 часов в неделю.

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_16

В нашем же случае потребитель ничего не согласовывал, а просто увеличил первичный ток ТТ даже не на 20%, а более, чем на 100%, что и привело к следующим последствиям.

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_17

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_18

Повышенный ток вызвал значительный нагрев обмоток ТТ. По фотографиям оплавленных корпусов уже снятых трансформаторов тока видно, что в основном грелась вторичная обмотка. Это объясняется тем, что при превышении тока нагрузки магнитопровод мог уйти в насыщение, а следовательно, грелась не только вторичная обмотка, но и само «железо».

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_19

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_20

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_21

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_22

Если бы оперативный персонал при периодическом осмотре вовремя не заметил зашкалившую стрелку амперметра и не почувствовал запах гари и оплавленной изоляции, то последствия могли быть еще более серьезней, например, вплоть до короткого замыкания. Вот ссылочка, где на примерах из своей практики я рассказывал про последствия от коротких замыканий. Тогда бы точно пришлось менять не только трансформаторы тока.

Поэтому и было решено немедленно отключать данный фидер!

По этому инциденту пока еще ведется расследование, но в любом случае за нарушение эксплуатации электроустановки потребитель понесет наказание, согласно действующего законодательства (скорее всего штраф). Естественно, что ему же придется оплатить приобретение новых трансформаторов тока и услуги по их замене.

С учетом изменившейся нагрузки потребитель запросил увеличить выделяемую мощность, поэтому было решено установить трансформаторы тока ТТИ-А с коэффициентом трансформации 150/5, что мы успешно и сделали. Также нам пришлось заменить щитовой амперметр, откалиброванный на коэффициент 150/5 с пределом 150 (А).

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_23

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_24

Замену трансформаторов тока, как на высоковольтных, так и на низковольтных подстанциях, по тем или иным причинам мы производим с регулярной периодичностью.

Вот буквально около месяца назад на этой же подстанции мы производили замену стареньких трансформаторов тока КЛ-0,66 на ТТИ-А. У меня даже фотографии сохранились — до замены и после. Причина замены: не прошли очередную поверку.

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_25

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_26

Зачастую старые ТТ, в основном такие как, ТК-10 или ТК-20 выходят из строя по причине ухудшения изоляции первичной обмотки, но об этом я напишу как-нибудь в следующий раз.

В конце статьи посмотрите видеоролик, который я снял в момент перегрузки трансформаторов тока на данном фидере — очень впечатляет такой режим работы:

Источник

как замена трансформаторов тока влияет на показания счетчика

будут ли показания счетчика (при одинаковой нагрузке)больше,если тр-ры тока 200/5 поменять на тр-ры 50/5 ?

показания счётчика от коэффициента трансформации не зависят.
Для оплаты- показания счётчика умножают на коэффициент- получается кол-во киловатт/часов.

Юрий-Электр написал :
показания счётчика от коэффициента трансформации не зависят.
Для оплаты- показания счётчика умножают на коэффициент- получается кол-во киловатт/часов.

Ту так ведь коэффициенты то разные!

kdv написал :
если тр-ры тока 200/5 поменять на тр-ры 50/5 ?

а какой ожидается ток, что вот вы так легко номинал в 4 раза уменьшаете?

Юрий-Электр написал :
. показания счётчика умножают на коэффициент .

А исходя «из чего» и «какой» берется этот коэффициент .

Это мое мнение и его не навязываю

Юрий-Электр написал :
получается кол-во киловатт/часов

А меня мучает вопрос: Что именно измеряется в таких единицах?

Юрий-Электр написал :
получается кол-во киловатт/часов

А меня мучает вопрос: Что именно измеряется в таких единицах?

Потребленная мощность, притом активная.

volchenok написал :
. Потребленная мощность, притом активная. .

Смотря как ТТ подключены .

Это мое мнение и его не навязываю

volchenok написал :
Потребленная мощность, притом активная.

Я дико извиняюсь, но потребленная энергия измеряется в кВт*ч.

Ким написал :
А исходя «из чего» и «какой» берется этот коэффициент .

Первую цифру делят на вторую.

из школьного курса математики в данном случае- коэффициент трансформации= 40

Костян челяб , я подумал,первая мысль -показания одинаковые,всё зависит от коэффициента трансформации, потом дилетанты докопались,а почему,и я засомневался,т.к. на практике с этим не приходилось встречался.допустим потребляем 40квт,показания(при 200/5)должны быть-1,получается при 50/5 должны быть,по идее-4,это должно быть,а когда тр-ры поменяли с большего на меньшее. что то я завис(для чего меняем-это отдельная тема,здесь не рассматривается)

Источник

Измерительный трансформатор тока. Что это и зачем он нужен?

Введение

Одновременно с входом в нашу жизнь электричества остро встали некоторые вопросы, тесно связанные с его эксплуатацией. Одним из них стал вопрос организации токовой защиты цепи. Появилась необходимость в разделении силовых цепей и цепей защиты, а также в создании и организации сложных защит, которые невозможно собрать, используя аппараты только в силовых цепях.

Дело в том, что защита электропроводки в обычных квартирах сводится к применению автоматических выключателей или предохранителей, а защита от поражения электрическим током — к применению УЗО или АВДТ. Вышеперечисленные аппараты встраиваются непосредственно в защищаемую цепь и, как правило, не имеют дистанционных органов управления.

Читайте также:  Условия измерения тока в электрической цепи

В сетях с более высокими мощностями и токами, где уже требуется релейная защита, работающая по определенным алгоритмам, (например, АПВ — автоматическое повторное включение) требуется организовать питание целого ряда устройств и реле цепей защиты. Для этого применяется трансформатор тока — электротехническое устройство, предназначенное для уменьшения первичного тока (тока измеряемой рабочей цепи) до значений, наиболее удобных для измерительных приборов и реле, находящихся во вторничной цепи. К нему подключаются следующие устройства: амперметры, преобразователи тока, обмотки токовых реле, счетчиков, ваттметров и другие.

Технические характеристики и режим работы

Основным параметром трансформатора тока является его коэффициент трансформации, то есть кратность первичного тока ко вторичному. Ряд первичных токов включает следующие значения: 5; 10; 15; 20; 30; 40; 50; 75; 80; 100; 150; 200; 300; 400; 500; 600; 750; 800; 1000; 1200; 1500; 2000; 3000; 4000; 5000 (А).

С целью унификации и стандартизации всего выпускаемого измерительного и защитного оборудования существует стандартная величина вторичного тока — это 5 А. Соответственно, коэффициент трансформации определяется так: Kт= 400/5= 80.

Трансформатор тока работает в режиме близкому к короткому замыканию, т.к. сумма сопротивлений последовательно подключенных приборов защиты не превышает несколько десятых долей Ом.

Не менее важной задачей, которую как раз и решает трансформатор тока (ТТ) является отделение вторичных цепей измерения и защиты от силовых цепей высокого напряжения и, следовательно, обеспечение безопасности работы с устройствами измерения и защиты.

Применение

Кроме основных задач, описанных выше, трансформаторы тока применяются при косвенном подключении счетчиков электрической энергии. Это обусловлено тем, что счетчики при прямом включении в сеть с большими рабочими токами выйдут из строя. Поэтому возникает необходимость в снижении измеряемых рабочих токов до приемлемых величин, например, до стандартных 5 Ампер.

Современный рынок предлагает решения совместимые как с проводами, так и с шинами.

Важное замечание

Размыкание вторичной обмотки трансформатора тока не допускается при протекании рабочих токов в первичной обмотке. При разомкнутой вторичной цепи ТТ ЭДС может достигать 1000 В и более, что крайне опасно для обслуживающего персонала. Поэтому при замене аппарата, включенного в цепь трансформатора тока, необходимо сначала замкнуть накоротко (шунтировать) измерительную обмотку ТТ, а затем производить отключение вышедшего из строя прибора. Поэтому измерительную (вторичную) обмотку трансформатора тока необходимо заземлить для исключения появления высокого напряжения на выводах И1 И2.

Трансформаторы тока выполняют не только важные задачи отделения защитных цепей от силовых и унификации оборудования, но и применяются при подключении счетчиков электроэнергии в сетях с большими рабочими токами, где прямое включение невозможно.

Источник

Принцип действия ТТ и их назначение

В сегодняшнем материале, я решил начать рассматривать вопросы, касающиеся основ теории трансформаторов тока. Сами эти аппараты распространены повсеместно в электроустановках, и я думаю, всем будет интересно и полезно обновить в памяти принцип их работы.

Назначение трансформаторов тока: преобразование тока и разделение цепей

Начнем с ответа на вопрос – для чего нужен трансформатор тока? Здесь существует несколько основных вопросов, которые решает установка трансформаторов тока.

  • Во-первых, это измерение больших токов, когда измерение непосредственно реальной величины первичного тока не представляется возможным. Измеряют преобразованную в меньшую сторону после трансформатора тока величину. Обычно это 1, 5 или 10 ампер.
  • Во-вторых, это разделение первичных и вторичных цепей. Таким образом, происходит защита изоляции релейного оборудования, приборов учета электроэнергии, измерительных приборов.

Из чего состоит ТТ, принцип его работы

Трансформатор тока имеет замкнутый сердечник (магнитопровод), который собирают из листов электротехнической стали. На сердечнике расположено две обмотки: первичная и вторичная.

Первичная обмотка включается последовательно (в рассечку) цепи, по которой течет измеряемый (первичный) ток. К вторичной обмотке присоединяются последовательно соединенные реле, приборы, которые образуют вторичную нагрузку трансформатора тока. Такое описание состава трансформатора тока достаточно для описания принципа его работы, более подробное описание реального состава трансформатора тока приведено в другой статье.

Для рассмотрения принципа действия трансформатора тока рассмотрим схему, расположенную на рисунке.

принцип работы трансформатора тока

В первичной обмотке протекает ток I1, создавая магнитный поток Ф1. Переменный магнитный поток Ф1 пересекает обе обмотки W1 и W2. При пересечении вторичной обмотки поток Ф1 индуцирует электродвижущую силу Е2, которая создает вторичный ток I2. Ток I2, согласно закону Ленца имеет направление противоположное направлению I1. Вторичный ток создает магнитный поток Ф2, который направлен встречно Ф1. В результате сложения магнитных потоков Ф1 и Ф2 образуется результирующий магнитный поток (на рисунке он обозначен Фнам). Этот поток составляет несколько процентов от потока Ф1. Именно поток Фнам и является тем звеном, что производит передачу и трансформацию тока. Его называют потоком намагничивания.

Коэффициент трансформации идеального ТТ

В первичной обмотке w1 создается магнитодвижущая сила F1=w1*I1, а во вторичной — F2=w2*I2. Если принять, что в трансформаторе тока отсутствуют потери, то магнитодвижущие силы равно по величине, но противоположны по знаку. F1=-F2. В итоге получаем, что I1/I2=w2/w1=n. Это отношение называется коэффициентом трансформации трансформатора тока.

Коэффициент трансформации реального ТТ

В реальном трансформаторе тока существуют потери энергии. Эти потери идут на:

  • создание магнитного потока в магнитопроводе
  • нагрев и перемагничивание магнитопровода
  • нагрев проводов вторичной обмотки и цепи

К магнитодвижущим силам из прошлого пункта прибавится мдс намагничивания Fнам=Iнам*w1. В выражении ниже токи и мдс это вектора. F1=F2+Fнам или I1*w1=I2*w2+Iнам*w1 или I1=I2*(w2/w1)+Iнам

В нормальном режиме, когда первичный ток не превышает номинальный ток трансформатора тока, величина тока Iнам не превышает 1-3 процента от первичного тока, и этой величиной можно пренебречь. При ненормальных режимах происходит так называемый бросок тока намагничивания, об этом более подробно можно почитать здесь. Из формулы следует, что первичный ток разделяется на две цепи – цепь намагничивания и цепь нагрузки. Более подробно о схеме замещения ТТ и о векторной диаграмме ТТ.

Режимы работы трансформаторов тока

У ТТ существуют два основных режима работы – установившийся и переходный.

В установившемся режиме работы токи в первичной и вторичной обмотке не содержат свободных апериодических и периодических составляющих. В переходном режиме по первичной и вторичной обмотке проходят свободные затухающие составляющие токов.

Если ТТ выбран правильно, то в обоих режимах работы погрешности не должны превышать допустимых в этих режимах, а токи в обмотках не должны превышать допустимые по термической и динамической стойкости.

ТТ для измерений предусмотрены для работы в установившемся режиме, при условии не превышения допустимых погрешностей. Работа ТТ для защиты начинается с момента возникновения тока перегрузки или тока КЗ, в этих режимах должны обеспечиваться требования определенных типов защит.

Чем отличается трансформатор тока от трансформатора напряжения и силового трансформатора

Существуют отличия в работе ТТ и ТН.

  • Первичный ток ТТ не зависит от вторичной нагрузки, что свойственно ТН. Это определяется тем фактом, что сопротивление вторичной обмотки ТТ на порядок меньше сопротивления первичной цепи и вообще, чем оно ближе к нулю, тем точнее аппарат. В трансформаторах напряжения и силовых трансформаторах же первичный ток зависит от величины тока вторичной нагрузки.
  • ТТ всегда работает с замкнутой вторичной обмоткой и величина его вторичного сопротивления нагрузки в процессе работы не изменяется.
  • Не допускается работа ТТ с разомкнутой вторичной обмоткой, для ТН и силовых при размыкании вторичной обмотки происходит переход в режим работы холостого хода.

Сохраните в закладки или поделитесь с друзьями

Источник