Меню

Включение реостата в цепь постоянного тока



Пусковые и регулировочные реостаты: схемы включения

Реостатом называется аппарат, состоящий из набора резисторов и устройства, с помощью которого можно регулировать сопротивление включенных резисторов и благодаря этому регулировать переменный и постоянный ток и напряжение.

Различают реостаты с воздушным и жидкостным (масляным или водяным) охлаждением . Воздушное охлаждение может применяться для всех конструкций реостатов. Масляное и водяное охлаждение используется для металлических реостатов, резисторы могут либо погружаться в жидкость, либо обтекаться ею. При этом следует иметь в виду, что охлаждающая жидкость должна и может охлаждаться как воздухом, так и жидкостью.

Металлические реостаты с воздушным охлаждением получили наибольшее распространение. Их легче всего приспособить к различным условиям работы как в отношении электрических и тепловых характеристик, так и в отношении различных конструктивных параметров. Реостаты могут выполняться с непрерывным или со ступенчатым изменением сопротивления.

Проволочный реостат
Проволочный реостат

Переключатель ступеней в реостатах выполняется плоским. В плоском переключателе подвижный контакт скользит по неподвижным контактам, перемещаясь при этом в одной плоскости. Неподвижные контакты выполняются в виде болтов с плоскими цилиндрическими или полусферическими головками, пластин или шин, располагаемых по дуге окружности в один или два ряда. Подвижный скользящий контакт, называемый обычно щеткой, может выполняться мостикового или рычажного типа, самоустанавливающимся или несамоустанавливающимся.

Несамоустанавливающийся подвижный контакт проще по конструкции, но ненадежен в эксплуатации ввиду частого нарушения контакта. При самоустанавливающемся подвижном контакте всегда обеспечиваются требуемое контактное нажатие и высокая надежность в эксплуатации. Эти контакты получили преимущественное распространение.

Достоинствами плоского переключателя ступеней реостата являются относительная простота конструкции, сравнительно небольшие габариты при большом числе ступеней, малая стоимость, возможность установки на плите переключателя контакторов и реле для отключения и защиты управляемых цепей. Недостатки — сравнительно малая мощность переключения и небольшая разрывная мощность, большой износ щетки вследствие трения скольжения и оплавления, затруднительность применения для сложных схем соединения.

Пусковые и регулировочные реостаты

Металлические реостаты с масляным охлаждением обеспечивают увеличение теплоемкости и постоянной времени нагрева за счет большой теплоемкости и хорошей теплопроводности масла. Это позволяет при кратковременных режимах резко увеличивать нагрузку на резисторы, а следовательно, сократить расход резистивного материала и габариты реостата. Погружаемые в масло элементы должны иметь как можно большую поверхность, чтобы обеспечить хорошую теплоотдачу. Закрытые резисторы погружать в масло нецелесообразно. Погружение в масло защищает резисторы и контакты от вредного воздействия окружающей среды в химических и других производствах. Погружать в масло можно только резисторы или резисторы и контакты.

Отключающая способность контактов в масле повышается, что является достоинством этих реостатов. Переходное сопротивление контактов в масле возрастает, но одновременно улучшаются условия охлаждения. Кроме того, за счет смазки можно допустить большие контактные нажатия. Наличие смазки обеспечивает малый механический износ.

Для длительных и повторно-кратковременных режимов работы реостаты с масляным охлаждением непригодны ввиду малой теплоотдачи с поверхности бака и большой постоянной времени охлаждения. Они применяются в качестве пусковых реостатов для асинхронных электродвигателей с фазным ротором мощностью до 1000 кВт при редких пусках.

Наличие масла создает и ряд недостатков: загрязнение помещения, повышение пожарной опасности.

Реостат с непрерывным изменением сопротивления

Рис. 1. Реостат с непрерывным изменением сопротивления

Пример реостата с практически непрерывным изменением сопротивления приведен на рис. 1. На каркасе 3 из нагревостойкого изоляционного материала (стеатит, фарфор) намотана проволока резистора 2. Для изоляции витков друг от друга проволоку оксидируют. По резистору и направляющему токоведущему стержню или кольцу 6 скользит пружинящий контакт 5, соединенный с подвижным контактом 4 и перемещаемый при помощи изолированного стержня 8, на конец которого надевается изолированная рукоятка (на рисунке рукоятка снята). Корпус 1 служит для сборки всех деталей и крепления реостата, а пластины 7 — для внешнего присоединения.

Реостаты могут включаться в схему как переменный резистор (рис. 1, а) или как потенциометр (рис. 1,6). Реостаты обеспечивают плавное регулирование сопротивления , а следовательно, и тока или напряжения в цепи и находят широкое применение в лабораторных условиях в схемах автоматического управления.

Схемы включения пусковых и регулировочных реостатов

На рисунке 2 показана схема включения с помощью реостата двигателя постоянного тока небольшой мощности.

Схема включения реостата

Рис. 2 . Схема включения реостата: Л — зажим, соединенный с сетью, Я — зажим, соединенный с якорем; М — зажим, соединенный о цепью возбуждения, О — холостой контакт, 1 — дуга, 2 — рычаг, 3 — рабочий контакт.

Перед включением двигателя необходимо убедиться в том, что рычаг 2 реостата находится на холостом контакте 0. Затем включают рубильник и рычаг реостата переводят на первый промежуточный контакт. При этом двигатель возбуждается, а в цепи якоря появляется пусковой ток, величина которого ограничена всеми четырьмя секциями сопротивления Rп. По мере увеличения частоты вращения якоря пусковой ток уменьшается и рычаг реостата переводят на второй, третий контакт и т. д., пока он не окажется на рабочем контакте.

Читайте также:  Физиотерапия током низкой частоты

Пусковые реостаты рассчитаны на кратковременный режим работы, а поэтому рычаг реостата нельзя длительно задерживать на промежуточных контактах : в этом случае сопротивления реостата перегреваются и могут перегореть.

Прежде чем отключить двигатель от сети, необходимо рукоятку реостата перевести в крайнее левое положение. При этом двигатель отключается от сети, но цепь обмотки возбуждения остается замкнутой на сопротивление реостата. В противном случае могут появиться большие перенапряжения в обмотке возбуждения в момент размыкания цепи.

При пуске в ход двигателей постоянного тока регулировочный реостат в цепи обмотки возбуждения следует полностью вывести для увеличения потока возбуждения.

Для пуска двигателей с последовательным возбуждением применяют двухзажимные пусковые реостаты, отличающиеся от трехзажимных отсутствием медной дуги и наличием толь ко двух зажимов — Л и Я.

Реостаты со ступенчатым изменением сопротивления (рис. 3 и 4 ) состоят из набора резисторов 1 и ступенчатого переключающего устройства.

Переключающее устройство состоит из неподвижных контактов и подвижного скользящего контакта и привода. В пускорегулирующем реостате (рис. 3 ) к неподвижным контактам присоединены полюс Л1 и полюс якоря Я, отводы от элементов сопротивлений, пусковых и регулировочных, согласно разбивке по ступеням и другие управляемые реостатом цепи. Подвижный скользящий контакт производит замыкание и размыкание ступеней сопротивления, а также всех других управляемых реостатом цепей. Привод реостата может быть ручной (при помощи рукоятки) и двигательный.

Схема включения пускорегулирующего реостата

Рис. 3 . Схема включения пускорегулирующего реостата: R пк — резистор, шунтирующий катушку контактора в отключенном положении реостата, R огр — резистор, ограничивающий ток в катушке, Ш1, Ш2 — параллельная обмотка возбуждения электродвигателя постоянного тока, С1, С2 — последовательная обмотка возбуждения электродвигателя постоянного тока.

Схема включения регулировочного реостата возбуждения

Рис. 4 . Схема включения регулировочного реостата возбуждения: R пр — сопротивление предвключенное, ОВ — обмотка возбуждения электродвигателя постоянного тока.

Реостаты по типу приведенных на рис. 2 и 3 нашли широкое распространение. Их конструкции обладают, однако, некоторыми недостатками, в частности большим числом крепежных деталей и монтажных проводов, особенно в реостатах возбуждения, которые имеют большое число ступеней.

Схема включения маслонаполненного реостата серии РМ , предназначенный для пуска асинхронных двигателей с фазным ротором, приведен на рис. 5. Напряжение в цепи ротора до 1200 В, ток 750 А. Коммутационная износостойкость 10 000 операций, механическая — 45 000. Реостат допускает 2 — 3 пуска подряд.

Схема включения маслонаполненного регулировочного реостата

Рис. 5 Схема включения маслонаполненного регулировочного реостата

Реостат состоит из встроенных в бак и погруженных в масло пакетов резисторов и переключающего устройства. Пакеты резисторов набираются из штампованных из электротехнической стали элементов и крепятся к крышке бака. Переключающее устройство — барабанного типа, представляет собой ось с закрепленными на ней сегментами цилиндрической поверхности, соединенными по определенной электрической схеме. На неподвижной рейке укреплены соединенные с резисторными элементами неподвижные контакты. При повороте оси барабана (маховиком или двигательным приводом) сегменты как подвижные скользящие контакты перемыкают те или иные неподвижные контакты и тем самым меняют значение сопротивления в цепи ротора.

Источник

Реостат

Для регулирования величины тока в цепи, а следовательно, и напряжения на нагрузке применяются реостаты.

Реостат — переменное сопротивление, включаемое в цепь последовательно с нагрузкой.

Впервые реостат был применен русским ученым академиком Б. С. Якоби

По устройству реостаты подразделяются на проволочные и не проволочные. Основной частью проволочного реостата является керамическая трубка, на которую положена специальная высокоомная проволока. На направляющем металлическом стержне укреплен ползунок, который может свободно передвигаться вдоль проволоки, намотанной на керамической трубке.

Не проволочные реостаты выполняются в виде пластинки кольцевой формы, на которую нанесен тонкий слой токопроводящего материала. По этой пластинке скользит ползунок, жестко связанный с ручкой реостата.

Схема включения реостата в электрическую цепь для регулирования величины тока показана на рисунке

При перемещении движка по реостату изменяется длина проволоки ( токопроводящего слоя), а следовательно, и величина сопротивления, включаемого последовательно в электрическую цепь, что в свою очередь вызывает изменение величины тока в цепи и перераспределение напряжения между нагрузкой и реостатом.

Если движок перемещается к контакту 1, величина сопротивления реостата уменьшается, ток в цепи возрастает, меньшая часть напряжения будет гасится на реостате и возрастет напряжение на нагрузке.

Если движок перемещать к контакту 3, сопротивление реостата увеличивается, ток в цепи уменьшается, падение напряжение на реостате будет увеличиваться, а на нагрузке уменьшатся.

Расчет реостата подобен расчету гасящего сопротивления. Величина сопротивления реостата определяется по формуле

Падение напряжения на реостате определяется по формуле

Источник

Как включать реостат в цепь

Как включать реостат в цепь

  • Как включать реостат в цепь
  • Как подключить переменный резистор
  • Как изменяется сила тока в резисторе
  • Учебник по физике, шариковая ручка, лист бумаги.
  • Из каких элементов состоит электрическая цепьИз каких элементов состоит электрическая цепь
  • Как сделать дроссельКак сделать дроссель
  • Как сделать зарядное устройство автомобильного аккумулятораКак сделать зарядное устройство автомобильного аккумулятора
  • Как сделать самому тепловую пушкуКак сделать самому тепловую пушку
  • Как подключить резисторКак подключить резистор
  • Как собрать тепловую пушкуКак собрать тепловую пушку
  • Как сделать электрический магнитКак сделать электрический магнит
  • Как увеличить силу токаКак увеличить силу тока
  • Как повысить напряжениеКак повысить напряжение
  • Как сделать магнитное поле
  • Как понизить силу токаКак понизить силу тока
  • Как увеличить выделенную мощностьКак увеличить выделенную мощность
  • Как изменяется ток при изменении сопротивленияКак изменяется ток при изменении сопротивления
  • Как паять диодыКак паять диоды
  • Как определить мощность резистораКак определить мощность резистора
  • Как выставить ток покояКак выставить ток покоя
  • Как повышать и понижать напряжениеКак повышать и понижать напряжение
  • Как определить величину сопротивленияКак определить величину сопротивления
  • Как зарядить автомобильный аккумуляторКак зарядить автомобильный аккумулятор
  • Как подключить амперметр постоянного токаКак подключить амперметр постоянного тока
  • Как изменить электрическую проводимостьКак изменить электрическую проводимость
  • Как сделать резисторКак сделать резистор
Читайте также:  Как магнит вырабатывает ток

Источник

БЛОГ ЭЛЕКТРОМЕХАНИКА

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

  • главная
  • инфо
  • блог
  • словарь электромеханика
  • электроника
  • крюинговые компании
    • Одесса/Odessa
    • Николаев/Nikolaev
  • Обучение
    • Предметы по специальности
      • АГЭУ
      • АСЭЭС
      • Диагностика и обслуживание судовых технических средств
      • Мехатронные системы
      • Микропроцессоры
      • Моделирование электромеханических систем
      • МПСУ
      • САЭП
      • САЭЭС
      • СДВС
      • СИВС
      • Силовая электроника
      • Судовые компьютерные ceти
      • СУЭ и ОСУ
      • ТАУ
      • Технология судоремонта
      • ТЭП
      • ТЭЭО и АС
    • Общие предметы
      • Безопасность жизнедеятельности
      • Высшая математика
      • Ділова українська мова
      • Интеллектуальная собственность
      • Культурология
      • Материаловедение
      • Охрана труда
      • Политология
      • Системы технологий
      • Судовые вспомогательные механизмы
      • Судовые холодильные установки
    • I курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • II курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • III курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • IV курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • V курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
  • Теория
    • английский
    • интернет-ресурсы
    • литература
    • тематические статьи
  • Практика
    • типы судов
    • пиратство
    • видеоуроки
  • мануалы
  • морской словарь
  • технический словарь
  • история
  • новости науки и техники
    • авиация
    • автомобили
    • военная техника
    • робототехника

25.10.2014

Реостатное управление электродвигателем

Реостатное управление является простейшим способом управления двигателем. При этом способе обычно осуществляется пуск, остановка и в некоторых случаях регулирование скорости вращения (для электродвигателей постоянного тока).

При постоянном токе пусковой реостат включается последовательно с обмоткой якоря электродвигателя. Сопротивление обмотки якоря очень незначительно (оно измеряется сотыми или десятыми долями ома), и если бы в момент пуска электродвигателя в ход подключить ее непосредственно к сети на полное напряжение последней, то по обмотке пройдет очень большой ток, который может сжечь изоляцию обмотки. Вводя последовательно обмотке якоря пусковой реостат, мы увеличиваем сопротивление цепи и, следовательно, уменьшаем проходящий в обмотке ток.

Когда якорь вследствие взаимодействия между проходящим по его обмотке током и магнитным полем приходит во вращение, то в обмотке якоря, последовательно с которой в первый момент бывает включено все сопротивление пускового реостата, возникает противоэлектродвижущая сила. Ток в обмотке якоря определяется разностью напряжения на зажимах двигателя и противоэлектродвижущей силы (U — Е): чем меньше эта разность, тем меньше ток в цепи якоря; с увеличением скорости вращения ротора двигателя растет и противоэлектродвижущая сила, поэтому разность U — Е уменьшается. Вследствие этого возрастание тока в обмотке и увеличение скорости вращения якоря прекращаются.

Якорь вращается со скоростью, меньшей нормальной. Тогда передвижением рукоятки пускового реостата выводят часть (секцию или ступень) его сопротивления из цепи якоря. Вследствие этого ток в якоре возрастает, увеличивается скорость вращения якоря и растет противоэлектродвижущая сила, уменьшается ток и устанавливается новая (большая чем первая) скорость вращения ротора. Затем выводят из цепи якоря следующую ступень реостата и т. д., пока все сопротивление реостата не будет выведено из цепи якоря. При полностью выведенном сопротивлении реостата электродвигатель развивает полное (нормальное) число оборотов, противоэлектродвижущая сила достигает наибольшего значения, и ток в якоре, даже при выведенном сопротивлении, не достигает значений, угрожающих изоляции обмотки.

Таким образом, в начале пуска электродвигателя в ход пусковой реостат должен быть полностью введен в цепь якоря, а к концу пуска — полностью выведен. Пуск электродвигателя занимает лишь несколько секунд. Пусковой реостат не рассчитан на длительное прохождение по нему тока, поэтому оставлять долго ту или иную ступень (секцию) его под током нельзя. Однако и слишком быстрое выведение реостата из цепи якоря также недопустимо, так как изоляция обмотки якоря может при этом сгореть. Передвигать рукоятку реостата следует не слишком быстро, плавно, без рывков.

При реостатном управлении регулирование скорости электродвигателя осуществляется путем изменения его магнитного потока.

Рассмотрим соединение регулировочного реостата с двигателем параллельного возбуждения, изображенное на рис. 1.

Соединение регулировочного реостата с двигателем параллельного возбуждения

В показанном на рисунке положении ток от одного зажима Я1 электродвигателя идет по обмотке возбуждения Ш2 — Ш1, поступает в клемму реостата Ш, а отсюда через рукоятку реостата, плоское контактное кольцо и клемму Л возвращается ко второму полюсу Я2 двигателя. При этом ток не проходит по спиралям реостаа сопротивление реостата, как говорят, выведено. Поэтому по обмотке возбуждения Ш1 — Ш2 будет протекать полный намагничивающий ток. Если же передвинуть рукоятку реостата по часовой стрелке, то в цепь возбуждения окажется включенной часть сопротивления реостата. Тогда сила тока возбуждения и магнитный поток уменьшатся, скорость вращения якоря возрастет.

Читайте также:  Травма полученная при поражении электрическим током

В тех случаях, когда необходимо во время работы увеличивать и уменьшать скорость вращения приводимого механизма, применяется электродвигатель с номинальным числом оборотов, несколько меньшим, чем требуется для нормальной работы машины (станка, насоса и т. д.). Так, если показанный на рис. 1 электродвигатель имеет номинальное число оборотов, меньшее, чем требуется для нормальной работы приводимого механизма, то, поставив рукоятку регулировочного реостата вертикально (заштрихованным концом вверх), т. е. введя в цепь обмотки возбуждения половину сопротивления реостата, мы тем самым увеличим скорость двигателя до нормальной. А когда потребуется изменить эту скорость, то мы можем: а) двигая рукоятку реостата влево, уменьшить скорость двигателя, так как при этом мы уменьшаем сопротивление цепи возбуждения, т. е. увеличиваем ток возбуждения и, следовательно, создаваемый последним магнитный поток, б) двигая рукоятку реостата вправо, увеличить число оборотов, так как при этом мы увеличиваем сопротивление цепи возбуждения, т. е. уменьшаем ток возбуждения и, следовательно, магнитный поток.

Для регулирования скорости вращения двигателя последовательного возбуждения путем изменения магнитного потока регулировочный реостат соединяется с электродвигателем так, как показано на рис. 2. Регулировочный реостат R включается параллельно обмотке возбуждения Rдв. Ток сети I, пройдя через якорь Я, разветвляется: часть его Iдв проходит в обмотке возбуждения и часть Iд — в сопротивлении реостата. При уменьшении сопротивления реостата ток в обмотке возбуждения уменьшится и скорость двигателя увеличится. Надо заметить, что регулирование этим способом скорости вращения двигателя последовательного возбуждения сопровождается гораздо большей потерей электроэнергии, чем регулирование скорости двигателя параллельного возбуждения, т.к. величина тока, проходящего в регулировочном реостате двигателя последовательного возбуждения, достигает сравнительно большой величины. Сам реостат получается при этом громоздким и более дорогим, чем регулировочный реостат двигателя параллельного возбуждения.

Регулирование скорости вращения двигателя последовательного возбуждения

Принципиальная схема присоединения к сети двигателя параллельного возбуждения

Регулировочные реостаты применяются не всегда, так как в целом ряде случаев регулирования скорости двигателей не требуется.

На рис.3 приведена упрощенная принципиальная схема присоединения к сети двигателя параллельного возбуждения. Двигатель присоединяется к сети через двухполюсный рубильник и следующий за рубильником двухполюсный предохранитель (для того чтобы в случае перегорания плавкой вставки предохранителя можно было разомкнуть рубильник и заменить перегоревшую вставку новой, не подвергаясь опасности поражения электрическим током). Включенный последовательно с обмоткой якоря пусковой реостат имеет холостой контакт а. При подготовке двигателя к пуску в ход рукоятка пускового реостата обязательно должна быть установлена на холостом контакте, при этом цепь реостата (и, следовательно, цепь якоря) разомкнута. При пуске двигателя в ход сначала замыкают двухполюсный рубильник, а затем рукоятку реостата переводят с холостого контакта на ближайший к нему рабочий контакт, замыкая цепь якоря.

Одновременно с этим обмотка возбуждения оказывается подключенной на полное напряжение сети через изогнутую планку реостата в.

Перемещая затем рукоятку пускового реостата вправо не слишком быстрым, плавным движением, устанавливают ее на последнем рабочем контакте б, т. е. постепенно выводят все сопротивление реостата из цепи якоря, вследствие чего скорость двигателя достигает номинальной величины.

При остановке двигателя рекомендуется отключить его от сети пусковым реостатом, для чего переводят рукоятку его быстрым движением на холостой контакт и тем самым разрывают цепь якоря, после чего размыкают рубильник. Если соединить проводником л контактную планку с первым рабочим контактом, то при переводе рукоятки реостата на холостой контакт мы не разрываем цепь обмотки возбуждения: она оказывается при этом замкнутой через реостат на обмотку якоря. Вследствие этого электродвижущая сила самоиндукции не может достигнуть значительной величины, и следовательно, опасность пробоя изоляции обмотки возбуждения устраняется.

Очень часто при остановке двигателя размыкают сначала рубильник, а затем уже переводят рукоятку реостата на холостой контакт.

Реостатный пуск для асинхронных двигателей с фазным ротором

При любом из этих двух способов рукоятка пускового реостата после остановки двигателя обязательно должна оставаться на холостом контакте для того, чтобы при новом пуске двигателя в ход не могло быть произведено ошибочного включения его в сеть при выведенном из цепи якоря реостате. Существуют пусковые реостаты, снабженные автоматическим устройством, переводящим рукоятку на холостой контакт, когда двигатель останавливается или исчезает напряжение в сети.

Реостатный пуск у электродвигателей переменного тока применяется для асинхронных двигателей с фазным ротором (рис. 4). При пуске такого двигателя сначала замыкается рубильник, включающий в сеть обмотки статора, затем постепенно выводят сопротивление реостата. В конечном его положении обмотки ротора замыкаются накоротко, а электродвигатель развивает номинальное число оборотов.

Источник