Меню

Виды сигналов переменного тока



Виды сигналов переменного тока

августа 17, 2014 Электроника Андрей Антонов Печать Печать

electrical_signal

Часто в электронных схемах требуется сгенерировать разные типы сигналов, имеющих различные частоты и формы, такие как меандры, прямоугольные, треугольные, пилообразные сигналы и различные импульсы.

Эти сигналы различной формы могут использоваться в качестве сигналов синхронизации, тактирующих сигналов или в качестве запускающих синхроимпульсов. В первую очередь необходимо понять основные характеристики, описывающие электрические сигналы.

С технической точки зрения, электрические сигналы являются визуальным представлением изменения напряжения или тока с течением времени. То есть, фактически — это график изменения напряжения и тока, где по горизонтальной оси мы откладываем время, а по вертикальной оси — значения напряжения или тока в этот момент времени. Существует множество различных типов электрических сигналов, но в целом, все они могут быть разбиты на две основные группы.

  • Однополярные сигналы — это электрические сигналы, которые всегда положительные или всегда отрицательные, не пересекающие горизонтальную ось. К однонаправленным сигналам относятся меандр, тактовые импульсы и запускающие импульсы.
  • Двухполярные сигналы — эти электрические сигналы также называют чередующимися сигналами, так как они чередуют положительные значения с отрицательными, постоянно пересекая нулевое значение. Двухполярные сигналы имеют периодическое изменение знака своей амплитуды. Наиболее распространенным из двунаправленных сигналов, является синусоидальный.

Будучи однонаправленными, двунаправленными, симметричными, несимметричными, простыми или сложными, все электрические сигналы имеют три общие характеристики:

  • Период — это отрезок времени, через который сигнал начинает повторяться. Это временное значение также называют временем периода для синусоид или шириной импульса для меандров и обозначают буквой T.
  • Частота — это число раз, которое сигнал повторяет сам себя за период времени равный 1 секунде. Частота является величиной, обратной периоду времени, (f = 1/T). Единицей измерения частоты является Герц (Гц). Частотой в 1Гц, обладает сигнал, повторяющий 1 раз за 1 cекунду.
  • Амплитуда — это величина изменения сигнала. Измеряется в Вольтах (В) или Амперах (А), в зависимости от того, какую временную зависимость (напряжения или тока) мы используем.

Периодические сигналы

Периодические сигналы являются самыми распространенными, поскольку включают в себя синусоиды. Переменный ток в розетке дома представляет из себя синусоиду, плавно изменяющуюся с течением времени с частотой 50Гц.

Время, которое проходит между отдельными повторениями цикла синусоиды называется ее периодом. Другими словами, это время, необходимое для того, чтобы сигнал начал повторяться.

Период может изменяться от долей секунды до тысяч секунд, так как он связан с его частотой. Например, синусоидальный сигнал, которому требуется 1 секунда для совершения полного цикла, имеет период равный одной секунде. Аналогично, для синусоидального сигнала, которому требуется 5 секунд для совершения полного цикла, имеет период равный 5 секундам, и так далее.

Итак, отрезок времени, который требуется для сигнала, чтобы завершить полный цикл своего изменения, прежде чем он вновь повторится, называется периодом сигнала и измеряется в секундах. Мы можем выразить сигнал в виде числа периодов T в секунду, как показано на рисунке ниже.

Синусоидальный сигнал

синусоида

Время периода часто измеряется в секундах ( с ), миллисекундах (мс) и микросекундах (мкс).

Для синусоидальной формы волны, время периода сигнала также можно выражать в градусах, либо в радианах, учитывая, что один полный цикл равен 360° (Т = 360°), или, если в радианах, то (T = ).

Период и частота математически являются обратными друг другу величинами. С уменьшением времени периода сигнала, его частота увеличивается и наоборот.

Соотношения между периодом сигнала и его частотой:

f = \frac<1 data-lazy-src=

Префикс Определение Запись Период
Кило тысяча кГц 1 мс
Мега миллион МГц 1 мкс
Гига миллиард ГГц 1 нс
Тера триллион ТГц 1 пс

Меандр

Меандры широко используются в электронных схемах для тактирования и сигналов синхронизации, так как они имеют симметричную прямоугольную форму волны с равной продолжительностью полупериодов. Практически все цифровые логические схемы используют сигналы в виде меандра на своих входах и выходах.

меандр

Так как форма меандра симметрична, и каждая половина цикла одинакова, то длительность положительной части импульса равна промежутку времени, когда импульс отрицателен (нулевой). Для меандров, используемых в качестве тактирующих сигналов в цифровых схемах, длительность положительного импульса называется временем заполнения периода.

Для меандра, время заполнения \tauравно половине периода сигнала. Так как частота равна обратной величине периода, (1/T), то частота меандра:

\[f = \frac<1 data-lazy-src=

В данном случае я изобразил сигнал, принимающий только положительные значения, хотя, в общем случае, отрицательные значения сигнала могут быть значительно ниже нулевой отметки.

На изображенном примере, длительность положительного импульса больше, чем длительность отрицательного, хотя, это и не обязательно. Главное, чтобы форма сигнала была прямоугольной.

Отношение периода повторения сигнала T, к длительности положительного импульса \tau, называют скважностью:

\[S = \frac<T data-lazy-src=

Как правило, для треугольных сигналов, продолжительность роста сигнала, равна продолжительности его спада, давая тем самым 50% коэффициент заполнения. Задав амплитуду и частоту сигнала, мы можем определить среднее значение его амплитуды.

В случае несимметричной треугольной формы сигнала, которую мы можем получить изменением скорости роста и спада на различные величины, мы имеем еще один тип сигнала известный под названием пилообразный сигнал.

Пилообразный сигнал

Пилообразный сигнал — это еще один тип периодического сигнала. Как следует из названия, форма такого сигнала напоминает зубья пилы. Пилообразный сигнал может иметь зеркальное отражение самого себя, имея либо медленный рост, но очень крутой спад, или чрезвычайно крутой, почти вертикальный рост и медленный спад.

пила

Пилообразный сигнал с медленным ростом является более распространенным из двух типов сигналов, являющийся, практически, идеально линейным. Пилообразный сигнал генерируется большинством функциональных генераторов и состоит из основной частоты (f) и четных гармоник. Это означает, с практической точки зрения, что он богат гармониками, и в случае, например, с музыкальными синтезаторами, для музыкантов дает качественный звук без искажений.

Импульсы и запускающие сигналы (триггеры)

Хотя, технически, запускающие сигналы и импульсы два отдельных типа сигналов, но отличия между ними незначительны. Запускающий сигнал — это всего лишь очень узкий импульс. Разница в том, что триггер может быть как положительной, так и отрицательной полярности, тогда как импульс только положительным.

Форма импульса, или серии импульсов, как их чаще называют, является одним из видов несинусоидальной формы сигналов, похожей на прямоугольный сигнал. Разница в том, что импульсный сигнал определяется часто только коэффициентом заполнения. Для запускающего сигнала положительная часть сигнала очень короткая с резкими ростом и спадом и ее длительностью, по сравнению с периодом, можно пренебречь.

импульсы

Очень короткие импульсы и запускающие сигналы предназначены для управления моментами времени, в которые происходят, например, запуск таймера, счетчика, переключение логических триггеров а также для управления тиристорами, симисторами и другими силовыми полупроводниковыми приборами.

Я рассмотрел здесь только основные виды электрических сигналов. Остальные типы сигналов, обычно, получают их комбинацией или модуляцией (изменением параметров, используя другой сигнал) , например:

  • Амплитудно-модулированный сигнал
  • Частотно-модулированный сигнал
  • Фазо-модулированный сигнал
  • Фазо-частотно-модулированный сигнал
  • Фазо-кодо-манипулированный сигнал

Подробно я вернусь к ним в своих последующих публикациях.

Источник

Виды электрических сигналов

Цель рассказа показать в чем суть понятия «сигнал», какие распространённые сигналы существуют и какие у них общие характеристики.

Что такое сигнал? На этот вопрос даже маленький ребёнок скажет, что это «такая штука, с помощью которой можно что-нибудь сообщить». Например, с помощью зеркала и солнца можно передавать сигналы на расстояние прямой видимости. На кораблях, сигналы когда-то передавали с помощью флажков-семафоров. Занимались этим специально обученые сигнальщики. Таким образом с помощью таких флажков передавалась информация. Вот как можно передать слово «сигнал»:

Виды электрических сигналов

В природе существует огромное множество сигналов. Да по сути что угодно может быть сигналом: оставленная на столе записка, какой-нибудь звук — могут служить сигналом к началу определённого действия.

Ладно, с такими сигналами всё понятно поэтому перейду к электрическим сигналам, которых в природе не меньше чем любых других. Но их хотя бы можно как-то условно разбить на группы: треугольный, синусоидальный, прямоугольный, пилообразный, одиночный импульс и т.д. Все эти сигналы названы так за то, как они выглядят, если их изобразить их на графике.

Сигналы могут быть использованы как метроном для отсчета тактов (в качестве тактирующего сигнала), для отсчета времени, в качестве управляющих импульсов, для управления двигателями или для тестирования оборудования и передачи информации.

Характеристики эл. сигналов

В некотором смысле электрический сигнал — это график, отражающий изменение напряжения или тока с течением времени. Что по-русски означает: если взять карандаш и по оси Х отметить время, а по Y напряжение или ток, и отметить точками соответствующие значения напряжения в конкретные моменты времени, то итоговое изображение будет показывать форму сигнала:

Электрических сигналов очень много, но их можно разбить на две большие группы:

  • Однонаправленные
  • Двунаправленные

Т.е. в однонаправленных ток течет в одну сторону (либо не течет вообще), а в двунаправленных ток является переменным и протекает то «туда», то «сюда».

Все сигналы, независимо от типа, обладают следующими характеристиками:

  • Период — промежуток времени, через который сигнал начинает повторять себя. Обозначается чаще всего T
  • Частота— обозначает сколько раз сигнал повториться за 1 секунду. Измеряется в герцах. К примеру 1Гц = 1 повторение в секунду. Частота является обратным значением периода ( ƒ = 1/T )
  • Амплитуда — измеряется в вольтах или амперах (в зависимости от того какой сигнал: ток или напряжение). Амплитуда обозначает «силу» сигнала. Как сильно отклоняется график сигнала от оси Х.

Виды сигналов

Синусоида

Думаю, что представлять функцию, чей график на картинке выше нет смысла — это хорошо тебе известная sin(x). Её период равен 360 o или 2pi радиан (2pi радиан =360 o ).

А если разделить поделить 1 сек на период T, то ты узнаешь сколько периодов укалдывается в 1 сек или, другими словами, как часто период повторяется. То есть ты определишь частоту сигнала! Кстати, она указывается в герцах. 1 Гц = 1 сек / 1 повтор в сек

Частота и период обратны друг другу. Чем длинней период, тем меньше частота и наоборот. Связь между частотой и периодом выражается простыми соотношениями:

Суфикс Полное значение Сокращение Обозначает время
Кило Тысяча (Килогерц) КГц 1 миллисекунда (10 -3 )
Мега Миллион (Мегагерц) МГц 1 микросекунда (10 -6 )
Гига Миллиард (Гигагерц) ГГц 1 наносекунда (10 -9 )
Тера Триллион (Терагерц) ТГц 1 пикосекунда (10 -12 )

Меандр

Сигналы, которые по форме напоминают прямоугольники, так и называют «прямоугольные сигналы». Их условно можно разделить на просто прямоугольне сигналы и меандры. Меандр — это прямоугольный сигнал, у которого длительность импульса и паузы равны. А если сложить длительность паузы и импульса, то получим период меандра.

Прямоугольный сигнал

Обычный прямоугольный сигнал отличается от меандра тем, что имеет разную длительность импульса и паузы (отсутствие импульса). Смотри картинку ниже — она скажет лучше тысячи слов.

Кстати, для прямоугольных сигналов существует еще два термина, которые следует знать. Они обратны друг другу (как период и частота). Это скажность и коээффициент заполнения. Скажность (S)равняется отношению периода к длительности импульса и наоборот для коэфф. заполнения.

Таким образом меандр — это прямоугольный сигнал со скважностью равной 2. Так как у него период в два раза больше длительности импульса.


S — скважность, D — коэффициент заполнения, T — период импульсов, \tau</p data-lazy-src=

Виды сигналов переменного тока

Основные определения, термины
и понятия по военно-технической подготовке

1.3. Переменный ток

1.3.1. Параметры сигналов переменного тока.

Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:

http://tel-spb.ru/fac/1svg.png

Период T — время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.

Частота f — величина, обратная периоду, равная количеству периодов за одну секунду.

Один период в секунду это один герц (1 Hz)

,

Циклическая частота ω — угловая частота, равная количеству периодов за секунд.

http://tel-spb.ru/fac/ph.png

,

Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°

Начальная фаза ψ — величина угла от нуля ( ωt = 0) до начала периода. Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.

Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.

Мгновенное значение — величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени t .

,

Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени.

Например, синусоидальный ток или напряжение можно выразить функцией:

,

С учётом начальной фазы:

,

Здесь I amp и U amp — амплитудные значения тока и напряжения.

Амплитудное значение — максимальное по модулю мгновенное значение за период.

,

Может быть положительным и отрицательным в зависимости от положения относительно нуля.

Часто вместо амплитудного значения применяется термин амплитуда тока (напряжения) — максимальное отклонение от нулевого значения.

Среднее значение (avg) — определяется как среднеарифметическое всех мгновенных значений за период T .

http://tel-spb.ru/fac/u_avg.png

,

Среднее значение является постоянной составляющей DC напряжения и тока.

Для синусоидального тока (напряжения) среднее значение равно нулю.

Средневыпрямленное значение — среднеарифметическое модулей всех мгновенных значений за период.

http://tel-spb.ru/fac/avg_1.png

,

Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод.

http://tel-spb.ru/fac/avg_sin.png

,

Среднеквадратичное значение (rms) — определяется как квадратный корень из среднеарифметического квадратов всех мгновенных значений за период.

http://tel-spb.ru/fac/rms.png

,

Для синусоидального тока и напряжения амплитудой Iamp ( Uamp ) среднеквадратичное значение определится из расчёта:

http://tel-spb.ru/fac/rms_1.png

,

Среднеквадратичное — это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов. Является объективным количественным показателем для любой формы тока.

В активной нагрузке переменный ток совершает такую же работу за время периода, что и равный по величине его среднеквадратичному значению постоянный ток.

http://tel-spb.ru/fac/rms_2.png.

1.3.2. Виды модуляции сигналов.

Амплитудная модуляция — вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда.

S ( t ) — информационный сигнал, | S ( t ) Рис 3. Пример частотной модуляции по линейному закону.

https://upload.wikimedia.org/wikipedia/commons/thumb/d/df/Frequency-modulation.png/250px-Frequency-modulation.png

Рис 4. Пример частотной модуляции. Вверху — информационный сигнал на фоне несущего колебания. Внизу — результирующий сигнал.

Фазовая модуляция — вид модуляции, при которой фаза несущего колебания управляется информационным сигналом. Фазомодулированный сигнал s(t) имеет следующий вид:

,

где g(t) — огибающая сигнала; φ ( t ) является модулирующим сигналом; f c — частота несущего сигнала; t — время.

Фазовая модуляция, не связанная с начальной фазой несущего сигнала, называется относительной фазовой модуляцией (ОФМ).

Решающее устройство для режима QPSK демодулятора OFDMA сетей связи четвёртого поколения стандарта IEEE 802.16E мобильный WIMAX

Рис 5. Пример фазовой модуляции — двоичная фазовая модуляция BPSK.

Рис 6. AM,FM модуляции.

1.3.3. Особенности цепей переменного тока.

Переменный ток изменяется во времени по синусоидальному закону. Время, за которое совершается полный цикл изменений по величине и направлению, называется периодом. При векторном изображении синусоиды вектор периодически описывает угол а, равный 360° или в дуговом (радианном) измерении равный 2π. Следовательно, первый полупериод оканчивается при α = π, а первое максимальное значение синусоида принимает при π/2. Время, за которое вектор описывает угол 2π [рад], называется периодом и обозначается буквой Т. Число периодов в секунду называется частотой и обозначается буквой f.

[1/сек] ,

За единицу частоты принят герц (гц). Частота промышленной сети переменною тока обычно равна 50 гц.

В теории переменного тока часто приходится иметь дело с круговой частотой

[1/сек] ,

В течение периода переменный ток, изменяющийся. по синусоидальному закону, достигает максимального значения 2 раза (при π/2 и Зπ/2). Максимальное значение тока или напряжения обозначают соответственно буквами Iмакс и, Uмакс. Действующее значение переменного тока равно величине такого постоянного тока, который, проходя через сопротивление, выделяет в нем (за одинаковое время с переменным током) равное количество тепла:

Следует иметь в виду, что, например, при расчете токовой нагрузки проводов принимается во внимание действующее значение тока. Это положение во многих случаях распространяется и на напряжение. Лишь при расчете изоляции на пробой необходимо учитывать максимальное (мгновенное) значение напряжения, так как пробой может произойти во время прохождения напряжения через максимум. На шкалах измерительных приборов указываются, как правило, действующие значения тока или напряжения.

Резистор в цепи переменного тока

Здесь через IR обозначена амплитуда тока, протекающего через резистор. Связь между амплитудами тока и напряжения на резисторе выражается соотношением

Фазовый сдвиг между током и напряжением на резисторе равен нулю.

Физическая величина R называется активным сопротивлением резистора .

Конденсатор в цепи переменного тока

Соотношение между амплитудами тока IC и напряжения UC :

.

Ток опережает по фазе напряжение на угол π/2.

называется емкостным сопротивлением конденсатора .

Катушка в цепи переменного тока

Соотношение между амплитудами тока IL и напряжения UL :

.

Ток отстает по фазе от напряжения на угол π/2.

Физическая величина XL = ω L называется индуктивным сопротивлением катушки .

Источник

Электрический сигнал

Что такое электрический сигнал и с чем его едят? Давайте обсудим в этой статье.

Что такое сигнал?

Сигнал – это что-то такое, что можно передать через пространство и время. Итак, какие условия должны быть, чтоб назвать сигнал “сигналом”?

Во-первых, с игнал должен кем-либо создаваться (генерироваться).

Во-вторых, сигнал должен для кого предназначаться.

В-третьих, кто-то должен принять этот сигнал и сделать для себя какие-либо выводы, то есть правильно трактовать сигнал.

Окунемся в Дикий Запад.

Думаю, не секрет, что индейцы разжигали костер, и дым от костра использовался для передачи сигнала. Значит, в нашем случае костер – генератор сигнала. Итак, первый пункт работает). Для кого же был предназначен дым от костра? Для ковбоев? Конечно же нет! Для своих же индейцев. Значит, работает пункт два. Ну ладно, вы увидели два столба дыма, возвышающихся в небо. Вам это что-то говорит? Кто-то, наверное, жарит шашлыки? Может быть. Но если вы подойдете к этим кострам, то шашлык сделают именно из вас). Для индейцев эти два столба дыма означали, что их отряд благополучно поохотился на ковбоев ;-). Ну вот и выполнилось третье правило ;-).

Электрический сигнал

Электрический сигнал

Но что же из себя представляет электрический сигнал? Терзают меня смутные сомнения, что где-то здесь замешан электрический ток :-). Чем характеризуется электрический ток? Ну конечно же, напряжением и силой тока. Самое примечательное, что электрический ток очень удобно передавать через пространство с помощью проводов. В этом случае его скорость распространения будет равна скорости света. Хотя и электроны в проводнике движутся со скоростью всего несколько миллиметров в секунду, электрические поле охватывает сразу весь провод со скоростью света! А как вы помните, скорость света равна 300 000 километров в секунду! Поэтому, электрон на другом конце провода практически сразу придет в движение.

Передача электрических сигналов

Итак, для передачи сигнала через пространство мы будем использовать провода. Чуть выше мы разобрали условия возникновения сигнала. Значит, первым делом, нам нужен генератор этих сигналов! То есть это может быть какая-либо батарея или схемка, которая бы генерировала электрический ток. Далее, должен быть кто-то, кто бы принимал этот сигнал. Это может быть какая-нибудь нагрузка, типа лампочки, нагревательного элемента или целой схемы, которая бы принимала этот сигнал. Ну и в-третьих, нагрузка должна как-то среагировать на этот сигнал. Лампочка должна источать свет, нагревательный элемент – греться, а схема исполнять какую-либо функцию.

Как вы поняли из всего выше сказанного, главный козырь сигнала – это его генератор. Итак, как мы уже разобрали, по проводам можно передавать два параметра электрического тока – это напряжение и сила тока. То есть мы можем создать генератор, который бы менял или свое напряжение или силу тока в нагрузке, которая бы цеплялась через провода к этому генератору. В основном в электронике используют именно параметр “напряжение”, так как напряжение легко получить и менять его значение.

Время и электрический сигнал

Как я уже сказал, сигнал передается во времени и в пространстве. То есть время – важный параметр для электрического сигнала. Сейчас нам придется немного попотеть и вспомнить курс математики и физики за среднюю школу. Вспоминаем декартову систему координат. Как вы помните, по вертикали мы откладывали ось Y, по горизонтали Х:

В электронике и электротехнике по Х мы откладываем время, назовем его буквой t, а по вертикали мы отложим напряжение, обозначим его буквой U. В результате наша система координат будет выглядеть вот таким образом:

Прибор, который показывает нам изменение напряжения во времени называется осциллографом, а график этого напряжения называется осциллограммой. Осциллограф может быть цифровым:

Виды электрических сигналов

Постоянный ток

Какой же электрический сигнал является самым простым сигналом в электронике? Я думаю, это сигнал постоянного тока. А что значит постоянный ток? Это ток, значение напряжения которого не меняется с течением времени.Как же он выглядит на нашем графике? Примерно вот так:

Здесь мы видим сигнал постоянного тока в 3 вольта.

По вертикали у нас напряжение в вольтах, а по горизонтали – ну, скажем, в секундах. Постоянный ток с течением времени всегда имеет одно и то же значение напряжения, поэтому, неважно, в секундах или в часах у нас идет отсчет по времени. Напряжение ни прыгнуло, ни упало. Оно как было 3 Вольта, так и осталось. То есть можно сказать, что сигнал постоянного тока представляет из себя прямую линию, параллельную оси времени t.

Вот так выглядит сигнал постоянного тока на аналоговом осциллографе

Какие же генераторы электрического тока могут выдать такой сигнал постоянного напряжения?

Это, конечно же различные батарейки

Электрический сигнал

аккумуляторы для мобильного телефона

и другие химические источники тока.

В лабораторных условиях проще получить постоянное напряжение из переменного. Прибор, который это умеет делать, называется лабораторным блоком питания постоянного напряжения.

Шумовой сигнал или просто шум

А что будет, если напряжение будет принимать хаотическое значение? Получится что-то типа этого:

электрический сигнал шум

Такой электрический сигнал называется шумом.

Думаю, некоторые из вас впервые видят осциллограмму шума, но я уверен на 100%, что все слышали звучание этого сигнала ;-). Ну-ка нажмите на Play 😉

Шипение радиоприемника или старого ТВ, не настроенного на станцию или на какой-нибудь канал – это и есть шум 😉 Как бы странно это не звучало, но такой сигнал тоже очень часто используется в электронике. Например, можно собрать схемку глушителя частот, который бы гасил все телевизионные и радиоприемники в радиусе километра). То есть генерируем шумовой сигнал, усиливаем его и подаем в эфир 😉 В результате глушим всю приемопередающую аппаратуру.

Синусоидальный сигнал

Синусоидальный сигнал – самый любимый сигнал среди электронщиков.

Все любят качаться на качелях?

Электрический сигнал

Здесь мы видим девочку, которая с радостью на них качается. Но предположим, она не знает фишку, что можно раскачаться самой, вовремя сгибая и разгибая ноги. Поэтому, пришел папа девочки и толкнул дочку вперед.

Ниже на графике как раз показан этот случай

Как вы видите, траектория движения девочки во времени получилась очень забавной. Такой график движения носит название “синусоида“. В электронике такой сигнал называют синусоидальным. Вроде бы до боли самый простой график, но вы не поверите, именно на такой простой синусоиде строится вся электроника.

Так как синусоидальный сигнал повторяет свою форму на протяжении всего времени, то его можно назвать периодическим. То есть вы периодически обедаете – периодами – равными отрезками времени. Тут то же самое. Этот сигнал периодически повторяется. Важные параметры периодических сигналов – это амплитуда, период и частота.

электрический сигнал синусоида

Амплитуда (A) – максимальное отклонение напряжения от нуля и до какого-то значения.

Период (T) – время, за которое сигнал снова повторяется. То есть если вы сегодня обедаете в 12:00, завтра тоже в такое же время, в 12:00, и послезавтра тоже в это же самое время, значит ваш обед идет с периодом в 24 часа. Все элементарно и просто 😉

Частота (F) – это просто единичка, поделенная на период, то есть

Электрический сигнал

Измеряется в Герцах. Объясняется как “столько-то колебаний в секунду”. Ну пока для начала хватит ;-).

Как я уже сказал, в электронике синусоида играет очень большую роль. Даже не надо далеко ходить. Достаточно сунуть паль… щупы осциллографа в свою домашнюю розетку, и можно уже наблюдать синусоидальный сигнал, частотой в 50 Герц и амплитудой в 310 Вольт.

Электрический сигнал

Прямоугольный сигнал

Очень часто в электронике используется и прямоугольный сигнал:

Прямоугольный сигнал на рисунке ниже, где время паузы и время длительности сигнала равны, называется меандром.

Треугольный сигнал

Близкие друзья синусоидального сигнала – это треугольный сигнал

У треугольного сигнала есть очень близкий кореш – это пилообразный сигнал

Сложный сигнал

В электронике также используются сложные сигналы. Вот, например, один из них (я нарисовал его от балды):

Все эти сигналы относятся к периодическим сигналам, так как для них можно указать период, частоту следования и амплитуду самих сигналов:

Двухполярные сигналы

Для сигналов, которые “пробивают пол”, ну то есть могут иметь отрицательное значение напряжения, типа вот этих сигналов

Электрический сигнал

кроме периода и амплитуды имеют еще один параметр. Называется он размах или двойная амплитуда. На буржуйском языке это звучит как amplitude Peak-to-peak, что в дословном переводе ” амплитуда от пика до пика”.

Вот двойная амплитуда для синусоиды (2А)

Электрический сигнал

а вот для треугольного сигнала:

Чаще всего обозначается как 2А, что говорит нам о том, что это двойная амплитуда сигнала.

Импульсные сигналы

Также существуют сигналы, которые не подчиняются периодическому закону, но тоже играют немаловажную роль в электронике.

Импульсы – это те же самые сигналы, но они не поддаются периодическому закону, и меняют свое значение, в зависимости от ситуации.

Например, вот череда импульсов:

Электрический сигнал

Каждый импульс имеет разную длительность во времени, поэтому мы не можем говорить о какой-то периодичности сигналов.

Звуковой сигнал

Также есть и звуковой сигнал

Хоть он и похож на белый шум, но несет информацию в виде звука. Если такой электрический сигнал подать на динамическую головку, то можно услышать какую-либо запись.

Вывод

В настоящее время электрические сигналы играют очень важную роль в радиоэлектронике. Без них не существовало бы никакой электроники, а тем более цифровой. В настоящее время цифровая электроника достигла своего апогея, благодаря цифровым сигналам и сложной системе кодирования.Скорость передачи данных просто ошеломляющая! Это могут быть гигабайты информации в секунду. А ведь все когда-то начиналось с простого телеграфа…

Источник

Читайте также:  Как определить расчетный ток трехфазной линии