Меню

Виды мощности в однофазных цепях переменного тока



Виды мощности в однофазных цепях переменного тока

§ 61. Мощность однофазного переменного тока

Полная мощность генератора переменного тока определяется произведением тока на напряжение:

S = U I, (76)

где S — полная мощность, ва;
I — действующая сила тока, на которую рассчитана обмотка генератора, а;
U — расчетное действующее значение напряжения генератора, в.
Размеры генератора переменного тока зависят от полной мощности, на которую он рассчитывается. Это связано с тем, что поперечное сечение проводов обмотки определяется силой тока, а толщина изоляции и число витков обмотки — напряжением, которое будет вырабатывать генератор.
Полная мощность генератора переменного тока, включенного в цепь с активным (r) и реактивными сопротивлениями (ХL и Хc), состоит из мощности, расходуемой в активном сопротивлении, и реактивной части мощности.
Мощность, расходуемая в активном сопротивлении, преобразуется в полезную работу или тепло, рассеиваемое в пространство.
Реактивная часть мощности обусловлена колебаниями энергии (см. § 53 и 54) при создании и исчезновении магнитных и электрических полей. Энергия то запасается в полях реактивных сопротивлений, то возвращается генератору, включенному в цепь. Реактивные токи, протекающие между генератором и реактивными приемниками, обладающими индуктивным и емкостным сопротивлениями, бесполезно загружают линию и генератор и этим вызывают дополнительные потери энергии.
Связь между полной, активной и реактивной мощностями определим из треугольника мощностей. Для построения треугольника мощности умножим стороны треугольника напряжений (рис. 65, а) на силу тока I, тогда получим подобный треугольник мощностей А′О′Б′ (рис. 65, б). Сторона О′Б′ этого треугольника равна активной мощности Р, сторона Б′А′ — реактивной мощности Q, а гипотенуза А′О′ треугольника равна полной мощности S. Из треугольника мощностей следует, что отношение

Отсюда активная мощность Р = S cos φ. Так как полная мощность генератора переменного тока S = U I, то активная мощность определяется так:

Р = U I cos φ (77)

и измеряется в ваттах. Из этого же треугольника следует, что отношение
Отсюда реактивная мощность

Q = S sin φ,

Q = U I sin φ (78)

и измеряется в вольт-амперах реактивных (вар). Полная мощность

измеряется в вольт-амперах (ва).
Чтобы судить о том, какая часть полной мрщности расходуется как активная (полезная) мощность и какая часть является реактивной (бесполезной) мощностью, следует разделить активную мощность на полную. Из треугольника мощностей видно, что это отношение характеризуется косинусом угла сдвига фаз между током и напряжением в данной цепи:

Таким образом, cos φ является коэффициентом мощности переменного тока.

Пример. Полная мощность установки S = 800 ва. Ваттметр, измеряющий активную часть мощности, показывает, что она равна 720 вт. Определить коэффициент мощности.
Решение . Коэффициент мощности

Это значит, что 90% полной мощности расходуется в виде активной мощности на полезную работу, а 10% обусловлены наличием реактивной бесполезной мощности.

В цепи переменного тока с активным сопротивлением ток и напряжение совпадают по фазе и угол сдвига фаз равен нулю. Так как cos φ = 1, то активная мощность для такой цепи Р = I U, т. е. равна полной мощности. В данном случае вся мощность генератора используется для полезной работы.
Угол сдвига фаз между током и напряжением зависит от соотношения между активным и реактивным сопротивлениями, включенными в цепь.
Увеличение активного сопротивления приводит к уменьшению угла сдвига фаз, а следовательно к возрастанию косинуса этого угла и к увеличению коэффициента мощности. Индуктивная нагрузка, подключенная в цепь, наоборот, увеличивает угол сдвига фаз и тем самым понижает коэффициент мощности.
Причиной низкого коэффициента мощности может быть работа электродвигателей станков или машин вхолостую; недогрузка станка, связанная с тем, что на станке большой мощности обрабатываются мелкие детали; неправильный выбор мощности двигателя, устанавливаемого на станке; низкое качество ремонта двигателя; плохая смазка и т. д. При нормальной нагрузке двигателя его коэффициент мощности составляет 0,83 — 0,85. При холостом ходе двигателя его коэффициент мощности понижается и составляет 0,1 — 0,3. Это значит, что активная мощность мала. Для повышения коэффициента мощности параллельно к индуктивной нагрузке предприятия подключают конденсаторы. Емкостное сопротивление этих конденсаторов подбирают с таким расчетом, чтобы оно было примерно равно индуктивному. При этом емкостный ток будет также примерно равен индуктивному току. В этом случае угол сдвига фаз между током и напряжением уменьшается, коэффициент мощности возрастает до 0,85 — 0,9.
Установлено, что повышение коэффициента мощности в энергосистемах нашей страны только на 0,01 может дать ежегодно экономию более 500 млн. квт · ч электрической энергии.
Таким образом, повышение коэффициента мощности и экономное расходование электрической энергии — важное государственное дело.

Пример. Произвести расчет электрической цепи переменного тока, в которую включена катушка, обладающая индуктивным сопротивлением ХL = 30 ом и активным сопротивлением r = 40 ом. Напряжение на зажимах катушки 120 в. Определить:
1) полное сопротивление цепи;
2) силу тока в катушке;
3) коэффициент мощности;
4) угол сдвига фаз между током и напряжением (по таблице тригонометрических функций);
5) полную, активную и реактивную мощности.
Решение . 1. Полное сопротивление цепи

2. Сила тока в цепи

3. Коэффициент мощности
Если cos φ = 0,8, то угол сдвига фаз φ = 36°.
4. Полная мощность S = U I = 2,4 ° 120 = 288 ва.
5. Активная мощность Р = I U cos φ = 2,4 ° 120 ° 0,8 = 230,4 вт.
6. Реактивная мощность Q =I U · sin φ.
Так как синус угла φ = 36°, примерно 0,6, то Q = 2,4 · 120 · 0,6 = 172,8 вар.

1. Что называется переменным током?
2. Что называется периодом переменного тока?
3. В каких единицах измеряется частота переменного тока?
4. В какой цепи переменного тока ток и напряжение совпадают по фазе?
5. От каких величин зависит индуктивное сопротивление катушки?
6. По какой формуле можно вычислить сопротивление цепи переменного тока, содержащей активное и индуктивное сопротивления?
7. От каких величин зависит полная мощность генератора переменного тока?
8. Что называется коэффициентом мощности?

Читайте также:  Напряжение переменного тока перевод

Источник

Мощность в цепях переменного тока

date image2015-10-22
views image34965

facebook icon vkontakte icon twitter icon odnoklasniki icon

В цепях переменного тока различают три вида мощностей: активную Р, реактивную Q и полную S.

Активная мощность вычисляется по формуле:

Активную мощность потребляет резистивный элемент. Единица измерения активной мощности называется Ватт (Вт), производная единица – килоВатт (кВт), равная 10 3 Вт.

Реактивная мощность вычисляется по формуле:

Реактивная мощность потребляется идеальным индуктивным и

емкостным элементами. Единица измерения реактивной мощности называется Вольт-Ампер реактивный (Вар), производная единица – килоВАр (кВАр), равная 10 3 ВАр.

Полная мощность потребляется полным сопротивлением и обозначается буквой S:

Единица измерения полной мощности называется ВА (Вольт-Ампер), производная единица – килоВольт-Ампер (кВА), равная 10 3 ВА.

По сути, размерность у всех выше перечисленных единиц измерения одинакова – . Разные название этих единиц нужны, чтобы различать эти виды мощности.

Проявляются различные виды мощности по-разному. Активная мощность необратимо преобразуется в другие виды мощности (например, тепловую, механическую). Реактивная мощность обратимо циркулирует в электрических цепях: энергия электрического поля конденсатора преобразуется в энергию магнитного поля, и наоборот. «Извлечь» реактивную мощность с «пользой для дела» невозможно.

Из формул (2.19) – (2.21) следует, что между активной, реактивной и полной мощностью имеет место соотношение:

Соотношение между P, Q и S можно интерпретировать как соотношение сторон прямоугольного треугольника (вспомните треугольник сопротивлений, треугольник напряжений – все эти треугольники подобны).

Из рис. 2.10 видно, что cosφ = (2.24)

Отсюда вытекает определение одной из основных характеристик цепей переменного тока – коэффициента мощности. Специального обозначения он не получил.

Коэффициент мощности показывает, какую долю полной мощности составляет активная мощность.

Желательно, чтобы коэффициент мощности цепи был как можно больше, т.е. приближался к 1. Реально предприятия электрических сетей устанавливают такое ограничение для промышленных предприятий : соs φ = (0,92-0,95). Достигать значений соs φ >0,95 рискованно, так как разность фаз φ при этом может скачком перейти от положительных значений к отрицательным, что вредно для электрооборудования. Если соsφ 0 до 90 0 . Следовательно, увеличить соsφ – значит уменьшить разность фаз , то есть уменьшить (ХLС).

Если влиять на (ХLС), меняя С и L, то это приведет к увеличению тока в последовательной цепи и изменению режима работы оборудования, поэтому такой способ практически не применяется. В следующем разделе рассмотрен другой способ повышения коэффициента мощности.

Цепь переменного тока с параллельным соединением ветвей.

Рассмотрим электрическую цепь с двумя параллельными ветвями (рис. 2.11). Полученные выводы распространим на цепь с любым количеством ветвей. К цепи, содержащей две параллельные ветви, включающие активные, индуктивные и емкостные элементы (R1, L1, C1 и R2, L2, C2 cоответственно), подводится переменное напряжение U частоты f.

Прямая задача: Заданы все Обратная задача: Заданы свойства входящие в цепь элементы. цепи. Найти неизвестные элементы Найти все токи и разности цепи (эта задача решена в лаборафаз. торной работе Ц-5)

Решим прямую задачу, то есть найдем токи I1, I2 и общий ток I .

Рис. 2.11. Электрическая цепь с двумя параллельными ветвями

Из второго закона Кирхгофа следует, что напряжения на параллельных участках цепи одинаковы:

На основании закона Ома найдем токи I1 и I2 :

Найдем также разности фаз тока и напряжения для каждой ветви:

На основании первого закона Кирхгофа применительно к узлу А можно записать:

Таким образом, для определения тока I необходимо векторно сложить токи I1 и I2. В качестве опорного вектора удобно выбрать вектор напряжения .

Предположим, что при расчете разностей фаз тока и напряжения в ветвях цепи оказалось, что φ1>0, а φ2 под углом φ1 к вектору , и вектор под углом φ2 к вектору . Графически складываем эти векторы (см. рис.2.12). Величина тока определяется длиной полученного вектора с учетом выбранного масштаба. Разность фаз неразветвленного участка цепи определяется углом между векторами и

Источник

Как рассчитывается мощность переменного тока – формула расчета

Переменный электроток способен изменяться по направлению или своей величине внутри электрической цепи. Мощность переменного тока представляет собой произведение тока и напряжения.

Мощность в цепи переменного тока

Внутри схемы переменного электротока различается три вида мощностей: активного типа или Р, реактивного типа или Q, и полного типа или S. В первом случае стандартной единицей замеров является Ватт (Вт или W), при этом формула для вычисления активных мощностных параметров:

P = U × I × cos φ.

Для замеров мощности реактивного типа применяется специальный вольт-ампер с обозначением «Вар» или Var.

Данной величиной характеризуются нагрузки, которые формируются внутри конструкций электротехнического типа под воздействием колебаний электромагнитных полей в цепях переменного синусоидального тока.

Расчет осуществляется на базе среднеквадратичных показателей напряжения и токовых параметров, умноженных на угловую синусоиду фазного сдвига, согласно значениям:

Q = U × I × sin φ.

В условиях значений на уровне 0/+90° синусовая величина будет положительной, а для показателей в пределах 0/-90° — только отрицательной. Замеры полной электромощности осуществляются исключительно в вольт-амперах (В·А или V·A).

графики тока

Зависимость мощности от времени для переменного и постоянного тока

Величину, соответствующую произведению стандартного напряжения в зажимной области с показателями электротока периодического типа внутри цепи, целесообразно рассчитывать в соответствии с формулами:

S = U × I или S = √Р 2 + Q 2 , где

  • значение Р представлено активной мощностью;
  • значение Q 2 — показатель реактивной мощности.

зависимость мощности от времени для переменного и постоянного тока

Мощностные показатели электротока переменного типа являются произведением токовых данных на напряжение, при этом уровень будет нулевым в условиях прохождения через нуль, но обязательно максимальным на пиковой амплитуде.

Читайте также:  Низкое давление элегаза в трансформаторе тока

Несмотря на сложность измерения мощности, важно помнить, что такие данные не показательны, поэтому с практической точки зрения интерес представляет активная средняя мощность в определенном периоде.

В однофазной цепи

Для однофазной цепи используется формула определения полной мощности: S = U × I, где

  • S — показатели полных мощностных характеристик (Ва);
  • I — уровень действующей силы электротока с учетом обмотки генератора (А);
  • U — параметры расчетного действующего значения напряжения в генераторе (В).

Полные мощностные характеристики, учитываемые при стандартных самостоятельных расчетах, влияют на габариты генератора с переменными показателями электрического тока, что обусловлено поперечным сечением и числом витков обмоточных проводов, а также толщиной изоляционного материала. Для активного и реактивного сопротивления важна мощность, расходуемая при активном сопротивлении, и в реактивной части.

однофазная цепь

Однофазные электрические цепи переменного тока

Реактивные мощностные показатели обуславливаются энергетическими колебаниями в условиях формирования и потери электрических или магнитных полей. Запасаемая внутри поля такого сопротивления электроэнергия поступательно возвращается обратно на генератор, который подключается к стандартной электрической цепи.

В трехфазной цепи

Мощностные показатели переменного тока при равномерной трехфазной нагрузке определяются наличием равноценного тока, протекающего по проводникам фазы. В этом случае показатели силы тока в условиях использования нулевого проводника составляют «О». Формула для расчета мощности переменного тока в условиях трехфазной сети: Р = 3 × U φ × I × соs(φ).

нагрузка фаз в трехпроводной цепи трехфазного тока

Симметричная (равномерная) нагрузка фаз в трехпроводной цепи трехфазного тока

Протекание внутри фазных проводников различных по величине токов представляет собой несимметричную, или неравномерную нагрузку. При этом именно несимметричная нагрузка сопровождается протеканием тока по нулевым или нейтральным проводам, поэтому уровень мощностных показателей определяется в соответствии со стандартной и общеизвестной формулой:

Средняя мощность в активной нагрузке

Мощностные параметры электросети или любой установки являются наиболее важными данными практически любого электрического прибора. Передача проходящих или потребляемых мощностных характеристик активного типа осуществляются в течение определенного периода времени.

Табличные значения средних мощностных характеристик основных бытовых приборов

Устройство Показатели
Зарядное устройство 2,0 Вт/час
Люминесцентные лампы «ДРЛ» 50 Вт/час и более
Электрический чайник 1,5 кВт/час
Акустические системы 30 Вт/час
Стиральная машина 2,5 кВт/час
Мойка под высоким давлением 3,5 кВт/час
Инверторы полуавтоматического типа 3,5 кВт/час
Кухонный блендер 1,0-1,2 кВт/час
Микроволновая СВЧ-печь 1,8 кВт/час
Кухонные тостеры 1,2 кВт/час
Телевизор 0,2 кВт
Холодильник 0,4 кВт
Пылесос 1,0 кВт
Компьютер стационарный 0,55 кВт
Электрическая плита 2,5 кВт/час
Фен для сушки волос 1,0 кВт/час
Утюг 1,0 кВт/час
Электрическая духовка 1,2 кВт/час
Электрический обогреватель 1,4 кВт/час

Мощность при наличии сдвига фаз между током и напряжением

В условиях переменного электротока совпадения в токовом направлении и напряжении отмечаются только при отсутствии катушечной индукции и конденсаторов. В этом случае векторное направление тока и напряжения идентичны. Присутствие в схеме катушек и конденсатора сопровождается совпадением токовых фаз и показателей напряжения, но векторное вращение происходит на одинаковой скорости и при неизменных параметрах угла.

Фазовое смещение или сдвиг совпадает с углом, который наблюдается между векторными радиусами токовых показателей и параметров напряжения, а отставание в этих критериях провоцирует несовпадение.

сдвиг фаз

Сдвиг фаз переменного тока и напряжения

При этом мощностные характеристики являются отрицательными за счет произведения положительной и отрицательной величин. В подобных условиях электрическая цепь внешнего типа становится стандартным источником электроэнергии. Незначительный объем энергии, поступающей в цепь на положительных показателях мощности, осуществляет возврат только при наличии отрицательных значений.

Баланс мощностей

В соответствии с общепринятыми характеристиками, баланс в электрической цепи базируется на законе сохранения энергии, поэтому суммарные потребляемые и отдаваемые мощности должны быть равными.

При расчетах учитываются показатели эквивалентного сопротивления и знакомый большинству из курса физики закон Ома.

Допускаются небольшие расхождения в значениях, что обуславливается стандартными округлениями, осуществляемыми в процессе выполнения самостоятельных расчетов. Таким образом, вне зависимости от уровня сложности создаваемой цепи баланс обязательно должен сходиться, что является гарантией сохранения работоспособности и полной безопасности эксплуатации.

Источник

Что такое активная и реактивная мощность переменного электрического тока?

Все мы ежедневно сталкиваемся с электроприборами, кажется, без них наша жизнь останавливается. И у каждого из них в технической инструкции указана мощность. Сегодня мы разберемся что же это такое, узнаем виды и способы расчета.

Мощность в цепи переменного электрического тока

Электроприборы, подключаемые к электросети работают в цепи переменного тока, поэтому мы будем рассматривать мощность именно в этих условиях. Однако, сначала, дадим общее определение понятию.

Мощность — физическая величина, отражающая скорость преобразования или передачи электрической энергии.

В более узком смысле, говорят, что электрическая мощность – это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Если перефразировать данное определение менее научно, то получается, что мощность – это некое количество энергии, которое расходуется потребителем за определенный промежуток времени. Самый простой пример – это обычная лампа накаливания. Скорость, с которой лампочка превращает потребляемую электроэнергию в тепло и свет, и будет ее мощностью. Соответственно, чем выше изначально этот показатель у лампочки, тем больше она будет потреблять энергии, и тем больше отдаст света.

Поскольку в данном случае происходит не только процесс преобразования электроэнергии в некоторую другую (световую, тепловую и т.д.), но и процесс колебания электрического и магнитного поля, появляется сдвиг фазы между силой тока и напряжением, и это следует учитывать при дальнейших расчетах.

При расчете мощности в цепи переменного тока принято выделять активную, реактивную и полную составляющие.

Читайте также:  Стартер для генератора переменного тока

Понятие активной мощности

Активная «полезная» мощность — это та часть мощности, которая характеризует непосредственно процесс преобразования электрической энергии в некую другую энергию. Обозначается латинской буквой P и измеряется в ваттах (Вт).

Рассчитывается по формуле: P = U⋅I⋅cosφ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, cos φ – косинус угла сдвига фазы между напряжением и током.

ВАЖНО! Описанная ранее формула подходит для расчета цепей с напряжением 220В, однако, мощные агрегаты обычно используют сеть с напряжением 380В. В таком случае выражение следует умножить на корень из трех или 1.73

Понятие реактивной мощности

Реактивная «вредная» мощность — это мощность, которая образуется в процессе работы электроприборов с индуктивной или емкостной нагрузкой, и отражает происходящие электромагнитные колебания. Проще говоря, это энергия, которая переходит от источника питания к потребителю, а потом возвращается обратно в сеть.

Использовать в дело данную составляющую естественно нельзя, мало того, она во многом вредит сети питания, потому обычно его пытаются компенсировать.

Обозначается эта величина латинской буквой Q.

ЗАПОМНИТЕ! Реактивная мощность измеряется не в привычных ваттах (Вт), а в вольт-амперах реактивных (Вар).

Рассчитывается по формуле:

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, sinφ – синус угла сдвига фазы между напряжением и током.

ВАЖНО! При расчете данная величина может быть как положительной, так и отрицательной – в зависимости от движения фазы.

Емкостные и индуктивные нагрузки

Главным отличием реактивной (емкостной и индуктивной) нагрузки – наличие, собственно, емкости и индуктивности, которые имеют свойство запасать энергию и позже отдавать ее в сеть.

Индуктивная нагрузка преобразует энергию электрического тока сначала в магнитное поле (в течение половины полупериода), а далее преобразует энергию магнитного поля в электрический ток и передает в сеть. Примером могут служить асинхронные двигатели, выпрямители, трансформаторы, электромагниты.

ВАЖНО! При работе индуктивной нагрузки кривая тока всегда отстает от кривой напряжения на половину полупериода.

Емкостная нагрузка преобразует энергию электрического тока в электрическое поле, а затем преобразует энергию полученного поля обратно в электрический ток. Оба процесса опять же протекают в течение половины полупериода каждый. Примерами являются конденсаторы, батареи, синхронные двигатели.

ВАЖНО! Во время работы емкостной нагрузки кривая тока опережает кривую напряжения на половину полупериода.

Коэффициент мощности cosφ

Коэффициент мощности cosφ (читается косинус фи)– это скалярная физическая величина, отражающая эффективность потребления электрической энергии. Проще говоря, коэффициент cosφ показывает наличие реактивной части и величину получаемой активной части относительно всей мощности.

Коэффициент cosφ находится через отношение активной электрической мощности к полной электрической мощности.

ОБРАТИТЕ ВНИМАНИЕ! При более точном расчете следует учитывать нелинейные искажения синусоиды, однако, в обычных расчетах ими пренебрегают.

Значение данного коэффициента может изменяться от 0 до 1 (если расчет ведется в процентах, то от 0% до 100%). Из расчетной формулы не сложно понять, что, чем больше его значение, тем больше активная составляющая, а значит лучше показатели прибора.

Понятие полной мощности. Треугольник мощностей

Полная мощность – это геометрически вычисляемая величина, равная корню из суммы квадратов активной и реактивной мощностей соответственно. Обозначается латинской буквой S.

Что такое активная и реактивная мощность переменного электрического тока?

Также рассчитать полную мощность можно путем перемножения напряжения и силы тока соответственно.

ВАЖНО! Полная мощность измеряется в вольт-амперах (ВА).

Треугольник мощностей – это удобное представление всех ранее описанных вычислений и соотношений между активной, реактивной и полной мощностей.

Катеты отражают реактивную и активную составляющие, гипотенуза – полную мощность. Согласно законам геометрии, косинус угла φ равен отношению активной и полной составляющих, то есть он является коэффициентом мощности.

Что такое активная и реактивная мощность переменного электрического тока?

Как найти активную, реактивную и полную мощности. Пример расчета

Все расчеты строятся на указанных ранее формулах и треугольнике мощностей. Давайте рассмотрим задачу, наиболее часто встречающуюся на практике.

Обычно на электроприборах указана активная мощность и значение коэффициента cosφ. Имея эти данные несложно рассчитать реактивную и полную составляющие.

Для этого разделим активную мощность на коэффициент cosφ и получим произведение тока и напряжения. Это и будет полной мощностью.

Далее, исходя из треугольника мощностей, найдем реактивную мощность равную квадрату из разности квадратов полной и активной мощностей.

Как измеряют cosφ на практике

Значение коэффициента cosφ обычно указано на бирках электроприборов, однако, если необходимо измерить его на практике пользуются специализированным прибором – фазометром . Также с этой задачей легко справится цифровой ваттметр.

Что такое активная и реактивная мощность переменного электрического тока?

Если полученный коэффициент cosφ достаточно низок, то его можно компенсировать практически. Осуществляется это в основном путем включения в цепь дополнительных приборов.

  1. Если необходимо скорректировать реактивную составляющую, то следует включить в цепь реактивный элемент, действующий противоположно уже функционирующему прибору. Для компенсации работы асинхронного двигателя, для примера индуктивной нагрузки, в параллель включается конденсатор. Для компенсации синхронного двигателя подключается электромагнит.
  2. Если необходимо скорректировать проблемы нелинейности в схему вводят пассивный корректор коэффициента cosφ, к примеру, это может быть дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой.

Мощность – это один из важнейших показателей электроприборов, поэтому знать какой она бывает и как рассчитывается, полезно не только школьникам и людям, специализирующимся в области техники, но и каждому из нас.

Что такое активная и реактивная мощность переменного электрического тока?

Как перевести амперы в киловаты?

Что такое активная и реактивная мощность переменного электрического тока?

Что такое делитель напряжения и как его рассчитать?

Что такое активная и реактивная мощность переменного электрического тока?

Способы вычисления потребления электроэнергии бытовыми приборами

Что такое активная и реактивная мощность переменного электрического тока?

Как рассчитать падение напряжения по длине кабеля в электрических сетях

Что такое активная и реактивная мощность переменного электрического тока?

Что такое фазное и линейное напряжение?

Что такое активная и реактивная мощность переменного электрического тока?

Как подобрать блок питания для светодиодной ленты по техническим характеристикам, расчёт мощности

Источник