Меню

Виды электроустановок постоянного тока



Виды электроустановок постоянного тока

Рейтинг 2.2/5 (50 голосов)

ПРИНЦИП ДЕЙСТВИЯ И РАБОТА ПРОМЫШЛЕННЫХ ЭЛЕКТРОУСТАНОВОК ПЕРЕМЕННОГО И ПОСТОЯННОГО ТОКА

Электроустановками называется со­вокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансфор­мации, передачи, распределения элект­рической энергии и преобразования ее в другой вид энергии.

Электрическая сеть представляет сово­купность электроустановок, служащих для передачи и распределения электрической энергии, состоящая из подстанций рас­пределительных устройств, токопроводов, воздушных и кабельных линий электропере­дачи. Работа электроустановки 3-х фазного переменного тока промышленной частоты 50 гц во многом определяется режимом работы нейтралей генераторов или транс­форматоров. Практикуется в основном два вида централей, изолированная нейтраль и заземленная нейтраль.

Изолированная нейтраль — это нейтраль генератора или трансформатора, которая не присоединена к заземляющему устройс­тву или присоединена через устройства с большим электрическим сопротивлением (приборы сигнализации, защиты, дугогасительные реакторы). Заземленная нейтраль — это нейтраль генератора или трансфор­матора, присоединенная непосредственно к заземляющему устройству или через малое электрическое сопротивление. От режима работы нейтралей зависит в значительной степени уровень изоляции электроустановок, выбор коммутационной аппаратуры, величины перенапряжений и способы их ограничения, величины токов однофазных коротких замыканий на землю (корпус), условия работы релейной защиты и т.п.

Замыканием на землю называется слу­чайное соединение находящихся под напря­жением частей электроустановки с конструктивными частями, не изолированными от земли, или непосредственно с землей.

Замыканием на корпус называется случайное соединение находящихся под напряжением частей электроустановки с их конструктивными частями, нормально не находящимися под напряжением.

Электроустановки, в которых ток за­мыкания на землю (корпус) не превыша­ет 500 А, считаются электроустановками с малыми токами замыкания на землю. Электроустановки с током замыкания на землю (корпус) более 500 А считаются электроустановками с большими токами замыкания на землю.

С малыми токами однофазного замы­кания на землю (033) работают электроус­тановки напряжением до и выше 1000 В с изолированной нейтралью генератора или трансформатора. Это 3-фазные электроус­тановки с линейным напряжением соответственно 220-380-660 в и 3-35 кВ.

С большими токами замыкания на зем­лю работают электроустановки с заземлен­ной нейтралью (эффективно заземленной нейтралью) напряжением 110 кВ и выше. С заземленной нейтралью работают также 4 проводные 3-фазные электрические сети напряжением до 1000 В, в которых токи 033 могут не иметь больших значений. Это электроустановки напряжением 220/127 В, 380/220 В, 660/380 В.

Однофазные аварийные замыкания на землю (корпус) составляют до 75% от всех видов повреждений в электроустановках.

Режим работы нейтрали в значитель­ной степени влияет также на условия электробезопасности людей. В электроус­тановках с изолированной и заземленной нейтралью применяются разные элект­розащитные мероприятия, которые будут рассмотрены ниже. Электроустановки по условиям электробезопасности разделя­ются на электроустановки напряжением до 1000 В включительно и выше 1000 В.

а) Электроустановки с изолирован­ной нейтралью.

Рассмотрим работу электрической сети с изолированной нейтралью генератора.

Каждый провод сети с изолированной нейтралью относительно земли обладает определенной величиной сопротивления изоляции, а также определенной величи­ной электрической емкости, т.к. каждый из проводов можно рассматривать, как протяженный конденсатор. На воздушных линиях обкладками конденсатора являются проводник и земля, а диэлектриком воздух; на кабельных линиях обкладками конденса­тора являются жила кабеля и металлическая оболочка кабеля, соединенная с землей, а диэлектриком служит изоляция жил ка­беля. Сопротивление изоляции измеряется в мегаоммах. (1 мОм = 10 6 Ом); емкость измеряется в микрофарадах (1 мкф = 10 -6 ф). Это означает, что при нормальном режиме работы электроустановки через сопротив­ления изоляции и землю протекают токи утечки, а через конденсаторы на землю протекают токи, называемые емкостными (ICO).

В исправной электрической сети гео­метрическая сумма токов утечки и емкостных токов (т.е. с учетом сдвига фаз в 3- фазной сети на 120°) равна нулю.

Эти токи равномерно распределены по всей длине проводов. При этом между каж­дой фазой сети и землей будет действовать фазное напряжение сети (Vф= Vл:√3).

Токи утечки можно определить по фор­муле:

Iут= Vф : Rиз

Например, при Vл = 380 в и Rиз = 1 мом ток утечки будет равен:

Iут= 380 (√3∙1∙10 6 )

Емкостные токи определяются по фор­муле:

Iсо= Vф :Xc = Vф ∙ 2πfCo∙10 -6 (A)

Их величина зависит от величины на­пряжения электрической сети и протяжен­ности воздушных и кабельных линий.

Приближенно Iсо можно определить по следующим формулам:

Ico = (Ve):350 (A) — для воздушных линий

Ico = (Ve):10 (A) — для кабельных ли­ний

где V- линейное напряжение сети (кв)

е — длина сети (км)

При нормальных условиях работы сети токи утечки и емкостные токи невелики и не оказывают влияния на нагрузку генераторов или трансформаторов.

При возникновении замыкания одной из фаз на землю, земля получает потенциал поврежденной фазы, а между исправными фазами и землей будет линейное напря­жение. Под действием этого линейного напряжения через место замыкания и через землю будут протекать токи утечки и ем­костные токи двух исправных фаз.

Ток замыкания на землю возрастает в 3 раза и имеет, как правило, емкостной характер:

Ic= 3 Ico

Если замыкание на землю неметалли­ческое, то в месте замыкания может воз­никать, так называемая, перемежающаяся дуга, которая периодически гаснет и за­горается при токах 1с более 5-10 А. При этом могут возникать опасные для изоляции электрооборудования перенапряжения от­носительно земли, достигающие величины равной (3-4) Vф сети, что может привести к пробою изоляции и возникновению 2-фазных коротких замыканий. Опасность дуговых перенапряжений для изоляции возрастает с увеличением напряжения электрической сети, поэтому величина токов замыкания на землю 1с нормируется. В сетях напряже­нием 6 кВ — 1с не должно превышать 30 А, в сетях 10 кВ — не превышать 20 А, в сетях 35 кВ — не превышать 10 А.

С целью уменьшения токов замыка­ния на землю в сетях 3-35 кВ применяют компенсацию емкостных токов замыкания на землю путем заземления нейтралей генераторов или трансформаторов через специальные дугогасящие катушки.

Так как емкостной ток замыкания на землю и индуктивный ток дугогасящей катушки отличаются по фазе на 180°, то в месте замыкания на землю они ком­пенсируют друг друга. В результате ток замыкания на землю не будет превышать 5-10 А, благодаря чему не возникает пе­ремежающаяся дуга.

С точки зрения электробезопасности возникает повышенная опасность для лю­дей, т.к. человек, касающийся неповреж­денной фазы и корпуса, оказывается под действием линейного напряжения.

При однофазных замыканиях на землю не нарушается система межфазных напря­жений, устойчивость работы электрической сети и потребителей, поэтому не требуется немедленное отключение питающих линий энергоснабжения, чтобы не создавать пере­рыва в электроснабжении потребителей.

Исключение составляют электроуста­новки, где требуются повышенные условия электробезопасности (электроустановки торфоразработок, угольных шахт, пере­движные электроустановки). В этих элект­роустановках применяется немедленное от­ключение токов 033. Отключаются релейной защитой также синхронные генераторы и двигатели при внутренних замыканиях обмо­ток статора на корпус при 1О5-10А из-за возможного выгорания железа статора.

В электрических сетях с изолированной нейтралью однофазные замыкания состав­ляют до 63% от всех повреждений.

ПТЭ электроустановок потребителей до­пускают работу электрических питающих сетей с однофазным замыканием на землю в течение 2-х часов с обязательным нахождением и от­ключением поврежденной питающей линии.

В сетях с изолированной нейтралью должен осуществляться непрерывный кон­троль изоляции.

Трехфазная электрическая сеть до 1000 В, которая связана с сетью напря­жением выше 1000 В через понижающий трансформатор должна быть защищена пробивным предохранителем на случай повреждения изоляции между обмотками высшего и низшего напряжения. Пробивной предохранитель устанавливается на нейтра­ли трансформатора или на фазе обмотки низшего напряжения.

Должен предусматриваться контроль за целостностью пробивных предохрани­телей.

б) Электроустановки с эффективно заземленной нейтралью.

В 3-фазных электроустановках напря­жением 110 кВ и выше при нормальном режиме работы между каждым фазным про­водом сети и землей имеет место фазное напряжение электрической сети.

При возникновении замыкания одной из фаз на землю образуется короткозамкнутый контур через землю и нейтраль источника питания, к которому приложено фазное напряжение сети.

При этом токи 033 могут достигать значений в несколько десятков килоампер.

Длительное протекание таких токов может вызвать повреждение электрооборудования, поэтому в этих электроустановках предус­матривается быстрое отключение их уст­ройствами релейной защиты. В этом случае также устраняются перенапряжения, вызыва­емые перемежающимися дугами, (что имеет место в электроустановках с изолированной нейтралью. Недостатком указанных элект­роустановок является возникновение пере­рыва в питании электропотребителей после отключения токов 033, а также значительная стоимость заземляющего устройства, кото­рое согласно ПУЭ, должно обладать весьма малым сопротивлением (R≤0,5ом). 3-фазные четырехпроводные электрические сети с глухозаземленной нейтралью напряжением до 1000 В относятся к сетям с занулением, работа которых рассматривается ниже.

в) Электроустановки постоянного тока.

В электроустановках постоянного тока с номинальным напряжением электроприем­ников 110-220-440 В каждый из проводов имеет относительно земли некоторое со­противление изоляции, распределенное по всей его длине. При этом между «плюсовым» и «минусовым» полюсом через сопротивле­ния изоляции проводов и землю образуется электрическая цепь и протекают некоторые токи утечки.

При нормальном режиме работы токи утечки незначительны.

Если сопротивления изоляции каждого из проводов относительно земли одина­ковы, то каждый из проводов будет иметь относительно земли напряжение равное 0,5 Vном сети. При неодинаковых сопротивле­ниях изоляции относительно земли напря­жения распределяются таким образом, что их сумма будет равна Vном сети.

При замыкании одного из проводов на землю между землей и другим рабочим проводом возникает напряжение, равное полному напряжению сети.

Это значительно увеличивает опасность поражения человека при касании неповрежденного провода. Режим работы электроус­тановки а этом случае не нарушается, если не применено защитное отключение.

В этих электроустановках должен осу­ществляться непрерывный контроль изо­ляции. В электроустановках, применяемых для систем электрической тяги, приняты следующие величины номинальных напря­жений электроприемников:

Городской наземный транспорт (трам­вай, троллейбус) — 550 В; метрополитен — 750 В;

магистральные и пригородные желез­ные дороги — 3000 В;

промышленный электротранспорт: под­земный — 250 В; наземный -500 В, 1500 В.

На шинах питающих тяговых подстанций номинальные напряжения приняты на 10% выше, чем на токоприемниках подвижного состава.

В тяговых электрических сетях контак­тный провод и контактный рельс на мет­рополитене являются плюсовым полюсом источника постоянного тока, которые изо­лированы от земли с помощью специальных изоляторов, закрепленных на металличес­ких или железобетонных конструкциях опор контактной сети и других сооружениях.

Ходовые рельсы являются минусовым полюсом источника тока. Все металличес­кие части опор контактной сети и других сооружений заземляются на ходовые рель­сы с помощью специальных заземляющих проводников.

В случаях нарушения изоляции кон­тактной сети, обрыва контактной сети, замыкания разнополярных проводов, не­исправности в подвижном составе и т.д. возникают короткие замыкания. Из-за устойчивого горения дуги постоянного тока при коротких замыканиях могут воз­никнуть пережоги контактных проводов, разрушиться токоприемники и другое электрооборудование, возникнуть пожары на подвижном составе, что может вызвать длительный перерыв в движении подвиж­ного состава и угрозу для жизни людей.

Поэтому в системе электрической тяги предусматривается быстрое, надежное, селективное отключение токов короткого замыкания на поврежденных участках кон­тактной сети с помощью быстродействую­щих автоматических выключателей посто­янного тока, имеющих собственное время отключения порядка 0,04-0,05 сек.

Для обеспечения четкого отключения токов короткого замыкания на участках контактной сети должны быть соблюдены условия, при которых токи короткого за­мыкания были бы больше максимальных расчетных токов нагрузки линии и установок зашиты быстродействующих линейных вы­ключателей.

Если указанные условия не выполня­ются, то применяются специальные техни­ческие мероприятия, способствующие на­дежному отключению быстродействующих выключателей. Это позволяет обеспечить также повышенную электробезопасность людей.

Источник

Общие сведения об электроустановках

Электроустановками (ЭУ) называют совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования (изменения рода тока, напряжения, частоты или числа фаз), передачи, накопления, распределения электрической энергии и (или) преобразования ее в другой вид энергии.

Читайте также:  Номинальный ток электродвигателя что это такое

Электроустановки разделяют по назначению, роду тока и по напряжению. Как правило, на промышленных предприятиях применяются ЭУ напряжением не выше 220 кВ.

По назначению различают ЭУ: производящие электрическую энергию – электростанции; потребляющие ее – электроприемники; преобразующие (переменный ток в постоянный, промышленную частоту в частоту, отличную от 50 Гц) и распределяющие – трансформаторные и преобразовательные подстанции; электрические сети (линии электропередачи), распределительные подстанции.

Действующими считают электроустановки, которые имеют источники электроэнергии и находятся под напряжением полностью либо частично, либо такие, на которые в любой момент времени может быть подано напряжение.

В Правилах устройства электроустановок (ПУЭ) различают сети до 1 кВ и выше 1 кВ. Первые принято называть сетями низкого напряжения (сети НН), вторые – сетями высокого напряжения (сети ВН). В области низких напряжений отдельно выделяется диапазон малых напряжений, к которым относят малое рабочее напряжение (например, для питания некоторых электронных устройств) и малое напряжение безопасности (по ПУЭ до 42 В переменного или до 110 В постоянного тока).

Номинальное напряжение трехфазной сети определяется как номинальное междуфазное (линейное) напряжение присоединенных к этой сети электроприемников. По номинальному напряжению электроприемников выбирают напряжение питающей сети и выходное напряжение индивидуальных преобразователей или других источников питания.

По роду тока различают электроприемники переменного, постоянного и импульсного тока. В настоящее время практически все электроприемники постоянного тока (например, электропривод постоянного тока) снабжаются индивидуальными преобразователями переменного тока в постоянный. В качестве преобразователей наиболее часто применяются управляемые и неуправляемые полупроводниковые (тиристорные, транзисторные) выпрямители.

Сети постоянного тока встречаются редко, так как преобразование электроэнергии переменного тока в постоянный требует капитальных затрат на установку преобразовательных агрегатов и аппаратуры управления, на строительство помещений для них, а также эксплуатационных расходов на обслуживание и на потери электроэнергии. Стоимость системы электроснабжения и удельная стоимость электроэнергии на постоянном токе выше стоимости на переменном токе. Двигатели постоянного тока стоят дороже, чем асинхронные и синхронные двигатели.

Для питания электроприемников импульсного тока (например, машины контактной сварки) также используют индивидуальные преобразователи, снабженные энергонакопительными устройствами (конденсаторами, большими вращающимися массами и т.п.). Эти приемники вместе со своими преобразователями и накопителями рассматриваются как электроприемники переменного тока.

Приемником электроэнергии называют устройство (аппарат, агрегат, установку, механизм), в котором электрическая энергия преобразовывается в другой вид энергии (или в электрическую, но с другими параметрами) для ее использования.

По технологическому назначению приемники электроэнергии классифицируют в зависимости от вида энергии, в который данный приемник преобразует электрическую энергию, например: осветительные установки; электротермические и электросиловые установки; электрохимические установки; механизмы приводов машин и механизмов; установки искровой обработки; электронные и вычислительные машины; установки электростатического и электромагнитного поля и др.

Потребитель — электроприемник или группа электроприемников, объединенных технологическим процессом и размещающихся на определенной территории (предприятие, организация, территориально обособленный цех, строительная площадка, квартира и др.).

Электрооборудованием называют совокупность электротехнических установок и (или) изделий. Электрооборудование может иметь соответствующее название, например, электрооборудование станка, электрооборудование крана и т.п.

Электрооборудование разделяют на силовое и осветительное. Силовое охватывает все виды электроприемников, исключая электрооборудование, предназначенные для освещения.

По частоте переменного тока различают электроприемники промышленной, повышенной и пониженной частоты.

Промышленной называют частоту, на которой работают электростанции, энергосистемы и системы электроснабжения потребителей. В странах СНГ, во всех европейских странах и во многих странах других континентов используется промышленная частота 50 Гц, а в Северной Америке и в большинстве стран Южной Америки, Азии и Африки – 60 Гц. Долгий опыт применения этих двух частот показывает, что частота 60 Гц экономически более целесообразна. Магнитный поток всех электромагнитных устройств (трансформаторов, машин переменного тока, дросселей и др.) одинаковой мощности при частоте 60 Гц на 17% ниже, чем при частоте 50 Гц, соответственно меньше сечение и масса магнитопровода, средняя длина витков обмотки и общая материалоемкость этих устройств. Также увеличивается на 20% индуктивное сопротивление (XL=ωL) всех элементов сетей, что приводит к увеличению потерь напряжения и реактивной мощности. Технико-экономические расчеты показывают, что оптимальной является частота около 100 Гц. Однако переход на новую частоту развитых современных энергосистем связан с очень большими расходами, что в настоящее время неосуществимо.

Повышенной называется частота выше промышленной. Электроприемники повышенной частоты питаются через индивидуальные преобразователи частоты и в комплекте с ними рассматриваются как приемники промышленной частоты.

На промышленных предприятиях частота от 200 до 400 Гц встречается в переносных электроинструментах (для снижения их массы), до 20 кГц – в устройствах расплавления и нагрева металлов, 20÷40 кГц – для питания люминесцентных ламп, до 100 кГц – в установках поверхностной закалки, до 20 МГц — для нагрева полупроводниковых и диэлектрических материалов (сушка древесины, термообработка пищевых продуктов, быстрая полимеризация клея и т.п.).

Пониженной называется частота ниже промышленной. Достигается низкая частота применением индивидуальных преобразователей. В некоторых электротермических устройствах понижение частоты необходимо для увеличения глубины проникновения электромагнитного поля в нагреваемое крупногабаритное изделие.

Число фаз электроприемников переменного тока составляет 3 или 1 (трехфазные или однофазные). Эти электроприемники питаются, как правило, от трехфазных сетей. Редко встречающиеся 2-, 5-, 6-, 12-ти фазные электроприемники питаются от индивидуальных преобразователей числа фаз и в итоге превращаются в трехфазные электроприемники.

Номинальная мощность приемника электроэнергии – это мощность, обозначенная на заводской табличке или в паспорте двигателя, силового или специального трансформатора либо на колбе или цоколе источников света.

У электродвигателей номинальная мощность равна мощности на валу при номинальной продолжительности включения, а у других электротехнических установок равна полной мощности, потребляемой в номинальном режиме из сети. Номинальная мощность светильников с лампами накаливания совпадает с потребляемой мощностью, а светильников с разрядными лампами – с мощностью только ламп, без учета потерь мощности в пускорегулирующих устройствах.

Установленная мощность — один из важных показателей электроприемников, определяется как сумма номинальных мощностей однородных электроприемников. При определении этой величины следует учитывать, что у различных электроприемников номинальная мощность понимается по-разному. Поэтому установленные мощности разнохарактерных групп электроприемников суммируются, если это нужно, только после приведения их к одинаковым условиям определения.

Пусковые токи электроприемников и длительность этих токов необходимо знать для правильного выбора пропускной способности элементов системы электроснабжения и для расчета колебаний напряжения в сети при пуске электроприемников. Например, при пуске асинхронных короткозамкнутых двигателей пусковые токи превышают номинальный ток в 4÷7 раз и длятся от долей секунды до нескольких секунд. Пусковые токи и их длительность считают существенными, когда их необходимо учитывать для корректировки параметров какого-либо элемента системы электроснабжения, например, сечения проводника, тока срабатывания аппарата защиты, выбранных по токам нормального режима. Несущественными считаются пусковые токи ламп накаливания (кратность до 6) и конденсаторных установок (кратность до 20) благодаря их очень малой длительности (несколько миллисекунд).

Линейность – постоянство сопротивлений цепей электроприемников за один период – является главным условием сохранения синусоидальности напряжений и токов в сети. Многие электроприемники нелинейны, что приводит к появлению высших гармоник и искажению кривой напряжения и тока. В настоящее время число электроприемников с нелинейной характеристикой растет. Типичными примерами нелинейных электроприемников являются полупроводниковые преобразователи, разрядные лампы, электродуговые печи, сварочные машины, ферромагнитные регуляторы. Нелинейность этих электроприемников вызвана их электронными, насыщенными ферромагнитными или электроразрядными элементами.

По подвижности различают стационарные и нестационарные (подвижные, переносные и др.) электроприемники. Первые питаются от стационарных элементов электрических сетей, вторые требуют применения гибких элементов (например, гибких кабелей), устройств временного присоединения в разных точках сети, контактных проводников (например, троллей), подвижных или встроенных индивидуальных источников питания, что приводит к определенному усложнению систем электроснабжения.

Степень симметрии электроприемников (степень равномерности распределения мощности по фазам) определяет равномерность нагрузки фаз питающей сети и симметричность фазных напряжений, влияет на потери напряжения и мощности в этой сети. Большинство промышленных силовых электроприемников симметричны. В определенной степени несимметричными могут оказаться осветительные установки, так как не всегда удается распределить однофазные светильники равномерно по всем трем фазам. Наиболее часто вышеназванные проблемы вызывают крупные однофазные электротермические устройства, например, однофазные электропечи и сварочные агрегаты. Мощность однофазных дуговых печей может достигать до нескольких мегавольт-ампер (МВА).

Требования к качеству электроэнергии приведены в ГОСТ 13109-97, ПУЭ и в других нормативных документах. Сохранение качества электроэнергии при частых коммутациях в силовых цепях электроприемников, при больших колебаниях и толчках нагрузки, при вносимых электроприемниками нелинейностях – одна из сложных задач в электроснабжении современных промышленных предприятий.

Требования к надежности электроснабжения приведены в ПУЭ.

В отношении обеспечения надежности электроснабжения электроприемники разделяются на следующие три категории:

а) электроприемники I категории – электроприемники, перерыв в электроснабжении которых может повлечь за собой: опасность для жизни людей, значительный ущерб народному хозяйству; повреждение дорогостоящего основного оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства.

Из состава электроприемников I категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийной остановки производства с целью предотвращения угрозы жизни людей, взрывов, пожаров и повреждения дорогостоящего основного оборудования (системы автоматизированного управления производством, установки связи, оперативные цепи системы электроснабжения, ЭВМ и т.п.).

Электроприемниками I категории являются больницы, сооружения с массовым скоплением людей (театры, универмаги, стадионы), предприятия связи, электрифицированный транспорт (метрополитен, железные дороги), высотные здания, группы городских потребителей с суммарной нагрузкой выше 10 000 кВА, энергетическое оборудование металлургического производства, шахтные вентиляторы и насосы, многие установки химической промышленности, аварийное освещение, ЭВМ, сталеплавильные печи и т.п.

б) Электроприемники II категории – электроприемники, перерыв в электроснабжении которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.

Электроприемниками II категории являются некоторые электроустановки промышленных предприятий, жилые дома высотой от 5 до 10 этажей с газовыми плитами, жилые дома с электроплитами, учебные заведения, лечебные и детские учреждения, группы городских потребителей с общей нагрузкой от 400 до 10 000 кВА.

в) электроприемники III категории – все остальные электроприемники, не подходящие под определения I и II категории.

Электроприемники I категории должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения, при нарушении электроснабжения от одного из источников питания, может быть допущен лишь на время автоматического восстановления питания, но не более чем на 1 мин (рисунок 3.2, а).

Независимым источником питания называется источник питания (ИП), на котором сохраняется напряжение в пределах, регламентированных для послеаварийного режима, при исчезновении его на других источниках питания.

В связи с появлением новых химических производств, высокопроизводительных металлургических агрегатов и ряда других электроприемников возникла необходимость распространения требований I категории при проектировании на все большее число потребителей. При этом, чтобы избежать излишних затрат, целесообразно подразделить электроприемники, отнесенные к I категории, т.е. выделить среди них такие, которые должны быть отнесены к наивысшей категории (так называемая «особая группа I категории»).

Для электроснабжения «особой» группы электроприемников I категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания. В качестве третьего независимого источника питания для «особой» группы электроприемников и в качестве второго независимого источника питания для остальных электроприемников I категории могут быть использованы местные электростанции, электростанции энергосистем, специальные агрегаты бесперебойного питания, аккумуляторные батареи и т.п.

Схема электроснабжения электроприемников «особой» группы I категории должна обеспечивать:

— постоянную готовность третьего независимого источника и автоматическое его включение при исчезновении напряжения на обоих основных источниках питания;

— перевод независимого источника в режим горячего резерва при выходе из работы одного из двух основных источников питания.

Мощность третьего независимого источника должна быть минимальной, обеспечивающей питание только электроприемников «особой» группы, необходимых для безаварийной остановки производства. К этим источникам не должны подключаться другие электроприемники.

Читайте также:  Промышленность получение электрического тока 1

Большинство промышленных предприятий имеет потребителей I и II категорий, поэтому их электроснабжение осуществляется не менее чем по двум линиям электропередачи.

УАВР – устройство автоматического включения резерва; УАРТ – устройство автоматической разгрузки по току; ШНН – шина низкого напряжения; РП – распределительный пункт; ЩО – щит рабочего освещения; Q – силовой выключатель; Т – трехфазный цеховой трансформатор; QF автоматический выключатель (автомат)

Рисунок 3.2 – Схемы цеховых схем электроснабжения первой (а), второй (б) и третьей категорий (в)

Наиболее целесообразны следующие две схемы:

· линии электропередачи закреплены на отдельных опорах и идут по разным трассам;

· каждая подстанция питается от двух цепей линий, расположенных на разных опорах.

Допускается, как исключение, питание потребителей I категории по одной двухцепной линии только при отсутствии потребителей, бесперебойная работа которых необходима для безаварийного останова предприятия. Пропускную способность линий выбирают так, чтобы при выходе из строя одной из них, оставшиеся обеспечивали бы питание потребителей I и II категорий, необходимых для работы основных цехов предприятия. При отсутствии точных данных о мощности потребителей I и II категорий пропускную способность линий, оставшихся в работе при аварийном режиме, рекомендуется выбирать с обеспечением 60÷80% всей расчетной нагрузки.

Для электроприемников II категории рекомендуется питание от двух независимых взаимно резервирующих источников (рисунок 3.2,б). При нарушении электроснабжения от одного из источников питания допустимы перерывы электроснабжения на время, необходимое для ремонта линии и замены трансформаторов (не более 1 суток).

Для электроприемников III категории электроснабжение может выполняться от одного источника питания (рисунок 3.2, в) при условии, что перерывы электроснабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают 1 суток.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Практикум. Подбор защитного оборудования для сетей постоянного тока

Постоянный ток (DC — от англ DirectCurrent) — один из главных способов передачи и распределения электрической энергии. Сегодня он широко используется в следующих областях:

  • преобразование различных видов энергии в электрическую (например, фотогальванические станции);
  • транспорт (трамвайные линии, железные дороги и пр.);
  • питание систем аварийного предупреждения, а также систем собственных нужд;
  • промышленные установки (электролитические процессы и т.п.).

Сети постоянного тока довольно специфичны, поэтому для того, чтобы грамотно выбрать коммутационное оборудование, необходимо следовать определённой последовательности действий.

ШАГ 1. Определение топологии сети

Отключение постоянного тока связано с существенными трудностями при гашении дуги. Проблема обусловлена тем, что в системах постоянного тока отсутствует естественный переход кривой зависимости I(t) через ноль и необходимо принудительно снижать значение тока. Характер уменьшения указанной величины до нуля зависит от напряжения источника питания, параметров электроустановки и сопротивления, возникающего во время гашения дуги. Чем больше соединённых последовательно полюсов, тем выше сопротивление дуги, и больше максимальный коммутируемый ток короткого замыкания (КЗ). Для улучшения работы автоматических выключателей в условиях КЗ в зависимости от напряжения электроустановки и топологии сети необходимо использовать специальные комбинации соединения полюсов. Эта информация позволяет оценить возможные неисправности, после чего выбрать подходящий тип соединения полюсов выключателя с учётом характеристик электроустановки (ток КЗ, напряжение питания, номинальная величина нагрузки и т.д.).

Рассмотрим три основные системы распределения на постоянном токе.

1. Сеть, изолированная от земли (IT)


Рис. 1. Система IT постоянного тока

Описание. Все токоведущие части источника питания изолированы, открытые проводящие части заземлены.

Топологии повреждения Самая Опасная для IT неисправность — короткое замыкание между положительным и отрицательным полюсами.

Соединение полюсов оборудования. Зависит от напряжения источника питания и требуемой отключающей способности.

NB!

Возможность двойного замыкания на землю (первое — замыкание одного из полюсов со стороны источника питания, второе — замыкание другого полюса со стороны нагрузки) не рассматривается. Однако следует использовать устройство контроля изоляции сети относительно земли.

2. Сеть с одной заземлённой полярностью


Рис. 2. Система ТТ (слева) и TN-C-S (справа) постоянного тока
для сети с одной заземлённой полярностью

Описание. Один из полюсов сети соединён с землёй. Такой тип системы может привести к перенапряжениям вследствие статического электричества, стекающего через землю.

Топология повреждений. В данном случае основное повреждение — это короткое замыкание между двумя полярностями. Но необходимо брать в рассмотрение также замыкание между незаземлённой полярностью и землёй, поскольку ток может течь под полным напряжением.

Соединение полюсов оборудования. Зависит от напряжения источника питания и требуемой отключающей способности. Заземление должно быть осуществлено со стороны питания автоматического выключателя.

3. Сеть с заземлённой средней точкой источника питания


Рис. 4. Система ТТ (слева) и TN-C-S (справа) постоянного тока
для сети с заземлённой средней точкой

Описание. Средняя точка источника питания соединена с землёй. Основной недостаток данного соединения в сравнении с другими типами заключается в том, что замыкание между любой из полярностей и землёй вызывает ток с приложенным напряжением, равным половине напряжения питания.

Топология повреждений Основное повреждение, как и в предыдущем случае — короткое замыкание между двумя полярностями НО необходимо брать в рассмотрение также замыкание между полярностью И землёй, поскольку ток может течь под напряжением, равным U / 2.

Соединение полюсов оборудования. Необходимо устанавливать автоматические выключатели таким образом, чтобы на каждую полярность приходилось по два полюса автоматического выключателя. При возникновении короткого замыкания между двумя полюсами сети напряжение цепи равно номинальному, и такой сверхток отключается четырьмя последовательно соединёнными полюсами автоматического выключателя.

ШАГ 2. Электрические параметры

Для верного выбора защитного устройства в сети постоянного тока необходимо знать несколько электрических параметров, характерных для этого аппарата:

  1. Номинальное напряжение установки Un. Оно определяет рабочую величину Ue, которая зависит от соединения полюсов и проверяется соотношением Un ≤ Ue.
  2. Ток короткого замыкания в месте установки автоматического выключателя Ik. Он определяет исполнение автоматического выключателя (зависит от типоразмера и соединения полюсов) и проверяется выражением

  • Номинальный ток, потребляемый нагрузкой Ib. От данной величины зависит номинальный ток В термомагнитного или электронного расцепителя. Должно выполняться следующее соотношение: Ib≤In.
  • Словарь инженера
    Номинальное рабочее напряжение Ue – задаётся из стандартизированного ряда величин, определяющих уровень изоляции сети и электрооборудования.
    Номинальный непрерывный ток Iu – величина, которую оборудование может выдерживать в течение долгого времени работы.
    Номинальный ток автоматического выключателя In – определяет защитные характеристики аппарата в соответствии с возможными настройками расцепителя.
    Предельная отключающая способность автоматического выключателя Icu –максимальный ток КЗ, который аппарат способен отключить однократно при соответствующем номинальном рабочем напряжении, без гарантии сохранения работоспособности.
    Номинальная рабочая отключающая способность Ics – максимальный ток КЗ, который аппарат способен отключить три раза 1 при определённом рабочем напряжении (Ue) и определённой постоянной времени. После этого автоматический выключатель должен проводить номинальный ток.
    Номинальный кратковременно выдерживаемый ток КЗ – величина, которую автоматический выключатель способен проводить в замкнутом положении в течение определённого промежутка времени. Аппарат должен выдерживать данный ток в течение установленной временной задержки для обеспечения селективности между последовательно стоящими автоматическими выключателями.

    ШАГ 3. Обеспечение селективности

    Работа аппаратов защиты в цепях постоянного тока координируется путём постепенного повышения порогов токов и задержки срабатывания по мере приближения к источнику питания, то есть обеспечивается так называемая временная селективность. Нужно убедиться, что вышестоящие автоматические выключатели с задержкой срабатывания имеют значение кратковременно выдерживаемого тока, превышающее максимальную величину КЗ, которая может протекать в рассматриваемой части установки.

    «Временная селективность обычно реализуется в электроустановках на уровне вводных устройств и главных распределительных щитов (ГРЩ). Для реализации селективности на нижних уровнях электроустановок следует выбрать другой тип координации устройств защиты. Так, например, для аппаратов в литом корпусе серии Tmax XT и Tmax на постоянном токе можно реализовать энергетическую селективность, а для воздушных автоматических выключателей Emax DC осуществляется также и зонная селективность», — дополняет Игорь Мещеряков , менеджер по группе изделий компании АББ, лидера в производстве силового оборудования и технологий для электроэнергетики и автоматизации.

    Для обеспечения селективного срабатывания автоматических выключателей на постоянном токе необходимо:

    • построить времятоковые характеристики автоматических выключателей с термомагнитными и электронными расцепителями с учётом допусков и поправочных коэффициентов;
    • проанализировать построенные характеристики с точки зрения обеспечения функций защиты и селективного срабатывания;
    • составить карту уставок с учётом необходимых настроек расцепителей.

    В случае необходимости обеспечения высоких предельных токов селективности, подобрать выключатели в соответствие с указаниями таблиц координации.

    «Возможностей создать энергетическую систему с учётом требований по селективности на сегодняшний день более чем достаточно, — утверждает Игорь Мещеряков (АББ). — Современные электронные расцепители для постоянного тока, например, такие как PR122/DC — PR123/DC, обладают несколькими селективными задержками от короткого замыкания с обратнозависимой или фиксированной кратковременной задержкой срабатывания. Наличие широкого спектра встроенных защит (от замыкания на землю, превышения температуры, небаланса токов, колебаний напряжения, реверсирования мощности и др.) Позволяет осуществить функции, которые раньше были доступны только для электроустановок переменного тока».

    От теории к практике

    Пример 1. Рассмотрим выбор автоматического выключателя для сетей постоянного тока на примере автоматических выключателей в литом корпусе серии Tmax.

    Параметры установки:
    Тип сети: с одной заземлённой полярностью (только отрицательная)
    Напряжение установки: Un = 250 В постоянного Тока
    Номинальный ТОК, потребляемый нагрузкой: В = 450
    Ток короткого замыкания: 40 кА

    Для выбранного автоматического выключателя должны выполняться следующие условия:
    Ue ≥ Un
    Icu ≥ Ik
    In ≥ Ib

    Как правило, у производителей существуют таблицы для подбора аппаратов постоянного тока, ниже в примерах приведены необходимые выдержки из них.
    В соответствии с типом сети необходимо выбрать таблицу, относящуюся к сети с одной заземлённой полярностью (см. табл. 1).

    Табл. 1. Варианты соединения полюсов автоматических выключателей в литом корпусе Tmax для работы в сети с одной заземлённой полярностью (в рассматриваемых соединениях заземлена отрицательная полярность)

    * Заземление должно быть осуществлено со стороны питания автоматического выключателя

    Выбираем столбец с напряжением сети больше или равным напряжению электроустановки. Нужная строка подбирается по номинальному непрерывному току МЕ автоматического выключателя, который должен быть больше или равен току нагрузки. В соответствии с заданными в примере условиями следует выбирать автоматический выключатель Tmax Т5 c Iu=630A.

    Исполнение по отключающей способности (НШ и т.д.) определяется с учётом выполнения условия Icu>Ik. В данном случае можно выбрать исполнение S, так как Ik = 40 кА.

    Указанным требованиям удовлетворяют две схемы соединения полюсов, если должен отключаться заземлённый полюс сети, то следует выбрать следующий вариант:

    Среди номинальных токов, доступных для термомагнитного расцепителя выключателя T5S630, может быть выбран In = 500 A, поэтому допустимо применять трёхполюсный термомагнитный автоматический выключатель T5S630 TMA500. Аппарат использует два полюса, соединённых последовательно на изолированной полярности, и один — на заземлённой. При этом при выборе автоматического выключателя с термомагнитным расцепителем необходимо учитывать поправочный коэффициент срабатывания по КЗ. 2

    Пример 2. Рассмотрим выбор воздушного автоматического выключателя на примере серии Emax.

    Параметры установки:
    Тип сети: изолированная
    Напряжение установки: Un = 500 В постоянного Тока
    Номинальный ток, потребляемый нагрузкой: In = 1800 А
    ток короткого замыкания: 45кA

    Выбор автоматического выключателя

    В соответствии с типом сети необходимо выбрать таблицу, относящуюся к сети, изолированной от земли (см. табл. 2).

    Табл. 2. Соединение полюсов воздушных выключателей Emax для работы в изолированной сети

    Исходя из заданной величины номинального напряжения выбираем столбец Un ≤ 500 В. В нём наиболее подходящим по характеристикам тока короткого замыкания является автоматический выключатель E2N (N = 50 кА> IK), но если выбрать этот аппарат, не будет выполняться условие In ≥ Ib.

    Согласно таблице 3, относящейся к номинальному непрерывному току, необходимо выбрать автомат типа E3N, т.к. он имеет ток Iu = 2000 A (это значение соответствует In расцепителя) и только в этом случае выполняется соотношение In ≥ Ib.

    Читайте также:  Пример газов проводящих ток

    Табл. 3. Исполнения автоматических выключателей Emax для постоянного тока

    Выбран трёхполюсный автоматический выключатель E3N 2000 с расцепителем PR122-123/DC In = 2000A. В таблице 2 показано соединение между трёхполюсным выключателем, нагрузкой и источником питания:


    Стоит отметить, что правильный выбор аппаратов защиты для сетей постоянного тока возможен только в случае строгого соблюдения описанных выше рекомендаций. Важно помнить, что некорректно подобранный автоматический выключатель не только не выполнит свои прямые защитные функции, но и в случае неправильно рассчитанной отключающей способности может выйти из строя и оставить электроустановку полностью незащищённой.

    1 В соответствии с циклом отключений и включений (О-трет-СО-трет-CO).

    2 см. Техническая брошюра «Низковольтные автоматические выключатели АББ для применений на постоянном токе» стр. 33-34.

    Источник

    Чем отличаются и где используются постоянный и переменный ток

    В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.

    Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.

    Чем отличаются и где используются постоянный и переменный ток

    Что такое электрический ток и напряжение

    Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

    • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
    • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
    • частота, измеряемая в герцах (Гц).

    Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

    Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

    Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

    Чем отличаются и где используются постоянный и переменный ток

    Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

    Что такое переменный ток

    Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

    Что такое постоянный ток

    Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

    Источники электрического тока

    Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.

    Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.

    Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.

    Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.

    Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.

    Преобразование переменного тока в постоянный

    Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.

    Чем отличаются и где используются постоянный и переменный ток

    Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров. Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.

    В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.

    Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам. В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.

    Где используется и в чём преимущества переменного и постоянного тока

    Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.

    Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.

    Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.

    Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).

    Обозначения на электроприборах и схемах

    Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.

    Чем отличаются и где используются постоянный и переменный ток

    Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.

    На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.

    Почему переменный ток используется чаще

    Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.

    Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.

    Чем отличаются и где используются постоянный и переменный ток

    Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями . Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.

    Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.

    В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.

    При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.

    Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.

    Чем отличаются и где используются постоянный и переменный ток

    Как устроен генератор переменного тока — назначение и принцип действия

    Что такое активная и реактивная мощность переменного электрического тока?

    Чем отличаются и где используются постоянный и переменный ток

    Что такое частотный преобразователь, основные виды и какой принцип работы

    Чем отличаются и где используются постоянный и переменный ток

    Что такое конденсатор, виды конденсаторов и их применение

    Чем отличаются и где используются постоянный и переменный ток

    Как условно обозначаются элементы на электрических схемах?

    Чем отличаются и где используются постоянный и переменный ток

    Что такое варистор, основные технические параметры, для чего используется

    Источник

    Adblock
    detector