Векторные диаграммы неразветвленной электрической цепи переменного тока

Содержание
  1. Векторная диаграмма токов и напряжений
  2. Разновидности векторных диаграмм
  3. Векторные диаграммы и комплексное представление
  4. Примеры применения
  5. Механика, гармонический осциллятор
  6. Свободные гармонические колебания без затухания
  7. Гармонический осциллятор с затуханием и внешней вынуждающей силой
  8. Расчет электрических цепей
  9. Преобразование Фурье
  10. Сложение двух синусоидальных колебаний
  11. Фурье-образ прямоугольного сигнала
  12. Дифракция
  13. Построение векторной диаграммы напряжений и токов
  14. Видео
  15. Расчет неразветвленных цепей переменного тока
  16. Векторная диаграмма
  17. Расчетные формулы
  18. Векторные диаграммы электрических цепей
  19. Представление синусоидальных функций в виде комплексных чисел
  20. Закон Ома в комплексной форме
  21. Векторная диаграмма при последовательном соединении элементов
  22. Векторная диаграмма при параллельном соединении элементов
  23. Список использованной литературы
  24. Рекомендуемые записи
  25. Расчет неразветвленной электрической цепи переменного тока
  26. Презентация к уроку

Векторная диаграмма токов и напряжений

Цифровое представление динамических процессов затрудняет восприятие, усложняет расчет выходных параметров после изменения условий на входе или в результате выполненной обработки. Векторная диаграмма токов и напряжений помогает успешно решать обозначенные задачи. Ознакомление с теорией и практическими примерами поможет освоить данную технологию.

Диаграмма, поясняющая процесс короткого замыкания в трехфазной цепи счетчика электроэнергии

Разновидности векторных диаграмм

Для корректного отображения переменных величин, которые определяют функциональность радиотехнических устройств, хорошо подходит векторная графика. Подразумевается соответствующее изменение основных параметров сигнала по стандартной синусоидальной (косинусоидальной) кривой. Для наглядного представления процесса гармоническое колебание представляют, как проекцию вектора на координатную ось.

С применением типовых формул несложно рассчитать длину, которая получится равной амплитуде в определенный момент времени. Угол наклона будет показывать фазу. Суммарные влияния и соответствующие изменения векторов подчиняются обычным правилам геометрии.

Различают качественные и точные диаграммы. Первые применяют для учета взаимных связей. Они помогают сделать предварительную оценку либо используются для полноценной замены вычислений. Другие создают с учетом полученных результатов, которые определяют размеры и направленность отдельных векторов.

Круговая диаграмма

Допустим, что надо изучить изменение параметров тока в цепи при разных значениях сопротивления резистора в диапазоне от нуля до бесконечности. В этой схеме напряжение на выходе (U) будет равно сумме значений (UR и UL) на каждом из элементов. Индуктивный характер второй величины подразумевает перпендикулярное взаимное расположение, что хорошо видно на части рисунка б). Образованные треугольники отлично вписываются в сегмент окружности 180 градусов. Эта кривая соответствует всем возможным точкам, через которые проходит конец вектора UR при соответствующем изменении электрического сопротивления. Вторая диаграмма в) демонстрирует отставание тока по фазе на угол 90°.

Линейная диаграмма

Здесь изображен двухполюсный элемент с активной и реактивной составляющими проводимости (G и jB, соответственно). Аналогичными параметрами обладает классический колебательный контур, созданный с применением параллельной схемы. Отмеченные выше параметры можно изобразить векторами, которые расположены постоянно под углом 90°. Изменение реактивной компоненты сопровождается перемещением вектора тока (I1…I3). Образованная линия располагается перпендикулярно U и на расстоянии Ia от нулевой точки оси координат.

Векторные диаграммы и комплексное представление

Такой инструментарий помогает строить наглядные графические схемы колебательных процессов. Аналогичный результат обеспечивает применение комплексных числовых выражений. В этом варианте, кроме оси с действительными, применяют дополнительный координатный отрезок с мнимыми значениями. Для представления вектора пользуются формулой A*ei(wt+f0), где:

  • А – длина;
  • W – угловая скорость;
  • f0 – начальный угол.

Значение действительной части равно A*cos*(w*t+f0). Это выражение описывает типичное гармоническое колебание с базовыми характеристиками.

Примеры применения

В следующих разделах приведены описания задач, которые решают с помощью представленной методики. Следует подчеркнуть, что применение комплексных чисел пригодно для сложных расчетов с высокой точностью. Однако на практике достаточно часто сравнительно простой векторной графики с наглядным отображением исходной информации на одном рисунке.

Механика, гармонический осциллятор

Таким термином обозначают устройство, которое можно вывести из равновесного состояния. После этого система возвращается в сторону исходного положения, причем сила (F) соответствующего воздействия зависит от дальности первичного перемещения (d) прямо пропорционально. Величину ее можно уточнить с помощью постоянного корректирующего коэффициента (k). Отмеченные определения связаны формулой F=-d*k

Формулы для расчета основных параметров гармонического осциллятора

К сведению. Аналогичные процессы происходят в системах иной природы. Пример – создание аналога на основе электротехнического колебательного контура (последовательного или параллельного). Формулы остаются теми же с заменой соответствующих параметров.

Свободные гармонические колебания без затухания

Продолжая изучение темы на примерах механических процессов, можно отметить возможность построения двухмерной схемы. Скорость в этом случае на оси Х отображается так же, как и в одномерном варианте. Однако здесь можно учесть дополнительно фактор ускорения, которое направляют под углом 90° к предыдущему вектору.

Гармонический осциллятор с затуханием и внешней вынуждающей силой

В этом случае также можно воспользоваться для изучения взаимного влияния дополнительных факторов векторной графикой. Как и в предыдущем примере, скорость и другие величины представляют в двухмерном виде. Чтобы правильно моделировать процесс, проверяют суммарное воздействие внешних сил. Его направляют к центру системы (точке равновесия). С применением геометрических формул вычисляют амплитуду механических колебаний после начального воздействия с учетом коэффициента затухания и других значимых факторов.

Расчет электрических цепей

Векторную графику применяют для сравнительно несложных цепей, которые созданы из набора элементов линейной категории: конденсаторы, резисторы, катушки индуктивности. Для более сложных схем пользуются методикой расчета «Комплексных амплитуд», в которой реактивные компоненты определяют с помощью импедансов.

Векторная диаграмма для схемы соединений без нейтрального провода – звезда

Векторная диаграмма в данном случае выполняет функцию вспомогательного чертежа, который упрощает решение геометрических задач. Для катушек и конденсаторов, чтобы не пользоваться комплексным исчислением, вводят специальный термин – реактивное сопротивление. При синусоидальном токе изменение напряжения на индуктивном элементе описывается формулой U=-L*w*I0sin(w*t+f0).

Несложно увидеть подобие с классическим законом Ома. Однако в данном примере изменяется фаза. По этому параметру на конденсаторе напряжение отстает от тока на 90°. В индуктивности – обратное распределение. Эти особенности учитывают при размещении векторов на рисунке. В формуле учитывается частота, которая оказывает влияние на величину этого элемента.

Читайте также:  Двигатель потребляет ток больше номинального

Схемы и векторные диаграммы для идеального элемента и диэлектрика с потерями

Преобразование Фурье

Векторные технологии применяют для анализа спектров радиосигналов в определенном диапазоне. Несмотря на простоту методики, она вполне подходит для получения достаточно точных результатов.

Сложение двух синусоидальных колебаний

В ходе изучения таких источников сигналов рекомендуется работать со сравнительно небольшой разницей частот. Это поможет создать график в удобном для пользователя масштабе.

Фурье-образ прямоугольного сигнала

В этом примере оперируют суммой синусоидальных сигналов. Последовательное сложение векторов образует многоугольник, вращающийся вокруг единой точки. Для правильных расчетов следует учитывать отличия непрерывного и дискретного распределения спектра.

Дифракция

Для этого случая пользуются тем же отображением отдельных синусоид в виде векторов, как и в предыдущем примере. Суммарное значение также вписывается в окружность.

Построение векторной диаграммы напряжений и токов

Для изучения технологии выберем однофазный источник синусоидального напряжения (U). Ток изменяется по формуле I=Im*cos w*t. Подключенная цепь содержит последовательно подключенные компоненты со следующими значениями:

  • резистор: Ur=Im*R*cos w*t;
  • конденсатор: Uc=Im*Rc*cos (w*t-π/2), Rc=1/w*C;
  • катушка: UL= Im*RL*cos(w*t+π/2), RL=w*L.

При прохождении по цепи переменного тока на реактивных элементах будет соответствующий сдвиг фаз. Чтобы построить вектора правильно, рассчитывают амплитуды и учитывают изменение направлений. Ниже приведена последовательность создания графики вручную.

Диаграмма напряжений и токов на отдельных элементах

Далее с применением элементарных правил геометрии проверяют взаимное влияние векторов.

Решение векторного уравнения

На первом рисунке приведен результат сложения двух векторов при условии, когда Uc меньше UL. Добавив значение на сопротивление, получим результирующее напряжение Um. На третьей иллюстрации отмечен общий фазовый сдвиг.

Векторное отображение процессов в параллельном колебательном контуре, резонанс напряжений

В топографической диаграмме начало координат совмещают с так называемой точкой «нулевого потенциала». Такое решение упрощает изучение отдельных участков сложных схем.

Специализированный редактор онлайн

В интернете можно найти программу для построения векторных диаграмм в режиме online.

Видео

Источник

Расчет неразветвленных цепей переменного тока

ads

Порядок расчета, установленный для цепи при последовательном соединении катушки и конденсатора, можно применить и для цепи, содержащей произвольное число катушек и конденсаторов, соединенных последовательно.

Расчет неразветвленных цепей переменного тока

На рис. 14.7, а для примера дана схема неразветвленной цепи, состоящей из пяти участков: конденсатора (R1 Х1) и катушки (R2, Х2), представленных активными и реактивными сопротивлениями; резистора R3; идеальных конденсатора Х4 и катушки Х5.

Предположим, что кроме сопротивлений известен ток в цепи i = Imsinωt. Требуется найти напряжения на участках, общее напряжение в цепи и мощность.

Векторная диаграмма

Произвольно выберем условно-положительное направление тока i, в данном случае по часовой стрелке. Для мгновенных величин в соответствии со вторым законом Кирхгофа уравнение напряжений (а — падение напряжение на активном сопротивлении; р — падение напряжения на реактивном элементе )

Для действующих величин необходимо записать векторную сумму:

Численно векторы напряжений определяются произведением тока и сопротивления соответствующего участка. На рис. 14.7, б построена векторная диаграмма, соответствующая этому уравнению. За исходный, как обычно при расчете неразветвленных цепей, принят вектор тока, а затем проведены векторы падения
напряжения на каждом участке схемы, причем направления их относительно веrтора тока выбраны в соответствии с характером сопротивления участков.

При построении диаграммы напряжений выбрана начальная точка 6 совпадающая с началом вектора тока i. Из этой точки проведен вектор U5.2 реактивного напряжения индуктивности (по фазе опережает ток на 90°) между точками 5 и 6 цепи. Из конца его проведен вектор U реактивного напряжения емкости (по фазе отстает от тока на 90° ) между точками 4 и 5 цепи. Затем отложен вектор U3a активного напряжения на резисторе (совпадает по фазе с током) между точками
3 и 4 цепи и т. д., если следовать по цепи против направления тока.Точки векторной диаграммы, где сходятся начало следующего вектора с концом предыдущего, обозначены теми же номерами, какими на схеме обозначены точки, отделяющие одни элемент от другого.

При таком, построении напряжение между любыми двумя точками цепи можно найти по величине и фазе, проведя вектор на диаграмме между точками с теми же номерами. Например, напряжение U5.2 между точками 5 и 2 выражается вектором, проведенным из точки 2 в точку 5 (вектор U2.5 направлен в обратную сторону); напряжение U3.1 между точками 3 и 1 выражается вектором, проведенным из точки
1 в точку 3.

Векторная диаграмма, построенная в соответствии с чередованием элементов цепи, называется топографической, так как точки, отделяющие векторы друг от друга, соответствуют точкам, разделяющим элементы схемы.

Расчетные формулы

Из векторной диаграммы видно, что все активные составляющие векторов напряжений направлены одинаково — параллельно вектору тока, поэтому векторное сложение их можно заменить арифметическим и найти активную составляющую напряжения цепи: Ua = U1a + U2a + U3a

Реактивные составляющие векторов напряжений перпендикулярны вектору тока, причем индуктивные напряжения направлены в одну сторону, а емкостные — в другую. Поэтому реактивная составляющая напряжения цепи Up определяется их алгебраической суммой, в которой индуктивные напряжения считаются положительными, а емкостные — отрицательными: Up = — U + U2p — U4p + U5p.

2

Векторы активного, реактивного и полного напряжений цепи образуют прямоугольный треугольник, из которого следует

Подставив падения напряжения, выраженные через ток и соответствующие сопротивления, получим:

3

Таким образом снова получена знакомая уже формула, связывающая ток, напряжение и полное сопротивление цепи [ср. (14.4) и (14.1)].

Полное сопротивление неразветвленной цепи

В этой формуле ∑Rn—общее активное сопротивление, равное арифметической сумме всех активных сопротивлений, входящих в неразветвленную цепь; ∑Xn — общее реактивное сопротивление, равное алгебраической сумме всех реактивных сопротивлений, входящих в неразветвленную цепь. В этой сумме индуктивные сопротивления считаются положительными, а емкостные — отрицательными. Полное сопротивление неразветвленной цепи

В общем случае полное сопротивление цепи определяется как гипотенуза прямоугольного треугольника, катетами которого являются выраженные в определенном масштабе активное и реактивное сопротивления всей цепи. Из треугольника сопротивлений следует:

треугольника сопротивлений следует

формулы для определения мощностей в цепи

От треугольника напряжений можно перейти также к треугольнику мощностей и получить уже известные формулы для определения мощностей в цепи:

Читайте также:  Действие тока в цепи характеризует

Вместе с тем активную мощность цепи можно представить как арифметическую сумму активных мощностей в элементах с активным сопротивлением. Реактивная мощность цепи равна алгебраической сумме мощностей реактивных элементов.

В этой сумме мощность индуктивных элементов считается положительной, а емкостных — отрицательной:

7

Формулы (14.2)—(14.7) являются общими; из них можно получить конкретное выражение для любой неразветвленной цепи.

Источник

Векторные диаграммы электрических цепей

При исследовании электрических цепей и моделировании часто пользуются векторными диаграммами токов и напряжений. Под векторной диаграммой понимается совокупность векторов, изображающих синусоидальные функции времени [1].

Воспользуйтесь программой онлайн-расчёта электрических цепей. Программа позволяет рассчитывать электрические цепи по закону Ома, по законам Кирхгофа, по методам контурных токов, узловых потенциалов и эквивалентного генератора, а также рассчитывать эквивалентное сопротивление цепи относительно источника питания.

Представление синусоидальных функций в виде комплексных чисел

Векторная диаграмма – это удобный инструмент представления синусоидальных функций времени, коими являются, к примеру, напряжения и токи электрической цепи переменного тока.

Рассмотрим, например, произвольный ток, представленный в виде синусоидальной функции

$$ i(t) = 10 \sin(\omega t + 30 \degree). $$

Данный синусоидальный сигнал можно представить в виде комплексной величины

$$ \underline = 10 \angle 30 \degree. $$

Для формирования комплексного числа используются модуль и фаза синусоидального сигнала.

Закон Ома в комплексной форме

Известно [1], что напряжение $ \underline $ на сопротивлении $ \underline $ связано с током $ \underline $, протекающим через это сопротивление, согласно закону Ома:

$$ \underline = \underline \cdot \underline. $$

Кроме того, известны соотношения, определяющие активное сопротивление резистора, индуктивное сопротивление катушки и ёмкостное сопротивление конденсатора:

где $ X_ = \omega L $, $ X_ = \frac<1> <\omega C>$, $ R $ – сопротивление резистора, $ L $ – индуктивность катушки, $ C $ – ёмкость конденсатора, $ \omega = 2 \pi f $ – циклическая частота, $ f $ – частота сети, $ j $ – мнимая единица.

Векторная диаграмма при последовательном соединении элементов

Для построения векторных диаграмм сперва составляют уравнения по законам Кирхгофа для рассматриваемой электрической цепи.

Рассмотрим электрическую цепь, представленную на рис. 1, и нарисуем для неё векторную диаграмму напряжений. Обозначим падение напряжение на элементах.

Последовательное соединение элементов электрической цепи для построения векторной диаграммы напряжений

Рис. 1. Последовательное соединение элементов цепи

Составим уравнение для данной цепи по второму закону Кирхгофа:

$$ \underline_ + \underline_ + \underline_ = \underline. $$

По закону Ома падение напряжений на элементах определяется по следующим выражениям:

$$ \underline_ = \underline \cdot R, $$

$$ \underline_ = \underline \cdot jX_, $$

$$ \underline_ = -\underline \cdot jX_. $$

Для построения векторной диаграммы необходимо отобразить приведённые в уравнении слагаемые на комплексной плоскости. Обычно вектора токов и напряжений отображаются в своих масштабах: отдельно для напряжений и отдельно для токов.

Из курса математики известно, что $ j = 1 \angle 90 \degree $, $ -j = 1 \angle -90 \degree $. Отсюда при построении векторной диаграммы умножение какого-либо вектора на мнимую единицу $ j $ приводит к повороту этого вектора на 90° против часовой стрелки, а умножение на $ -j $ приводит к повороту этого вектора на 90° по часовой стрелке.

При построении векторной диаграммы напряжений на комплексной плоскости сперва отобразим вектор тока $ \underline $, после чего относительного него будем отображать вектора падений напряжений (рис. 2) с учётом приведённых выше соотношений для мнимой единицы.

Падение напряжения на резисторе $ \underline_ $ совпадает по направлению с током $ \underline $ (т.к. $ \underline_ = \underline \cdot R $, а $ R $ – чисто действительная величина или, простыми словами, нет умножения на мнимую единицу). Падение напряжения на индуктивном сопротивлении опережает вектор тока на 90° (т.к. $ \underline_ = \underline \cdot jX_ $, а умножение на $ j $ приводит повороту этого вектора на 90° против часовой стрелки). Падение напряжения на ёмкостном сопротивлении отстаёт от вектора тока на 90° (т.к. $ \underline_ = -\underline \cdot jX_ $, а умножение на $ -j $ приводит повороту этого вектора на 90° по часовой стрелке).

Векторная диаграмма напряжений при последовательном соединение элементов цепи
Рис. 2. Векторная диаграмма напряжений при последовательном соединении элементов цепи

Векторная диаграмма при параллельном соединении элементов

Рассмотрим электрическую цепь, представленную на рис. 3, и нарисуем для неё векторную диаграмму токов. Обозначим направление токов в ветвях.

Параллельное соединение элементов электрической цепи для построения векторной диаграммы напряжений

Рис. 3. Параллельное соединение элементов цепи

Составим уравнение для данной цепи по первому закону Кирхгофа:

$$ \underline— \underline_— \underline_— \underline_ = 0, $$

$$ \underline = \underline_ + \underline_ + \underline_ = 0. $$

Определим по закону Ома токи в ветвях по следующим выражениям, учитывая, что $ \frac<1> = -j $:

Для построения векторной диаграммы необходимо отобразить приведённые в уравнении слагаемые на комплексной плоскости.

При построении векторной диаграммы токов на комплексной плоскости сперва отобразим вектор ЭДС $ \underline $, после чего относительного него будем отображать вектора токов токов (рис. 4) с учётом приведённых выше соотношений для мнимой единицы.

Ток в резисторе IR совпадает по направлению с ЭДС $ \underline $ (т.к. $ \underline_ = \frac<\underline> $, а $ R $ – чисто действительная величина или, простыми словами, нет умножения на мнимую единицу). Ток в индуктивном сопротивлении отстаёт от вектора ЭДС на 90° (т.к. $ \underline_ = -j \frac<\underline>> $, а умножение на $ -j $ приводит повороту этого вектора на 90° по часовой стрелке). Ток в ёмкостном сопротивлении опережает вектор ЭДС на 90° (т.к. $ \underline_ = j \frac<\underline>> $, а умножение на $ j $ приводит повороту этого вектора на 90° против часовой стрелки). Результирующий вектор тока определяется после геометрического сложения всех векторов по правилу параллелограмма.

Векторная диаграмма токов при параллельном соединении элементов цепи

Рис. 4. Векторная диаграмма токов при параллельном соединении элементов цепи

Для произвольной цепи алгоритм построения векторных диаграмм аналогичен вышеизложенному с учётом протекаемых в ветвях токов и прикладываемых напряжений.

Обращаем ваше внимание, что на сайте представлен инструмент для построения векторных диаграмм онлайн для трёхфазных цепей.

Список использованной литературы

  1. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. Учебник для вузов. Изд. 4-е, переработанное. М., «Энергия», 1975.
Читайте также:  Токовый клеммник для трансформатора тока

Рекомендуемые записи

При расчёте электрических цепей, в том числе для целей моделирования, широко применяются законы Кирхгофа, позволяющие…

При расчёте электрических цепей, помимо законов Кирхгофа, часто применяют метод контурных токов. Метод контурных токов…

Источник

Расчет неразветвленной электрической цепи переменного тока

Презентация к уроку

Назад Вперёд

Загрузить презентацию (134,6 кБ)

При изучении основных разделов теории цепей переменного тока основные проблемы восприятия материала заключаются в том, что электромагнитные явления нельзя увидеть наглядно, поэтому без наглядного материала в изучении рассматриваемой темы обойтись невозможно. Информационные технологии позволяют представить сложные электромагнитные явления в виде яркой картинки, мультфильма и др. В большинстве учебных заведений большие сложности с организацией электромонтажных лабораторий, связанные с ограниченными средствами на приобретение оборудования, необходимостью оформления специальных сертификатов на право проведения занятий в таких лабораториях и т.д. Электронные виртуальные лаборатории требуют только наличие компьютерного класса и поэтому дают студентам возможность углубленно изучить основные электромагнитные явления, понять законы электротехники, научиться сборке электрических схем.

Рассмотрим правила расчета неразветвленной электрической цепи переменного тока. В практической части исследования измерим токи и напряжения на активном сопротивлении, катушке и конденсаторе, а сейчас зададим все параметры и построим векторную диаграмму.

Применение векторных диаграмм для описания синусоидальных сигналов позволяет использовать геометрические приёмы для расчета электрической цепи.

Эксперимент 1.

Дана электрическая цепь, содержащая последовательно соединенные активное сопротивление R = 100 Ом и катушку индуктивности L = 0.2 Гн. (См. рисунок 1.1)

2.JPG

Рисунок 1.1. Схема 1

3.JPG

Рисунок 1.2. Треугольник сопротивлений

Вычислим индуктивное сопротивление XL = 2π f L = 2 * 3,14 * 50 * 0,2 = 62,8 Ом

Так как ток в катушке отстает от напряжения на 90º, а в активном сопротивлении ток и напряжение совпадают по фазе для вычисления полного сопротивления цепи воспользуемся треугольником сопротивлений (См рисунок 1.2)

По теореме Пифагора вычислим Z = = = =118,08 Ом

По закону Ома вычислим максимальные значения тока и напряжения на рассмотренных элементах электрической цепи.

Im = Uc/z = 120/118.08 = 1.016 A Так как элементы электрической схемы соединены последовательно, ток, протекающий по ним общий, т.е IR = IL = 1.014 A. Падение напряжения на каждом элементе определяется:

UR = I * R = 1.014 * 100 = 101.6 В; UL = I * XL = 1.016 * 62.8 = 63.8 В.

Мы исследуем цепь переменного тока, поэтому сумма падений напряжения на каждом элементе не будет равна общему напряжению. Для вычисления мгновенных значений тока и напряжений построим векторную диаграмму. (См. рис.1.3)

Выберем масштаб по току и напряжению: m I = 2 : 1; m U = 1 : 10

Рисунок 1.3 Векторная диаграмма

Из векторной диаграммы найдем значение напряжения: U = = = = 119.7 В

Было задано напряжение 220 В Вычисления в пределах допустимой погрешности.

φ = arccos(UL/U) = arccos(63.8/119.7) = 57.82º

Вывод: В рассмотренной электрической схеме (рис.1.1) ток отстает от напряжения на 57°

Эксперимент 2.

Рисунок 2.1. Схема 2

Рисунок 2.2. Треугольник сопротивлений

Вычислим емкостное сопротивление Xс = 1/(2π f С) = 1/(2 * 3,14 * 50 * 20 * 10 –6 ) = 159,23 Ом

Так как ток в конденсаторе опережает напряжения на 90º, а в активном сопротивлении ток и напряжение совпадают по фазе для вычисления полного сопротивления цепи воспользуемся треугольником сопротивлений (См рисунок 2.2)

По теореме Пифагора вычислим Z = = = =188,03 Ом

По закону Ома вычислим максимальные значения тока и напряжения на рассмотренных элементах электрической цепи.

Im = Uc/z =120/188.03 = 0.64 A

Так как элементы электрической схемы соединены последовательно, ток, протекающий по ним общий, т.е IR = IC = 0,64 A. Падение напряжения на каждом элементе определяется:

UR = I * R = 0,64 * 100 = 64 В; UC = I * XC = 0,64 * 159,23 = 101.9 В.

Мы исследуем цепь переменного тока, поэтому сумма падений напряжения на каждом элементе не будет равна общему напряжению. Для вычисления мгновенных значений тока и напряжений построим векторную диаграмму. (См рис.2.3)

Выберем масштаб по току и напряжению: m I = 2 : 1; m U = 1 : 10

Рисунок 2.3. Векторная диаграмма

Из векторной диаграммы найдем значение напряжения: U = = = = 120.3 В

Было задано напряжение 220 В Вычисления в пределах допустимой погрешности.

φ = arccos(Uс/U) = arccos(101,9/120,3) = 32.12º

Вывод: В рассмотренной электрической схеме (рис. 2.3) ток опережает напряжение на 32°

Эксперимент 3.

Дана электрическая цепь, содержащая последовательно соединенные активное сопротивление R=100 Ом, конденсатор емкостью С=20 мкф. и катушку индуктивности L= 0.2 Гн. (См. рисунок 3.1) Напряжение сети 120 В, определить ток, протекающий в электрической цепи и падение напряжения на активном сопротивлении, конденсаторе и катушке.

Рисунок 3.1. Схема 3

Рисунок 3.2. Треугольник сопротивлений

Значения индуктивного и емкостного сопротивления возьмем из предыдущих экспериментов. XC = 159,23 Ом XL= 62,8 Ом

Так как ток в конденсаторе опережает напряжения на 90º, а в индуктивности ток отстает от напряжения на 90º, то катет аб в треугольнике сопротивлений (См рисунок 3.2) определяется как X = XL – XC = 159,23 – 62,8 = 96,43 Ом

По теореме Пифагора вычислим Z = = = =138,9 Ом
По закону Ома вычислим максимальные значения тока и напряжения на рассмотренных элементах электрической цепи.

Im = Uc/z = 120/138.9 = 0.86 A

Так как элементы электрической схемы соединены последовательно, ток, протекающий по ним общий, т.е IR = IC = IL = 0,86 A. Падение напряжения на каждом элементе определяется:

UR = I * R = 0,86 * 100 = 86 В; UC = I * XC= 0,86 * 159,23 = 136.9 В. UL = I * XL= 0,86 * 62.8 = 54 В.

Мы исследуем цепь переменного тока, поэтому сумма падений напряжения на каждом элементе не будет равна общему напряжению. Для вычисления мгновенных значений тока и напряжений построим векторную диаграмму. (См рис.3.3)

Выберем масштаб по току и напряжению: m I = 2 : 1; m U = 1 : 10

д3.JPG

Рисунок 3.3 Векторная диаграмма

Из векторной диаграммы найдем значение напряжения: U = = = = 119.45 В

Было задано напряжение 220 В Вычисления в пределах допустимой погрешности.

φ = arcos((UC – UL)/U) = arccos(82.9/119,45) = 46.07º

Вывод: В рассмотренной электрической схеме (рис. 3.3) ток опережает напряжение на 32°

Источник

Поделиться с друзьями
Блог электрика
Adblock
detector