Меню

Вах источника постоянного тока



Источники ЭДС и тока: основные характеристики и отличия

Источники ЭДС и тока: основные характеристики и отличияЭлектротехника связывает природу электричества со строением вещества и объясняет его движением свободных заряженных частиц под воздействием энергетического поля.

Для того чтобы электрический ток протекал по цепи и совершал работу, необходимо иметь источник энергии, совершающий преобразование в электричество:

механической энергии вращения роторов генераторов;

протекания химических процессов или реакций внутри гальванических приборов и аккумуляторов;

теплоты в терморегуляторах;

магнитных полей в магнитогидродинамических генераторах;

световой энергии в фотоэлементах.

Все они обладают различными характеристиками. Чтобы классифицировать и описать их параметры принято условное теоретическое разделение на источники:

Электрический ток в металлическом проводнике

Электрический ток в металлическом проводнике

Определение силы тока и электродвижущей силы в 18-м веке дали известные физики того времени.

Ампер и электрический ток

Вольта и напряжение

Им считается идеальный источник, представляющий собой двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением. На него не влияет нагрузка сети, а внутреннее сопротивление у источника равно нулю.

На схемах он обычно обозначается кругом с буквой «Е» и стрелкой внутри, показывающей положительное направление ЭДС (в сторону увеличения внутреннего потенциала источника).

Схемы обозначения и вольт-амперные характеристики источников ЭДС

Схемы обозначения и вольт-амперные характеристики источников ЭДС

Схемы обозначения и вольт-амперные характеристики источников ЭДС

Теоретически на выводах у идеального источника напряжение не зависит от величины тока нагрузки и является постоянной величиной. Однако, это условная абстракция, которая не может быть осуществлена на практике. У реального источника при увеличении тока нагрузки значение напряжения на зажимах всегда уменьшается.

На графике видно, что ЭДС Е состоит из суммы падений напряжения на внутреннем сопротивлении источника и нагрузке.

В действительности источниками напряжения работают различные химические и гальванические элементы, аккумуляторные батареи, электрические сети. Их разделяют на источники:

постоянного и переменного напряжения;

управляемые напряжением или током.

Ими называют двухполюсники, создающий ток, который является строго постоянной величиной и никак не зависит от значения сопротивления на подключенной нагрузке, а внутреннее сопротивление его приближается к бесконечности. Это тоже теоретическое допущение, которое на практике не может быть достигнуто.

Схемы обозначения и вольт-амперная характеристика источника тока

Схемы обозначения и вольт-амперная характеристика источника тока

Схемы обозначения и вольт-амперная характеристика источника тока

Для идеального источника тока напряжение на его клеммах и мощность зависят только от сопротивления подключенной внешней схемы. При этом с увеличением сопротивления они возрастают.

Реальный источник тока отличается от идеального значением внутреннего сопротивления.

Примерами источника тока могут служить:

Вторичные обмотки трансформаторов тока, подключенных в первичную схему нагрузки своей силовой обмоткой. Все вторичные цепи работают в режиме надежного шунтирования. Размыкать их нельзя — иначе возникнут перенапряжения в схеме.

Катушки индуктивности, по которым проходил ток в течение некоторого времени после снятия питания со схемы. Быстрое отключение индуктивной нагрузки (резкое возрастание сопротивления) может привести к пробою зазора.

Генератор тока, собранный на биполярных транзисторах, управляемый напряжением или током.

В различной литературе источники тока и напряжения могут обозначаться неодинаково.

Виды обозначений источников тока и напряжения на схемах

Виды обозначений источников тока и напряжения на схемах

Источник

Rabota №1

Московский Энергетический Институт

Кафедра Электротехники и Интроскопии

Лабораторная работа № 1

«ВОЛЬТ-АМПЕРНЫЕ ХАРАКТЕРИСТИКИ ИСТОЧНИКОВ И ПРИЕМНИКОВ ПОСТОЯННОГО ТОКА И ИХ СХЕМЫ ЗАМЕЩЕНИЯ»

К работе допущен:

Цель работы.

Изучение экспериментальных методов определения параметров схем замещения источников и приемников в цепи постоянного тока, навыков правильного выбора измерительных приборов, эксперимента и оценки погрешностей измерений.

Характеристики и схемы замещения источников и приемников электрической энергии. Краткая справка по изучаемой теме.

Зависимость тока элемента от напряжения I(U), называют вольт-амперными характеристиками (ВАХ). Различают активные и пассивные элементы. Активные характеризуются значениями ЭДС Е и внутреннего сопротивления Rвт. Они могут быть источниками или приемниками электрической энергии. Пассивными называют элементы, которые не имеют ЭДС и характеризуются только сопротивлением R. Они могут служить только приемниками электрической энергии.

ВАХ пассивного элемента- линия, проходящая через начало координат. При напряжении U = 0 ток I = 0. Элемент называют линейным, если его электрическое сопротивление R = U/I -и электрическая проводимость G = 1/R = I/U не зависят от тока. ВАХ линейного элемента I = U/R = G U — прямая линия, угол наклона α которой пропорционален сопротивлению R (рис. 1.1). ВАХ нелинейного элемента диода подобна кривой на рис. 1.2.

Читайте также:  Схема усилителя тока для стабилизатора напряжения

ВАХ активного элемента в режиме источника электрической энергии называется внешней характеристикой. Линейным называют источник, который характеризуется постоянными ЭДС Е и внутренним сопротивлением Rbt, и имеет внешнюю характеристику

U = ERbt*I.

ВАХ такого источника — прямая линия АВ (рис. 1.3). ВАХ источников и приемников снимаются методом амперметра — вольтметра (рис. 1.4).

Для источника проводятся два опыта: холостого хода (XX) и нагрузки. Режим XX соответствует отсутствию тока в источнике (I=0) и осуществляется отключением приемника от источника. Напряжение источника в этом режиме равно его ЭДС Е (Ux= E). На рис. 1.3 этому режиму соответствует точка А. В режиме нагрузки измеряют ток I1 и напряжение U1 (точка Б). Внешнюю характеристику получают, проводя прямую линию через точки А и Б. В точке В достигается режим короткого замыкания источника (КЗ). Этот режим для источников напряжения обычно запрещен, так как ток 1к значительно превышает номинальный ток источника Iном.

По результатам измерений определяют параметры схем замещения источника. Последовательная схема замещения (рис. 1.5а) содержит идеальный источник ЭДС Е и резистивный элемент Rbt. ЭДС Е = Ux не зависит от тока. Внутреннее сопротивление Rbt = (Е – U1)/I1.

Параллельная схема замещения (рис. 1.56) имеет идеальный источник тока J и резистивный элемент Gbt. Ток источника J = E/Rbt, проводимость Gbt=1/Rbt.

Схема замещения приемника содержит резистивный элемент R или G. Значения сопротивления и проводимости определяются по соотношениям R = U1/I1 и G = 1/R.

При проведении опыта нагрузки важно, чтобы ток резистора I1 не превышал допустимого значения Iдоп, определенного паспортным параметром резистора — номинальной мощностью.

Метод амперметра — вольтметра

Измерение сопротивлений этим методом проводят по схемам (рис. 1.6а или рис. 1.6б). Зная показания приборов, сопротивление Rx рассчитывают по формуле Rx = Uv/Ia.

Выбор одной из этих схем связан с соотношением величин измеряемого сопротивления и внутренних сопротивлений приборов. Если измеряемое сопротивление относится к классу средних (от 1 до 10 5 Ом), то измерения производят по схеме (рис. 1.6а). При условии, что сопротивление амперметра Ra значительно меньше сопротивления Rx, напряжение Uv, измеренное вольтметром, близко по величине к напряжению Ux на резисторе Rx

(Uv= UA+ UX≈UX). По схеме (рис. 1.6а) снимают линейную ВАХ переменного резистора (R≈150 Ом, Р = 50 Вт) и внешнюю характеристику источника питания стенда, эта схема эквивалентна схеме (рис. 1.4).

Измерение малых сопротивлений (R Соседние файлы в предмете Теоретические основы электротехники

    #

Источник

Вольт-амперная характеристика (ВАХ)

Что такое вольт-амперная характеристика (ВАХ)

ВАХ – это вольт-амперная характеристика, а если точнее, зависимость тока от напряжения в каком-либо радиоэлементе. Это может быть резистор, диод, транзистор и другие радиоэлементы. Так как транзистор имеет более двух выводов, то он имеет множество ВАХ.

Думаю, не все, кто читает эту статью, хорошо учились в школе. Поэтому, давайте разберемся, что представляет из себя зависимость одной величины от другой. Как вы помните из школы, мы строили графики зависимости игрек (У) от икс (Х). Та переменная, которая зависит от другой переменной, мы откладывали по вертикали, а та, которая независима – по горизонтали. В результате у нас получалась система отображения зависимости “У” от “Х”:

Вольт-амперная характеристика (ВАХ)

Так вот, мои дорогие читатели, в электронике, чтобы описать зависимость тока от напряжения, вместо “У” у нас будет сила тока, а вместо Х – напряжение. И система отображения у нас примет вот такой вид:

зависимость тока от напряжения

Именно в такой системе координат мы будет чертить вольт-амперную характеристику. И начнем с самого распространенного радиоэлемента – резистора.

ВАХ резистора

Для того, чтобы начертить этот график, нам потребуется пропускать через резистор напряжение и смотреть соответствующее значение силы тока тока. С помощью крутилки я добавляю напряжение и записываю значения силы тока для каждого значения напряжения. Для этого берем блок питания, резистор и начинаем делать замеры:

Вот у нас появилась первая точка на графике. U=0,I=0.

Читайте также:  Привод с ограничением по току

Вольт-амперная характеристика (ВАХ)

Вторая точка: U=2.6, I=0.01

Вольт-амперная характеристика (ВАХ)

Третья точка: U=4.4, I=0.02

Вольт-амперная характеристика (ВАХ)

Четвертая точка: U=6.2, I=0.03

Вольт-амперная характеристика (ВАХ)

Пятая точка: U=7.9, I=0.04

Вольт-амперная характеристика (ВАХ)

Шестая точка: U=9.6, I=0.05

Вольт-амперная характеристика (ВАХ)

Седьмая точка: U=11.3, I=0.06

Вольт-амперная характеристика (ВАХ)

Восьмая точка: U=13, I=0.07

Вольт-амперная характеристика (ВАХ)

Девятая точка: U=14.7, I=0.08

Вольт-амперная характеристика (ВАХ)

Давайте построим график по этим точкам:

вольт амперная характеристика резистора

Да у нас получилась почти прямая линия! То, что она чуть кривая, связана с погрешностью измерений и погрешностью самого прибора. Следовательно, так как у нас получилась прямая линия, то значит такие элементы, как резисторы называются элементами с линейной ВАХ.

ВАХ диода

Как вы знаете, диод пропускает электрический ток только в одном направлении. Это свойство диода мы используем в диодных мостах, а также для проверки диода мультиметром. Давайте построим ВАХ для диода. Берем блок питания, цепляем его к диоду (плюс на анод, минус на катод) и начинаем точно также делать замеры.

Первая точка: U=0,I=0.

Вольт-амперная характеристика (ВАХ)

Вторая точка: U=0.4, I=0.

Вольт-амперная характеристика (ВАХ)

Третья точка: U=0.6, I=0.01

Вольт-амперная характеристика (ВАХ)

Четвертая точка: U=0.7, I=0.03

Вольт-амперная характеристика (ВАХ)

Пятая точка: U=0.8,I=0.06

Вольт-амперная характеристика (ВАХ)

Шестая точка: U=0.9, I=0.13

Вольт-амперная характеристика (ВАХ)

Седьмая точка: U=1, I=0.37

Вольт-амперная характеристика (ВАХ)

Строим график по полученным значениям:

вольт-амперная характеристика диода

Ничего себе загибулина :-). Вот это и есть вольт-амперная характеристика диода. На графике мы не видим прямую линию, поэтому такая вольт-амперная характеристика называется НЕлинейной. Для кремниевых диодов она начинается со значения 0,5-0,7 Вольт. Для германиевых диодов ВАХ начинается со значения 0,3-0,4 Вольт.

ВАХ стабилитрона

Стабилитроны работают в режиме лавинного пробоя. Выглядят они также, как и диоды.

стабилитроны

Мы подключаем стабилитрон как диод в обратном направлении: на анод минус, а на катод – плюс. В результате, напряжение на стабилитроне остается почти таким же, а сила тока может меняться в зависимости от подключаемой нагрузки на стабилитроне. Как говорят электронщики, мы используем в стабилитроне обратную ветвь ВАХ.

вах стабилитрона

Рекомендуем посмотреть видео материал на эту тему:

Источник

Вольт-амперная характеристика дуги (ВАХ)

Статическая вольт-амперная характеристика дуги показывает зависимость между установившимися значениями тока и напряжения дуги при постоянной ее длине.

Вольт-амперная характеристика дуги

Характеристика имеет три области

Первая область I характеризуется резким падением напряжения Uд на дуге с увеличением тока сварки Iсв. Такая характеристика называется падающей и вызвана тем, что при увеличении тока сварки происходит увеличение площади, а следовательно, и электропроводности столба дуги.

Во второй области II характеристики увеличения тока сварки не вызывают изменения напряжения дуги. Характеристика дуги на этом участке называется жесткой. Такое положение характеристики на этом участке происходит за счет увеличения сечения столба дуги, анодного и катодного пятен пропорционально величине сварочного тока. При этом плотность тока и падение напряжения на протяжении всего участка не зависят от изменения тока и остаются почти постоянными.

В третьей области III с увеличением сварочного тока возрастает напряжение на дуге Uд. Такая характеристика называется возрастающей. При работе на этой характеристике плотность тока на электроде увеличивается без увеличения катодного пятна, при этом возрастает сопротивление столба дуги и напряжение на дуге увеличивается.

Род тока при сварке — постоянный или переменный, полярность на постоянном токе может быть прямой (минус от источника на электроде), или обратной (минус от источника присоединяется к детали).

Ток обратной полярности применяют при сварке тонкого металла легкоплавких сплавов, легированных, специальных и высокоуглеродистых сталей, чувствительных к перегреву, при полуавтоматической сварке арматуры и металлоконструкций легированной проволокой сплошного сечения, при сварке электродами с фтористо-кальциевым покрытием.

При сварке на переменном токе полярность электродов и условия существования дуги периодически изменяются в соответствии с частотой тока.

В каждом полупериоде ток и напряжение меняют полярности при переходе синусоиды через нулевое значение. Дуга при этом угасает, температура активных пятен и дугового промежутка снижается. Повторное зажигание дуги в новом полупериоде происходит при повышенном напряжении — пике зажигания, которое выше напряжения на дуге.

Для повышения устойчивости дуги переменного тока добавляют в покрытия электродов и сварочные флюсы такие материалы, как мел, мрамор, полевой шпат и др., содержащие калий, натрий, кальций и другие элементы.

Читайте также:  Величина характеризующая свойство проводника ограничивать силу тока в цепи называется

Газы, вводимые в зону горения дуги для защиты расплавленного металла, оказывают влияние на зажигание дуги переменного тока. При сварке с инертными газами (гелий, аргон) зажигание дуги затруднено, но возбужденная дуга горит устойчиво.

При сварке вольфрамовым электродом в среде аргона происходит испарение частиц металла с поверхности сварочной ванны и ближайших холодных зон, вместе с которыми удаляются и окисные пленки, что улучшает условия сварки и качество шва.

Углекислый газ при сварке на переменном токе действует отрицательно, поэтому сварка в углекислом газе применяется преимущественно на постоянном токе обратной полярности.

Источники питания сварочной дуги имеют также свои вольт-амперные характеристики, которые могут быть падающими, жесткими и возрастающими.

Для стабильного горения дуги необходимо, чтобы было равенство между напряжениями и токами дуги (Uд, Iд) и источника питания (Uп, Iп).

Источники питания с падающей и жесткой характеристиками применяют при ручной дуговой сварке, с возрастающей характеристикой — при полуавтоматической сварке, с жесткой и возрастающей — при автоматической сварке под флюсом и для наплавки.

Устойчивое горение сварочной дуги возможно только в том случае, когда источник питания сварочной дуги поддерживает постоянным необходимое напряжение при протекании тока по сварочной цепи.

Работу сварочной цепи и дуги нужно рассматривать при наложении статической вольт-амперной характеристики (ВАХ) сварочной дуги на статическую вольт-амперную характеристику источника питания (называемую также внешней характеристикой источника питания) .

Ручная электросварка обычно сопровождается значительными колебаниями длины дуги. При этом дуга должна гореть устойчиво, а ток дуги не должен сильно изменяться. Также часто требуется увеличить длину дуги, поэтому дуга должна иметь достаточный запас эластичности при удлинении, т. е. не обрываться.

Статическая характеристика сварочной дуги при ручной сварке обычно является жесткой, и отклонение тока при изменении длины дуги зависит только от типа внешней характеристики источника питания. При прочих равных условиях эластичность дуги тем выше, а отклонение тока дуги тем меньше, чем больше наклон внешней характеристики источника питания. Поэтому для ручной электросварки применяются источники питания с падающими внешними характеристиками. Это дает возможность сварщику удлинять дугу, не опасаясь ее обрыва, или уменьшать длину дуги без чрезмерного увеличения тока. Также обеспечиваются высокая устойчивость горения дуги и ее эластичность, стабильный режим сварки, надежное первоначальное и повторное зажигание дуги благодаря повышенному напряжению холостого хода, ограниченный ток короткого замыкания.

Ограничение этого тока имеет большое значение, так как при ручной дуговой сварке происходит переход капли расплавленного металла электрода на изделие, и при этом возможно короткое замыкание.

При больших значениях тока короткого замыкания происходят прожоги металла, прилипание электрода, осыпание покрытия электрода и разбрызгивание расплавленного металла. Обычно значение тока короткого замыкания больше тока дуги в 1,2-1,5 раз.

Основными данными технических характеристик источников питания сварочной дуги являются напряжение холостого хода, номинальный сварочный ток, пределы регулирования сварочного тока.

Напряжение холостого хода источника сварочного тока — напряжение на его зажимах при отсутствии дуги, номинальный сварочный ток — допустимый по условиям нагрева источника питания ток при номинальном напряжении на дуге.

В процессе сварки непрерывно меняются значения тока и напряжения на дуге в зависимости от способа первоначального возбуждения дуги и при горении дуги — характера переноса электродного металла в сварочную ванну.

При сварке капли расплавленного металла замыкают дуговой промежуток, периодически изменяя силу тока и длину дуги, происходит переход от холостого хода к короткому замыканию, затем к горению дуги с образованием капли расплавленного металла, которая вновь замыкает дуговой промежуток. При этом ток возрастает до величины тока короткого замыкания, что приводит к сжатию и перегоранию мостика между каплей и электродом. Напряжение возрастает, дуга вновь возбуждается, и процесс периодически повторяется.

Изменения тока и напряжения на дуге происходят в доли секунды, поэтому источник питания сварочной дуги должен обладать высокими динамическими свойствами, т. е. быстро реагировать на все изменения в дуге.

Источник