Меню

В центре кругового витка с током индукция магнитного поля равна 130 мктл



Магнитное поле. Закон Био-Савара-Лапласа

Движущийся заряд q, создает вокруг себя магнитное поле, индукция которого

,

где – скорость электрона, – расстояние от электрона до данной точки поля, μ – относительная магнитная проницаемость среды, μ = 4π·10 -7 Гн/м – магнитная постоянная.

По закону Био-Савара-Лапласа элемент контура dl, по которому течет ток I, создает вокруг себя магнитное поле, индукция которого в некоторой точке K

где – расстояние от точки K до элемента тока dl, α – угол между радиус-вектором и элементом тока dl.

Направление вектора можно найти по правилу Максвелла (буравчика): если ввинчивать буравчик с правой резьбой по направлению тока в элементе проводника, то направление движения рукоятки буравчика укажет направление вектора магнитной индукции .

Применяя закон Био-Савара-Лапласа к контурам различного вида, получим:

· в центре кругового витка радиуса R с током силой I магнитная индукция

· магнитная индукция на оси кругового тока где a – расстояние от точки, в которой ищется B до плоскости кругового тока,

· поле, созданное бесконечно длинным проводником с током, на расстоянии r от проводника

· поле, созданное проводником конечной длины, на расстоянии r от проводника (рис. 15)

· поле внутри тороида или бесконечно длинного соленоида n – число витков на единицу длины соленоида (тороида)

Вектор магнитной индукции связан с напряженностью магнитного поля соотношением

Объемная плотность энергии магнитного поля:

401. Два параллельных бесконечно длинных провода, по которым текут токи силы I = 60 А в одном направлении, расположены на расстоянии d = 10 см друг от друга. Определите магнитную индукцию B в точке, находящейся на расстоянии r1 = 5 см от одного и на расстоянии r2 = 12 см от другого.

402. Два параллельных бесконечно длинных провода, по которым текут токи силы I = 15 А в противоположных направлениях, расположены на расстоянии d = 5 см друг от друга. Определите магнитную индукцию B в точке, находящейся на расстоянии r = 5 см от каждого проводника.

403. Ток I = 60 А идет по длинному проводнику, согнутому под прямым углом. Найти индукцию магнитного поля в точке, лежащей на биссектрисе этого угла и отстоящей от вершины угла на расстоянии d = 20 см.

404. По тонкому проводу, изогнутому в виде прямоугольника со сторонами а = 80 см и b = 60 см, течет ток силы I = 25 A. Определите напряженность магнитного поля H в точке пересечения диагоналей прямоугольника.

405. По тонкому проволочному кольцу течет ток. Как нужно изменить силу тока в проводнике, что, придав проводнику форму квадрата магнитная индукция в центре контура не изменилась?

406. Найти величину тока в бесконечно длинном проводнике, который имеет квадратный изгиб, изображенный на рис. 16 со стороной a = 15 см, если модуль магнитной индукции магнитного поля в точке А, равен В = 50 мкТл. 407. Индукция магнитного поля в центре Рисунок 16

кругового витка радиусом R = 11 см равна B = 80 мкТл. Найти индукцию магнитного поля на оси витка на расстоянии d = 10 см от его плоскости.

408. Определите магнитную индукцию B в точке A (см. рис. 17), если по проводнику течет ток I = 10 A, а сторона треугольника a = 5 см. 409. Маленький шарик с зарядом q = 5∙10 -7 Кл, подвешенный на невесомой нерастяжимой нити длины L = 1 м, движется равномерно по окружности в горизонтальной плоскости так, что Рисунок 17

нить все время образует с вертикалью угол α = 60 o . Определите напряженность магнитного поля в центре окружности, рассматривая движение шарика как круговой ток.

410. Определить магнитную индукцию поля, создаваемого током I = 30 A, текущим по проводу, согнутому в виде правильного треугольника со стороной a = 30 см, в вершине правильного тетраэдра для которого этот треугольник служит основанием.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

В центре кругового витка с током индукция магнитного поля равна 130 мктл

Вопрос по физике:

25 баллов В центре кругового витка с током индукция М П равна 130 мкТл Определить напряженность М П в центре и силу тока в проводнике, если радиус витка равен 5,8 см

Читайте также:  Переменный электрический ток это тест стоматология
Ответы и объяснения 1
Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Физика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Физика — область естествознания: естественная наука о простейших и вместе с тем наиболее общих законах природы, о материи, её структуре и движении.

Источник

Магнитное поле

114. В однородное магнитное поле с индукцией В = 0,1 Тл помещена квадратная рамка площадью S = 25 см 2 . Нормаль к плоскости рамки составляет с направлением магнитного поля угол 60°. Определите вращательный момент, действующий на рамку, если по ней течет ток I = 1 А.

115. В однородном магнитном поле с индукцией B = 0,5 Тл находится прямоугольная рамка длиной a = 8 см и шириной b = 5 см, со N = 100 витков тонкой проволоки. Ток в рамке I = 1 А, а плоскость рамки параллельна линиям магнитной индукции. Определите. 1) магнитный момент рамки; 2) вращающий момент, действующий на рамку.

116. В однородном магнитном поле с индукцией B = 1 Тл находится квадратная рамка со стороной а = 10 см, по которой течет ток I = 4 А. Плоскость рамки перпендикулярна линиям магнитной индукции. Оп работу А, которую необходимо затратить для поворота рамки относи оси, проходящей через середину ее противоположных сторон: 1) на 90°; 2) на 180°; 3) на 360°.

117. Тонкое кольцо массой 10 г и радиусом R = 8 см несет заряд, равномерно распределенный с линейной плотностью τ = 10 нКл/м. Кольцо равномерно вращается с частотой n = 15 с -1 относительно оси, перпендикулярной плоскости кольца и проходящей через центр. Определите: 1) магнитный момент рm кругового тока, создаваемого кольцом; 2) отношение магнитного момента к моменту импульса кольца.

118. Принимая, что электрон в атоме водорода движется по круговой орбите, определите отношение магнитного момента рт эквивален кругового тока к моменту импульса L орбитального движения электрона.

119. Определите магнитную индукцию В поля, создаваемого отрезком бесконечно длинного проводника, в точке, равноудаленной от концов отрезка и находящейся на расстоянии R = 4 см от его середины. Длина отрезка провода l = 20 см, а сила тока в проводе I = 10 А.

120. Определите индукцию магнитного поля в центре проволочной квадратной рамки со стороной a = 15 см, если по рамке течет ток I = 5 А.

121. По двум бесконечно длинным прямым параллельным проводникам, находящимся на расстоянии R = 10 см друг от друга в вакууме, текут токи I1 = 20 А и I2 = 30 А одинакового направления. Определите магнитную индукцию поля В, создаваемого токами в точках, лежащих на прямой, соединяющей оба провода, если: 1) точка С лежит на расстоянии r1 = 2 см левее левого проводника; 2) точка D лежит на расстоянии r2 = 3 см правее правого проводника; 3) точка G лежит на расстоянии r3 = 4 см правее левого провода.

122. По двум бесконечно длинным прямым параллельным проводникам, расстояние между которыми d = 20 см, текут токи I1 = 40 А и 12 = 80 А в одном направлении. Определите магнитную индукцию В в точке А, удаленной от первого проводника на r1x = 12 см и от второго — на r2 = 16 см.

123. По двум бесконечно длинным прямым параллельным проводникам, расстояние между которыми d = 15 см, текут токи I1 = 70 А и I2 = 50 А в противоположных направлениях. Определите магнитную индукцию B в точке А, удаленной на r1 = 20 см от первого и r2 = 30 см от второго проводника.

Читайте также:  Основные характеристики тока заряд

124. Напряженность H магнитного поля в центре кругового витка с магнитным моментом pm = 1,5 А*м 2 равна 150 А/м. Определите: 1) радиус витка; 2) силу тока в витке.

125. Определите магнитную индукцию в центре кругового проволоч витка радиусом R = 10 см, по которому течет ток I = 1 А.

126. Определите магнитную индукцию на оси тонкого проволочного кольца радиусом R = 5 см, по которому течет ток I = 10 А, в точке А, расположенной на расстоянии d = 10 см от центра кольца.

127. Определите магнитную индукцию В4 на оси тонкого проволочного кольца радиусом R = 10 см, в точке, расположенной на рас d = 20 см от центра кольца, если при протекании тока по кольцу в центре кольца В = 50 мкТл.

128. Круговой виток радиусом R = 15 см расположен относительно бесконечно длинного провода так, что его плоскость параллельна проводу. Перпендикуляр, восстановленный на провод из центра витка, является нормалью к плоскости витка. Сила тока в проводе I1 = 1 А, сила тока в витке I2 = 5 А. Расстояние от центра витка до провода d = 20 см. Определите магнитную индукцию в центре витка.

129. В однородном магнитном поле индукцией В = 0,2 Тл находится прямой проводник длиной l = 15 см, по которому течет ток I = 5 А. На проводник действует сила F = 0,13 Н. Определите угол α между направлениями тока и вектором магнитной индукции.

130. По прямому горизонтально расположенному проводу пропускают ток I1 = 10 А. Под ним на расстоянии R = 1,5 см находится параллельный ему алюминиевый провод, по которому пропускают ток I2 = 1,5 А. Определите, какой должна быть площадь поперечного сечения алюминиевого провода, чтобы он удержался незакрепленным. Плотность алюминия ρ = 2,7 г/см 3 .

131. Два бесконечных прямолинейных параллельных проводника с одинаковыми токами, текущими в одном направлении, находятся друг от друга на расстоянии R. Чтобы их раздвинуть до расстояния 2R, на каждый сантиметр длины проводника затрачивается работа А = 138 нДж. Определите силу тока в проводниках.

132. Контур из провода, изогнутого в форме квадрата со стороной a = 0,5 м, расположен в одной плоскости с бесконечным прямолинейным проводом с током I = 5 А ток что две его стороны параллельны проводу. Сила тока в контуре I1 = 1 А. Определите силу, действующую на контур, если ближайшая к проводу сторона контура находится на расстоянии b = 10 см. Направления токов указаны на рисунке.

133. Прямоугольная рамка со сторонами а = 40 см и b = 30 см расположена в одной плоскости с бесконечным прямолинейным проводником с током I = 6 А так, что длинные стороны рамки параллельны проводу. Сила тока в рамке I1 = 1 А. Определите силы, действующие на каждую из сторон рамки, если ближайшая к проводу сторона рамки находится на расстоянии с = 10 см, а ток в ней сонаправлен току I.

134. По тонкому проволочному полукольцу радиусом R = 50 см течет ток I = 1 А. Перпендикулярно плоскости полукольца возбуждено однородное магнитное с индукцией В = 0,01 Тл. Найти силу, растягивающую полукольцо. Действие на полукольцо магнитного поля подводящих проводов и взаимодействие отдельных элементов полукольца не учитывать.

Ошибка в тексте? Выдели её мышкой и нажми

Остались рефераты, курсовые, презентации? Поделись с нами — загрузи их здесь!

Источник

Магнитное поле в центре кругового проводника с током

date image2014-02-02
views image20719

facebook icon vkontakte icon twitter icon odnoklasniki icon

Для нахождения индукции магнитного поля в центре кругового проводника с током необходимо разбить этот проводник на элементы , для каждого из них найти век­тор , а затем все эти векторы сложить. Так как все век­торы направлены вдоль нормали к плоскости витка (рис. 11), то сложение век­торов можно заменить сложением их модулей dB.

По закону Био-Савара-Лапласа модуль вектора :

Так как все элементы проводника перпендикулярны соответствующим радиусам-векторам , то sina = 1 для всех элементов . Расстояния r = R для всех элементов проводника . Тогда выражение для модуля вектора :

Теперь можно перейти к интегрированию:

Читайте также:  Предупреждающие средства от поражения электрическим током плакаты типы плакатов

Итак, индукция магнитного поля в центре кругового проводника с током:

(R – радиус витка с током I).

Действие магнитного поля на проводник с током (закон Ампера) и на движущийся заряд (сила Лоренца)

Закон Ампера. На элемент проводника с током I , помещённый в магнитное поле с индукцией (рис. 12), действует сила ( – сила Ампера):

где – угол между векторами и .

Направление вектора можно определить по правилу левой руки: если силовые линии входят в ладонь, а четыре вытянутых пальца располагаются по току, то отведённый большой палец укажет направление вектора силы Ампера .

(Сила перпендикулярна плоскости рисунка 12.)

Сила Лоренца. На заряд q , движущийся со скоростью в магнитном поле с индукцией (рис. 13), действует сила ( – сила Лоренца ):

где α – угол между векторами и .

Направление вектора может быть определено по правилу левой руки для движущихся положительных зарядов и по правилу правой руки для движущихся отрицательных зарядов:

если силовые линии магнитного поля входят в ладонь, а четыре вытянутых пальца располагаются по скорости движения частицы, то отведённый большой палец укажет направление силы Лоренца (рис. 13, сила перпендикулярна плоскости рисунка).

Магнитный поток. Теорема Гаусса для магнитного поля

Поток вектора магнитной индукции (или магнитный поток) через произвольную площадку S характеризуется числом силовых линий магнитного поля, пронизывающих данную площадку S.

Если площадка S расположенаперпендикулярно силовым линиям магнитного поля (рис. 14), то поток ФB вектора индукции через данную площадку S :

Если площадка S расположена неперпендикулярно силовым линиям магнитного поля (рис. 15), то поток ФB вектора индукции через данную площадку S :

где α – угол между векторами и нормали к площадке S.

,Для того, чтобы найти поток ФB вектора магнитной индукции через произвольную поверхность S, необходиморазбить эту поверхность на элементарные площадки dS (рис. 16)иопределить элементарный поток вектора через каждую площадку dS по формуле:

где α – угол между векторами и нормали к данной площадке dS;

Тогда поток вектора через произвольную поверхность S равен алгебраической сумме элементарных потоков через все элементарные площадки dS, на которые разбита поверхность S, что приводит к интегрированию:

– вектор, равный по величине площади площадки dS и направленный по вектору нормали к данной площадке dS .

Теорема Гаусса для магнитного поля

Для произвольной замкнутой поверхности S (рис. 17) поток вектора индукции магнитного поля через эту поверхность S можно рассчитать по формуле:

С другой стороны, число линий магнитной индукции, входящих внутрь объема, ограниченного этой замкнутой поверхностью, равно числу линий, выходящих из этого объема (рис. 17). Поэтому, с учетом того, что поток вектора индукции магнитного поля считается положитель­ным, если силовые линии выходят из поверхности S, и отрицательным для линий, входящих в поверхность S, суммарный поток ФB вектора через произвольную замкнутую поверхность S равен нулю, т.е.:

что составляет формулировку теоремы Гаусса для магнитного поля.

Явление электромагнитной индукции. Закон Фарадея

Явление возникновения электрического тока в замкнутом проводящем контуре в результате изменения магнитного потока, пронизывающего этот контур, называется явлением электромагнитной индукции. Возникновение индукционного электрического тока в контуре указывает на наличие в этом контуре электродвижущей силы, называемой электродвижущей силой (ЭДС) электро­магнитной индукции.

Согласно закону Фарадея величина ЭДС электро­магнитной индукции определяется только скоростью изменения магнитного потока, пронизывающего проводящий контур, а именно:

величина ЭДС электро­магнитной индукции прямо пропорциональна скорости изменения магнитного потока, пронизывающего проводящий контур:

(закон Фарадея).

Направление индукционного тока в контуре определяется по правилу Ленца: индукционный ток в контуре всегда имеет такое направление, что создаваемое этим током магнитное поле препятствует изменению магнитного потока, вызвавшему этот индукционный ток.

Закон Фарадея с учетом правила Ленца можно сформулировать следующим образом: величина ЭДС электро­магнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную этим контуром, то есть:

(закон Фарадея с учетом правила Ленца).

Источник