Меню

В этом случае ток через гальванометр



Электромагнитная индукция. Опыты Фарадея. Электромагнитные колебания и волны

1. Явление электромагнитной индукции было открыто английским ученым Майклом Фарадеем. Если соединить катушку с гальванометром и внести в катушку полосовой магнит северным полюсом, то стрелка гальванометра отклонится, что свидетельствует о существовании в катушке электрического тока. Когда магнит остановится в катушке, то ток прекратится (рис. 95). При выдвижении магнита из катушки в ней вновь появится электрический ток, но он будет иметь противоположное направление. Причиной возникновения электрического тока в катушке, является изменение магнитного поля, пронизывающего эту катушку, которое происходит при движении магнита.

Возможны различные способы изменения магнитного поля, пронизывающего контур проводника. Можно, например, перемещать не магнит, а катушку, т.е. надевать её на магнит. При этом также возникнет индукционный ток. Можно в большую катушку вставить малую катушку. Большую катушку соединить с гальванометром, а малую — с источником постоянного тока. При замыкании и размыкании цепи малой катушки можно наблюдать отклонение стрелки гальванометра. Таким образом, при любом изменении магнитного поля пронизывающего замкнутый проводник, в нём возникает индукционный ток.

Эти и другие опыты показывают, что ток появляется только при изменении магнитного поля, пронизывающего замкнутый проводник.

Явление возникновения тока в замкнутом проводнике при изменении магнитного поля, пронизывающего контур проводника, называется электромагнитной индукцией. Ток, возникающий в этом случае в цепи, называют индукционным током.

Таким образом, направление индукционного тока в катушке зависит от направления движения магнита.

2. Направление индукционного тока зависит от того, каким полюсом вносят магнит в катушку или выносят из нее, т.е. от направления магнитного поля. Если вносить магнит в катушку не северным полюсом, как это делалось в опыте, описанном выше, а южным полюсом, то стрелка гальванометра отклонится в сторону, противоположную той, в которую она отклонялась при внесении магнита северным полюсом. Направление индукционного тока будет разным в зависимости от того, вносят магнит в катушку или выносят его из катушки. Таким образом, направление индукционного тока зависит от направления движения магнита относительно катушки.

Вносить магнит в катушку можно быстрее и медленнее. Наблюдения позволяют сделать вывод о том, что сила индукционного тока зависит от скорости движения магнита, т.е. от скорости изменения магнитного поля. Сила индукционного тока тем больше, чем больше скорость изменения магнитного поля, пронизывающего контур проводника.

Если в самом проводнике изменяется сила тока, то вокруг проводника существует переменное магнитное поле. Это поле порождает в проводнике индукционный ток, который называется током самоиндукции, а явление возникновения такого тока — явлением самоиндукции.

Значение открытия явления магнитной индукции заключается в том, что в этом явлении наглядно наблюдается связь электрических и магнитных явлений, электрического и магнитного полей, что позволяет говорить о существовании единого электромагнитного поля.

3. Явление электромагнитной индукции лежит в основе работы генератора электрического тока — устройства, которое служит источником электрического тока и в котором происходит преобразование механической энергии в электрическую. Основными частями генератора являются магнит и расположенная между его полюсами насаженная на вал рамка.

Рамка приводится во вращение, пронизывающее её магнитное поле изменяется, и в катушке возникает индукционный ток. Этот ток снимается с рамки с помощью устройства, называемого коллектором, представляющим собой два полукольца, каждое из которых присоединяется к различным концам рамки, и щёток, касающихся колец. Промышленные генераторы имеют более сложное устройство, но все они состоят из вращающейся части (ротора), обычно в промышленном генераторе это электромагнит, создающий вращающееся магнитное поле, и неподвижной части (статора) — обмотки, в которой индуцируется электрический ток.

4. Максвеллом было теоретически показано, а Герцем экспериментально доказано, что изменяющееся магнитное поле порождает переменное электрическое поле, в свою очередь переменное электрическое поле порождает переменное магнитное поле, т.е. в пространстве происходят изменения (колебания) характеристик электромагнитного поля.

Электромагнитные колебания происходят в колебательной системе, называемой колебательным контуром. Колебательный контур — это электрическая цепь, состоящая из конденсатора и катушки индуктивности (рис. 96).

Если зарядить конденсатор и затем замкнуть его на катушку, то по цепи пойдёт электрический ток. При этом конденсатор начнёт разряжаться. Сначала сила тока в цепи будет увеличиваться, и появится ток самоиндукции, препятствующий увеличению основного тока и направленный против него. Через ½ часть периода конденсатор полностью разрядится, а сила тока в катушке станет максимальной. Затем сила тока начнет уменьшаться. Ток самоиндукции, который при этом возникнет, будет стремиться поддержать основной ток и будет направлен так же, как и он. Через ¼ часть периода ток прекратится, и конденсатор перезарядится. Затем пойдет обратный процесс.

Таким образом, в колебательном контуре происходят электромагнитные колебания, т.е. периодические изменения заряда, силы тока, электрического и магнитного полей. Колебания, происходящие в колебательном контуре, благодаря начальному запасу энергии в конденсаторе называются свободными. В процессе колебаний энергия извне в контур не поступает.

Минимальный промежуток времени, через который процесс в колебательном контуре полностью повторяется, называется периодом ​ \( (T) \) ​ электромагнитных колебаний. За период колебаний заряд на обкладках конденсатора изменяется от максимального значения до следующего максимального значения того же знака, или сила тока изменяется от максимального значения до следующего максимального значения при том же направлении тока.

Характеризуя электромагнитные колебания, часто говорят об их частоте. Частотой ​ \( (\nu) \) ​ колебаний называют число полных колебаний в одну секунду. Частота обратна периоду колебаний

Единицей частоты является 1 Гц. Частоту электромагнитных колебаний часто измеряют в килогерцах (1 кГц = 1000 Гц) и в мегагерцах (1 МГц = 1 000 000 Гц).

5. Подобно тому как механические колебания распространяются в пространстве в виде механических волн, электромагнитные колебания распространяются в пространстве в виде электромагнитных волн. Многочисленные эксперименты показывают, что электрическое и магнитное поля взаимосвязаны. Если в какой-либо точке пространства возникает переменное электрическое поле, то в соседних точках оно возбуждает переменное магнитное поле, которое, в свою очередь, возбуждает переменное электрическое поле и т.д. Таким образом, можно говорить об электромагнитном поле. Это поле и распространяется в пространстве.

Процесс распространения периодически изменяющегося электромагнитного ноля представляет собой электромагнитные волны.

Электромагнитные волны распространяются в вакууме со скоростью 300 000 км/с. Они характеризуются определённой длиной волны ​ \( \lambda \) ​. Длина волны — это расстояние, на которое перемещается электромагнитная волна за время, равное периоду колебаний ​ \( (T) \) ​. ​ \( \lambda=cT \) ​ или \( \lambda=c/\nu \) , где ​ \( c \) ​ — скорость распространения электромагнитной волны, ​ \( \nu \) ​ — частота колебаний.

Читайте также:  Пороговые значения ощутимого неотпускающего фибрилляционного токов

6. Электрически заряженные частицы могут колебаться с различной частотой. Соответственно, излучаемые при этом электромагнитные волны имеют разную длину волны. Поэтому диапазон частот электромагнитных волн очень широк: он лежит в пределах от 0 до 10 22 Гц, а длина волны — в пределах от 10 -14 м до бесконечности. По длине волны или по частоте электромагнитные волны можно разделить на восемь диапазонов. Обладая рядом общих свойств (интерференция, дифракция), волны разной частоты имеют и специфические свойства.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. В катушку, соединённую с гальванометром, вносят магнит. Направление индукционного тока зависит

А. От скорости перемещения магнита.
Б. От того, каким полюсом вносят магнит в катушку.

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

2. В катушку, соединённую с гальванометром, вносят магнит. Сила индукционного тока зависит

А. от скорости перемещения магнита
Б. от того, каким полюсом вносят магнит в катушку

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

3. Постоянный магнит вносят в катушку, замкнутую на гальванометр (см. рисунок).

Если выносить магнит из катушки с большей скоростью, то показания гальванометра будут примерно соответствовать рисунку

4. Две одинаковые катушки замкнуты на гальванометры. В катушку А вносят полосовой магнит, а из катушки Б вынимают такой же полосовой магнит. В какой катушке гальванометр зафиксирует индукционный ток?

1) только в катушке А
2) только в катушке Б
3) в обеих катушках
4) ни в одной из катушек

5. В первом случае магнит вносят в сплошное эбонитовое кольцо, а во втором случае выносят из сплошного медного кольца (см. рисунок).

1) возникает только в эбонитовом кольце
2) возникает только в медном кольце
3) возникает в обоих кольцах
4) не возникает ни в одном из колец

6. Внутри катушки, соединённой с гальванометром, находится малая катушка, подключённая к источнику постоянного тока. В каком из перечисленных опытов гальванометр зафиксирует индукционный ток?

А. В малой катушке выключают электрический ток.
Б. Малую катушку вынимают из большой.

1) только в опыте А
2) только в опыте Б
3) в обоих опытах
4) ни в одном из опытов

7. Внутри катушки, соединённой с гальванометром, находится малая катушка, подключённая к источнику тока. Первую секунду от начала эксперимента малая катушка неподвижна внутри большой катушки. Затем в течение следующей секунды её вынимают из большой катушки. Третью секунду малая катушка находится вне большой катушки. В течение четвертой секунды малую катушку вдвигают в большую. В какой(-ие) промежуток(-ки) времени гальванометр зафиксирует появление индукционного тока?

1) только 0-1 с
2) 1 с-2 с и 3 с-4 с
3) 0-1 с и 2 с-3 с
4) только 1 с-2 с

8. Внутри катушки, соединённой с гальванометром, находится малая катушка, подключённая к источнику тока. Оси катушек совпадают. Первую секунду от начала эксперимента малая катушка неподвижна внутри большой катушки. Затем в течение следующей секунды её вращают относительно вертикальной оси по часовой стрелке. Третью секунду малая катушка вновь остаётся в покое. В течение четвёртой секунды малую катушку вращают против часовой стрелки. В какие промежутки времени гальванометр зафиксирует появление индукционного тока в катушке?

1) индукционный ток может возникнуть в любой промежуток времени
2) индукционный ток возникнет в промежутках времени 1-2 с, 3-4 с
3) индукционный ток не возникнет ни в какой промежуток времени
4) индукционный ток возникнет в промежутках времени 0-1 с, 2-3 с

9. К электромагнитным волнам относятся:

A. Волны на поверхности воды.
Б. Радиоволны.
B. Световые волны.

Укажите правильный ответ.

1) только А
2) только Б
3) только В
4) Б и В

10. Какие из приведённых ниже формул могут быть использованы для определения скорости электромагнитной волны?

1) только А
2) только Б
3) А и В
4) В и Г

11. Установите соответствие между названием опыта (в левом столбце таблицы) и явлением, которое в этом опыте наблюдается (в правом столбце таблицы). В таблице под номером физической величины левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ВЕЛИЧИНА
A) опыты Фарадея
Б) опыт Эрстеда
B) опыт Ампера

ХАРАКТЕР ИЗМЕНЕНИЯ ЗНАЧЕНИЯ ВЕЛИЧИНЫ
1) действие проводника с током на магнитную стрелку
2) электромагнитная индукция
3) взаимодействие проводников с током

12. Установите соответствие между техническими устройствами и физическими явлениями, лежащими в основе их работы.

ТЕХНИЧЕСКИЕ УСТРОЙСТВА
A) генератор электрического тока
Б) электрический двигатель
B) электромагнитное реле

ФИЗИЧЕСКИЕ ЯВЛЕНИЯ
1) взаимодействие постоянных магнитов
2) взаимодействие проводников с током
3) возникновение электрического тока в проводнике при его движении в магнитном поле
4) магнитное действие проводника с током
5) действие магнитного поля на проводник с током

Часть 2

13. На какую частоту нужно настроить радиоприёмник, чтобы слушать радиостанцию, которая передает сигналы па длине волны 2,825 м?

1) 106,2 кГц
2) 106,2 МГц
3) 847,5 кГц
4) 847,5 МГц

Источник

Определение технических характеристик химических источников тока: Методическое пособие к лабораторной работе № 6 , страница 3

В схеме РИС.5 га-льванометр включён в диагональ моста АВ последовательно с пре-дохранительным доба-вочным сопротивлени-ем Rдоб (иногда удоб-нее вместо добавочно-го сопротивления при-менять переменный шунт к гальванометру). В диагонали CD стоит кнопочный ключ Кн, в плече АС – гальванический элемент, внутреннее сопротивление r которого измеряется. Буквами R1 , R2 , R3 обозначены магазины сопротивлений, а буквами I , Ix , I1 , I2 , I3 , I4 – токи при замкнутых ключах К и Кн .

Отсутствие изменения тока в диагонали АВ моста(в галь-ванометре) при «замыкании-размыкании» ключа Кн свидетель-ствует об отсутствии тока в этой диагонали при замкнутом ключе Кн. Это возможно только при равенстве потенциалов точек С и D . Отсюда следует равенство напряжений плеч моста

Учитывая, что I4 =0 , получим равенство токов

Читайте также:  Схема электрическая измерительного трансформатора тока

Тогда, разделив почленно левые и правые части равенств (11), получим искомое соотношение между сопротивлениями плеч сбалансированного моста

Очевидно, что этот метод измерения внутреннего сопротив-ления источника тока применим только в том случае, если оно не мало по сравнению с сопротивлением соединительных проводов в плечах моста. Поэтому этим методом нельзя измерить внутреннее сопротивление аккумуляторов, которое в нормальных условиях имеет величину порядка нескольких сотых долей ома.

· Измерение э.д.с. методом компенсации

Метод компенсации является в настоящее время одним из са-мых точных методов измерения. Этим методом можно измерить не только э.д.с. элементов, но и силу тока в цепи и величину соп-ротивлений.

Сущность метода можно понять, анализируя работу принци-пиальной схемы, изображённой на РИС.6. В этой схеме два эле-мента ξх и еN (ξ должно быть больше ξх и еN — э.д.с эталонного источника тока). При измерениях эталонный источник тока заменяется исследуемым. Обратим вни-мание на то, что источники э.д.с. в схеме соединены друг с другом одноимённы-ми полюсами.

Найдём условие, при котором сила тока в цепи гальванометра равна нулю. Для этого обозначим потен-циалы точек А и В , соответственно, φА и φВ и запишем закон Ома для неоднородного участка цепи AGB:

Отсюда следует, что ток через гальванометр отсутствует при условии

Разность потенциалов АВ) можно найти, если рассмот-реть однородный участок цепи AR1B

Приравняв правые части последних двух соотношений друг другу, получим:

Таким образом, для нахождения э.д.с. источника тока, вклю-чённого последовательно с гальванометром в схеме РИС.6, необ-ходимо знать ток и сопротивление параллельного участка.

Полученное условие означает, что сила тока в цепи элемента е равна нулю в том случае, когда падение напряжения на участке цепи АВ , параллельно которому подключён этот элемент, равно его электродвижущей силе. В таких случаях принято говорить о взаимной компенсации падения напряжения на участке цепи и включённой в этот участок электродвижущей силой е . От этого термина компенсация получил название в дальнейшем и весь метод измерений, названный компенсационным.

Если вместо элемента е в схему ввести другой элемент и вновь добиться отсутствия тока в цепи гальванометра и этого эле-мента (сохранив неизменным значение общего сопротивления контура ξАВСξ , а значит и тока I ), то тог-да сопротивление участка цепи АВ будет равно некоторому значению . Теперь будет иметь силу равенство

Выразив из предыдущего равенства ток и подставив его в по-следнее соотношение, получим

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Источник

Принцип работы гальванометра

ГАЛЬВАНОМЕТР

Гальванометр представляет собой высокочувствительный электроизмерительный прибор, назначение которого – измерение силы постоянного электрического тока очень небольшой величины. В отличие от микроамперметра, также измеряющего довольно малые токи, шкалу гальванометра, кроме единиц электрического тока, нередко градуируют и в других электрических величинах. Например, это могут быть милливольты или что-то другое. Часто разметка шкалы гальванометра может быть выполнена весьма условно.

Основными элементами конструкции гальванометров, используемых в настоящее время, являются:

● поворачивающаяся катушка (обмотка);

В магнитное поле постоянного магнита помещается обмотка с прикреплённой на ней указательной стрелкой. В исходном состоянии обмотка со стрелкой находятся в нулевом положении благодаря удерживающей пружине.

При прохождении постоянного тока через обмотку, в ней появляется магнитное поле, которое начинает взаимодействовать с полем магнита. В результате этого взаимодействия катушка вместе со стрелкой отклоняется, тем самым сигнализируя о протекании электрического тока.

При исчезновении электрического тока пропадает магнитное поле катушки и под действием возвратной пружины катушка со стрелкой возвращаются в начальное положение. Таким образом, становится визуально понятно, что электрический ток в цепи отсутствует.

Читайте также:  Расчет ударного тока при коротком замыкании

ЗЕРКАЛЬНЫЙ ГАЛЬВАНОМЕТР МАГНИТОЭЛЕКТРИЧЕСКОЙ СИСТЕМЫ

Устройство и принцип действия

Ввиду высокой чувствительности гальванометрa вращающий и противодействующий моменты в них ничтожно малы.

Поэтому при анализе работы гальванометра нельзя пренебрегать ни трением, ни тормозящими силами.

Измерение силы тока с помощью гальванометра основано на наблюдении угла поворота рамки.

Этот угол обычно мал, поэтому приходится прибегать к искусственным оптическим приемам его опреде­ления. Наиболее распространенным является метод зеркального отсчета (рис.6). Луч света от осветителя падает на зеркальце, связанное с рамкой через нить подвеса, и после отражения падает на прозрачную шкалу, образуя на ней световой «зайчик». При повороте рамки с зеркальцем на угол луч света поворачивается на угол 2 , а зайчик смещается на n делений шкалы. Величина угла поворота находится в зависимости от расстояния зеркальца до шкалы и от числа делений n отсчитанных по шкале смещения «зайчика». При малых углах поворота можно считать, что = , т.е. угол поворота рамки гальванометра прямо пропорционален числу делений шкалы n , на которое сместился ″зайчик″ Осветительное устройство, благодаря специальной оптической системе, обеспечивает изображение светового «зайчика» на шкале в виде светового круга или квадрата с линией в центре.

Уравнение движения рамки гальванометра. При отсутствии тока врамке плоскость ее витков расположена параллельно силовым линиям магнитного поля магнита. При протекании тока по ней возникает магнитное поле, вектор магнитной индукции которого перпендикулярен плоскости витков рамки. В результате взаимодействия: магнитных полей к рамке будет приложена пара сил Ампера, стремящаяся повернуть рамку перпендикулярно силовым линиям поля магнита. Вращающий момент пары сил равен

где N — число витков в рамке; в B- вектор магнитной идукции поля магнита; S — площадь витка рамка; I — сила тока в рамке. Вращающему моменту Мвр будет противодействовать упругий момент кручения Мупр , возникающий в нити подвеса при повороте рамки на угол по закону Гука:

Кроме этих двух моментов на рамку с током будет действовать тормозящий момент Мтр, , обусловленный электромагнитным торможением и сопротивлением воздуха. Сопротивлением воздуха можно пренебречь. Электромагнитное торможение является следствием того, что в рамке во время ее движения индуцируется ток с направлением, противоположным основному току в рамке. Вследствие взаимодействия индукционного тока и магнитного поля магнита возникает тормозящий момент Мтр , который определяется по формуле

где =Iинд- величина индукционного тока, возникающего в цепи гальванометра, рамка которого замкнута на некоторое внешнее сопротивление Rвн ; Rg- сопротивление рамки гальванометра; угловая скорость ее вращения.

Коэффициент называется коэффициентом электромагнитного торможения. Поскольку величины B, S, N и RG постоянны для данного гальванометра, тормозящий момент Мтр определяется величиной сопротивления внешней цепи Rвн . Чем больше сопротивление внешней цепи гальванометра, тем меньше торможение рамки. Очевидно, наибольшее торможение будет при Rвн =0, то есть при коротком замыкании рамки. Это используется для так называемого демпфирования рамки, т.е. для быстрого ее успокоения. Наименьшее торможение будет при Rвн =∞, что соответствует разомкнутой цепи гальванометра. Разомкнув цепь гальванометра, можно заставить рамку совершать свободные колебания. Согласно второму закону механики для вращательного движения уравнение движения рамки гальванометра запишется в общем виде так:

как функцию времени, иначе говоря, установить характер движения рамки гальванометра, или характер режима его работы.

Параметры гальванометра

Динамическая постоянная: , где I — величина тока, протекающего через гальванометр; — расстояние между шкалой и зеркальцем прибора; n-смещение светового указателя по шкале, со­ответствующее силе тока I .

Динамическая постоянная прибора численно выражает величину тока, которая соответствует смещению светового указателя на I мм при расстоянии =1 м между. шкалой и зеркальцем прибора.

Чувствительность прибора к току: , т.е. величина, обратная динамической постоянной прибора. Численно она выражает смещение светового указателя прибора в делениях шкалы, соответствующее току единичной величины (1А, 1mА или 1 А), при рас­стоянии между шкалой и зеркальцем прибора = I м.

Критическое сопротивление прибора. Характер движения рамки гальванометра зависит от величины электромагнитного торможения, обусловленного взаимодействием индукционного тока, который возникает в обмотке рамки при ее движении, и магнитного поля магнита. Величина электромагнитного торможения зависит от полного сопротивления цели гальванометра R=RG+Rвн.

Существует такое значение полного сопротивления, которое называется критическим сопротивлением, а режим, соответствующий этому сопротивлению- критическим. При критическом режиме работы прибора рамка его подходит к положению равновесия, не переходя через него, за кратчайшее время.

Рис. 1. Рамочный гальванометр: 1 — постоянный магнит; 2 — рамка; 3 — стрелка-указатель; 4 — выводы рамки; 5 — шкала.

Рис. 2. Зеркальный гальванометр: 1 — осветитель (лампа); 2 — гальванометр; 3 — зеркальце; 4 — шкала.

Рис. 3. Вибрационный гальванометр: 1 — постоянный магнит; 2 — электромагнит; 3 — подвижная пластинка; 4 — бронзовая ленточка; 5 — обмотка для измеряемого тока; 6 — щель оптической системы; 7 — шкала.

Источник

Какой ток идет через гальванометр с сопротивлением 100 Ом, присоединенный

Условие задачи:

Какой ток идет через гальванометр с сопротивлением 100 Ом, присоединенный к железнодорожным рельсам, при приближении к нему поезда со скоростью 72 км/ч? Вертикальная составляющая индукции земного магнитного поля 50 мкТл. Расстояние между рельсами – 1,2 м. Рельсы изолированы друг от друга и от земли.

Задача №8.4.54 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

\(R=100\) Ом, \(\upsilon=72\) км/ч, \(B=50\) мкТл, \(l=1,2\) м, \(I-?\)

Решение задачи:

ЭДС индукции в проводнике (поезде) \(\rm E_i\), движущемся поступательно в магнитном поле, можно определить по такой формуле:

В этой формуле \(B\) – индукция магнитного поля, \(\upsilon\) – скорость проводника, \(l\) – длина проводника, \(\alpha\) – угол между вектором скорости проводника и вектором магнитной индукции (в этой задаче \(\alpha = 90^\circ\)).

В цепи, состоящей из гальванометра, поезда и рельсов будет течь ток \(I\), который можно найти по закону Ома:

В полученную формулу подставим выражение (2):

Задача решена, подставим данные из условия в формулу и посчитаем ответ (72 км/ч = 20 м/с):

\[I = \frac<<50 \cdot <<10>^< – 6>> \cdot 20 \cdot 1,2 \cdot \sin 90^\circ >><<100>> = 12 \cdot <10^< – 6>>\;А = 12\;мкА\]

Ответ: 12 мкА.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Источник