Меню

В чем состоит отличие полезной работы тока от полной



Полная, полезная мощности и КПД цепи постоянного тока

Рассмотрим замкнутую неразветвленную цепь, состоящую из источника тока и резистора.

Применим закон сохранения энергии ко всей цепи:

Так как , а для замкнутой цепи точки 1 и 2 совпадают, мощность электрических сил в замкнутой цепи равна нулю. Это равносильно утверждению о потенциальности электрического поля постоянного тока, о которой уже упоминалось ранее.

Итак, в замкнутой цепи всё тепло выделяется за счет работы сторонних сил: , или , и мы снова приходим к закону Ома, теперь для замкнутой цепи: .

Полной мощностью цепи называют мощность сторонних сил, она же равна полной тепловой мощности:

Полезнойназывают тепловую мощность, выделяемую во внешней цепи (независимо от того, полезна она или вредна в данном конкретном случае):

Роль электрических сил в цепи. Во внешней цепи, на нагрузке R, электрические силы совершают положительную работу, а при перемещении заряда внутри источника тока – такую же по величине отрицательную. Во внешней цепи теплота выделяется за счет работы электрического поля. Работу, отданную во внешней цепи, электрическое поле «возвращает» себе внутри источника тока. В итоге вся теплота в цепи «оплачена» работой сторонних сил: источник тока постепенно теряет запасенную в нем химическую (или какую-то другую) энергию. Электрическое же поле играет роль «курьера», доставляющего энергию во внешнюю цепь.

Зависимость полной, полезной мощностей и КПД от сопротивления нагрузки R.

Эти зависимости получаем из формул (1 – 2) и закона Ома для полной цепи:

Графики этих зависимостей вы видите на рисунке.

Полная мощность монотонно убывает с ростом , т.к. убывает сила тока в цепи. Максимальная полная мощностьвыделяется при , т.е. при коротком замыкании. Источник тока совершает максимальную работу за единицу времени, но вся она идет на нагревание самого источника. Максимальная полная мощность равна

Полезная мощность имеет максимум при (в чем вы можете убедиться, взяв производную от функции (5) и приравняв ее нулю). Подставив в выражение (5 ) , найдем максимальную полезную мощность:

Легко убедиться, что при полная мощность вдвое больше полезной.

На графике зависимости КПД от видно, что максимум КПД достигается при , однако при этом абсолютная величина полезной мощности стремится к нулю.

Источник

Полная и полезная мощность. Коэффициент полезного действия (к. п. д. )

Мощность, развиваемая источником тока во всей цепи, называется полной мощностью.

Она определяется по формуле

где Pоб-полная мощность, развиваемая источником тока во всей цепи, вт;

Е- э. д. с. источника, в;

I-величина тока в цепи, а.

В общем виде электрическая цепь состоит из внешнего участка (нагрузки) с сопротивлением R и внутреннего участка с сопротивлением R (сопротивлением источника тока).

Заменяя в выражении полной мощности величину э. д. с. через напряжения на участках цепи, получим

Величина UI соответствует мощности, развиваемой на внешнем участке цепи (нагрузке), и называется полезной мощностью Pпол=UI.

Величина UoI соответствует мощности, бесполезно расходуемой внутри источника, Ее называют мощностью потерь Po=UoI.

Таким образом, полная мощность равна сумме полезной мощности и мощности потерь Pоб=Pпол+P0.

Отношение полезной мощности к полной мощности, развиваемой источником, называется коэффициентом полезного действия, сокращенно к. п. д.,и обозначается η.

Из определения следует

При любых условиях коэффициент полезного действия η ≤ 1.

Читайте также:  Химическое действие тока устройство 1

Если выразить мощности через величину тока и сопротивления участков цепи, получим

Таким образом, к. п. д. зависит от соотношения между внутренним сопротивлением источника и сопротивлением потребителя.

Обычно электрический к. п. д. принято выражать в процентах.

Для практической электротехники особый интерес представляют два вопроса:

1. Условие получения наибольшей полезной мощности

2. Условие получения наибольшего к. п. д.

Условие получения наибольшей полезной мощности (мощности в нагрузке)

Наибольшую полезную мощность( мощность на нагрузке) электрический ток развивает в том случае, если сопротивление нагрузки равно сопротивлению источника тока.

Эта наибольшая мощность равна половине всей мощности (50%) развиваемой источником тока во всей цепи.

Половина мощности развивается на нагрузке и половина развивается на внутреннем сопротивлении источника тока.

Если будем уменьшать сопротивление нагрузки, то мощность развиваемая на нагрузке будет уменьшаться а мощность развиваемая на внутреннем сопротивлении источника тока будет увеличиваться.

Если сопротивление нагрузки равно нулю то ток в цепи будет максимальным, это режим короткого замыкания (КЗ). Почти вся мощность будет развивается на внутреннем сопротивлении источника тока. Этот режим опасен для источника тока а также для всей цепи.

Если сопротивление нагрузки будем увеличивать, то ток в цепи будет уменьшатся, мощность на нагрузке также будет уменьшатся. При очень большом сопротивлении нагрузки тока в цепи вообще не будет. Это сопротивление называется бесконечно большим. Если цепь разомкнута то ее сопротивление бесконечно большое. Такой режим называется режимом холостого хода.

Таким образом, в режимах, близких к короткому замыканию и к холостому ходу, полезная мощность мала в первом случае за счет малой величины напряжения, а во втором за счет малой величины тока.

Условие получения наибольшего к. п. д коэффициента полезного действия

Коэффициент полезного действия (к. п. д.) равен 100% при холостом ходе ( в этом случае полезная мощность не выделяется, но в то же время и не затрачивается мощность источника).

По мере увеличения тока нагрузки к. п. д. уменьшается по прямолинейному закону.

В режиме короткого замыкания к. п. д. равен нулю ( полезной мощности нет, а мощность развиваемая источником, полностью расходуется внутри него).

Подводя итоги вышеизложенному, можно сделать выводы.

Условие получения максимальной полезной мощности( R=R) и условие получения максимального к. п. д. (R=∞) не совпадают. Более того, при получении от источника максимальной полезной мощности ( режим согласованной нагрузки) к. п. д.составляет 50%, т.е. половина развиваемой источником мощности бесполезно затрачивается внутри него.

В мощных электрических установках режим согласованной нагрузки является неприемлемым, так как при этом происходит бесполезная затрата больших мощностей. Поэтому для электрических станций и подстанций режимы работы генераторов, трансформаторов, выпрямителей рассчитываются так, чтобы обеспечивался высокий к. п. д. ( 90% и более).

Иначе обстоит дело в технике слабых токов. Возьмем, например, телефонный аппарат. При разговоре перед микрофоном в схеме аппарата создается электрический сигнал мощностью около 2 мвт. Очевидно, что для получения наибольшей дальности связи необходимо передать в линию как можно большую мощность, а для этого требуется выполнить режим согласованного включения нагрузки. Имеет ли в данном случае существенное значение к. п. д.? Конечно нет, так как потери энергии исчисляются долями или единицами милливатт.

Режим согласованной нагрузки применяется в радиоаппаратуре. В том случае, когда согласованный режим при непосредственном соединении генератора и нагрузки не обеспечивается, применяют меры согласования их сопротивлений.

Читайте также:  Способность материалов проводить электрический ток в проводнике

Источник

Физика

Полная мощность источника тока:

P полн = P полезн + P потерь ,

где P полезн — полезная мощность, P полезн = I 2 R ; P потерь — мощность потерь, P потерь = I 2 r ; I — сила тока в цепи; R — сопротивление нагрузки (внешней цепи); r — внутреннее сопротивление источника тока.

Полная мощность может быть рассчитана по одной из трех формул:

P полн = I 2 ( R + r ), P полн = ℰ 2 R + r , P полн = I ℰ,

где ℰ — электродвижущая сила (ЭДС) источника тока.

Полезная мощность — это мощность, которая выделяется во внешней цепи, т.е. на нагрузке (резисторе), и может быть использована для каких-то целей.

Полезная мощность может быть рассчитана по одной из трех формул:

P полезн = I 2 R , P полезн = U 2 R , P полезн = IU ,

где I — сила тока в цепи; U — напряжение на клеммах (зажимах) источника тока; R — сопротивление нагрузки (внешней цепи).

Мощность потерь — это мощность, которая выделяется в источнике тока, т.е. во внутренней цепи, и расходуется на процессы, имеющие место в самом источнике; для каких-то других целей мощность потерь не может быть использована.

Мощность потерь, как правило, рассчитывается по формуле

P потерь = I 2 r ,

где I — сила тока в цепи; r — внутреннее сопротивление источника тока.

При коротком замыкании полезная мощность обращается в нуль

так как сопротивление нагрузки в случае короткого замыкания отсутствует: R = 0.

Полная мощность при коротком замыкании источника совпадает с мощностью потерь и вычисляется по формуле

где ℰ — электродвижущая сила (ЭДС) источника тока; r — внутреннее сопротивление источника тока.

Полезная мощность имеет максимальное значение в случае, когда сопротивление нагрузки R равно внутреннему сопротивлению r источника тока:

Максимальное значение полезной мощности:

P полезн max = 0,5 P полн ,

где P полн — полная мощность источника тока; P полн = ℰ 2 / 2 r .

В явном виде формула для расчета максимальной полезной мощности выглядит следующим образом:

P полезн max = ℰ 2 4 r .

Для упрощения расчетов полезно помнить два момента:

  • если при двух сопротивлениях нагрузки R 1 и R 2 в цепи выделяется одинаковая полезная мощность, то внутреннее сопротивление источника тока r связано с указанными сопротивлениями формулой
  • если в цепи выделяется максимальная полезная мощность, то сила тока I * в цепи в два раза меньше силы тока короткого замыкания i :

Пример 15. При замыкании на сопротивление 5,0 Ом батарея элементов дает ток силой 2,0 А. Ток короткого замыкания батареи равен 12 А. Рассчитать наибольшую полезную мощность батареи.

Решение . Проанализируем условие задачи.

1. При подключении батареи к сопротивлению R 1 = 5,0 Ом в цепи течет ток силой I 1 = 2,0 А, как показано на рис. а , определяемый законом Ома для полной цепи:

где ℰ — ЭДС источника тока; r — внутреннее сопротивление источника тока.

2. При замыкании батареи накоротко в цепи течет ток короткого замыкания, как показано на рис. б . Сила тока короткого замыкания определяется формулой

где i — сила тока короткого замыкания, i = 12 А.

3. При подключении батареи к сопротивлению R 2 = r в цепи течет ток силой I 2 , как показано на рис. в , определяемый законом Ома для полной цепи:

I 2 = ℰ R 2 + r = ℰ 2 r ;

в этом случае в цепи выделяется максимальная полезная мощность:

P полезн max = I 2 2 R 2 = I 2 2 r .

Таким образом, для расчета максимальной полезной мощности необходимо определить внутреннее сопротивление источника тока r и силу тока I 2 .

Для того чтобы найти силу тока I 2 , запишем систему уравнений:

Читайте также:  Электрический ток сила тока плотность тока закон ома для однородного участка цепи закон джоуля ленца

i = ℰ r , I 2 = ℰ 2 r >

и выполним деление уравнений:

I 2 = i 2 = 12 2 = 6,0 А.

Для того чтобы найти внутреннее сопротивление источника r , запишем систему уравнений:

I 1 = ℰ R 1 + r , i = ℰ r >

и выполним деление уравнений:

I 1 i = r R 1 + r .

r = I 1 R 1 i − I 1 = 2,0 ⋅ 5,0 12 − 2,0 = 1,0 Ом.

Рассчитаем максимальную полезную мощность:

P полезн max = I 2 2 r = 6,0 2 ⋅ 1,0 = 36 Вт.

Таким образом, максимальная полезная мощность батареи составляет 36 Вт.

Источник

Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

Т. Работа и мощность тока

Работа и мощность тока

Электрическая энергия легко преобразуется в другие виды энергии — механическую, химическую, световую, внутреннюю энергию вещества, что широко применяется в промышленности и в быту.

Мерой изменения энергии электрического тока служит работа источника тока, создающего и поддерживающего электрическое поле в цепи.

Стационарное электрическое поле, перемещающее заряды по проводнику, совершает работу. Эту работу называют работой тока. Работа электрического тока на участке цепи, как следует из определения напряжения,

где q — электрический заряд, проходящий по участку цепи, а U — напряжение на участке.

Учитывая, что q = It, где I — сила тока в проводнике, а t — время прохождения электрического тока, для работы тока получим

Если R — сопротивление однородного участка цепи, то, используя закон Ома для участка цепи, можно получить формулу для расчета работы тока:

Если участок цепи не является однородным, то работу совершает не только стационарное электрическое поле, но и сторонние силы, и полная работа определяется по формуле

A = I(\varphi_1 — \varphi_2 \pm \varepsilon) t .\)

По вышеприведенным формулам можно рассчитать полную работу тока на данном участке цепи.

Если в цепи есть электродвигатель, то энергия электрического тока, во-первых, расходуется на совершение механической работы — полезная работа Ameh, во-вторых, затрачивается на нагревание обмоток электродвигателя и соединительных проводов — теряемая энергия. В этом случае коэффициент полезного действия можно рассчитать как

Говоря о коэффициенте полезного действия источника тока, под полезной работой подразумевают работу, совершаемую во внешней цепи постоянного тока:

Затраченная же работа источника тока равна работе сторонних сил:

A_z = q \varepsilon = I \varepsilon t ,\)

\varepsilon = I (R + r)\).

\eta = \frac = \frac = \frac <\varepsilon>= \frac\), где U — напряжение во внешней цепи (напряжение на полюсах источника тока). Графическая зависимость η = f(R) при r = const приведена на рис. 1.

Единица работы электрического тока в СИ — джоуль (Дж). 1 Дж представляет работу тока, эквивалентную механической работе в 1 Дж.

Измеряют работу электрического тока счетчиками.

Скорость совершения работы тока на данном участке цепи характеризует мощность тока. Мощность тока определяют по формуле \(

P = \frac At\) или P = IU.

Используя закон Ома для участка цепи, можно записать иначе формулу для мощности тока\[

P = I^2R = \frac\]. В этом случае речь идет о тепловой мощности.

Единица мощности тока — ватт: 1 Вт = Дж/с. Отсюда Дж = Вт·с.

Кроме того, применяют внесистемные единицы: киловатт-час или гектоватт-час: 1 кВт·ч = 3,6·10 6 Дж = 3,6 МДж; 1 гВт·ч = 3,6·10 5 Дж = 360 кДж.

Для измерения мощности тока существуют специальные приборы — ваттметры.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 267-270.

Источник