Меню

Устройство для регулирования напряжения электрического тока



Устройство для регулирования напряжения и тока в электрической цепи

Последняя бука буква «т»

Ответ на вопрос «Устройство для регулирования напряжения и тока в электрической цепи «, 7 (семь) букв:
реостат

Альтернативные вопросы в кроссвордах для слова реостат

Определение слова реостат в словарях

Википедия Значение слова в словаре Википедия
Реоста́т ( потенциометр , переменное сопротивление , переменный резистор ; от «поток» и «стоя́щий») — электрический аппарат , изобретённый Иоганном Христианом Поггендорфом , служащий для регулировки силы тока и напряжения в электрической цепи путём получения.

Примеры употребления слова реостат в литературе.

При свете раннего солнца город был похож на огромный ящик с сокровищами, обитый черным и серым бархатом пепелищ и наполненный миллионами сверкающих драгоценных камней: осколками аккумуляторов, амперметров, анализаторов, батарей, библиотечных автоматов, бутылок, банкнотов, бобин, вентиляторов, генераторов, громкоговорителей, динамо-машин, динамометров, детекторов, калориметров, конденсаторов, копилок, консервных автоматов, вакуумных установок, изоляторов, ламп, магнето, массспектрометров, масштабных линеек, машин по учету личного состава, моек для посуды, мотогенераторов, моторов, механических уборщиков, осциллографов, очистителей, записывающих устройств, напильников, колосников, обогревателей, панелей управления, понижающих трансформаторов, прерывателей, преобразователей, приводных ремней, потенциометров, пылеулавливателей, резцов, распылителей, регуляторов частоты, радиоприемников, реакторов, реле, реостатов, рентгеновских установок, сварочных аппаратов, счетных машин, счетчиков Гейгера, светофоров, сопротив

Огромная мраморная распределительная доска с вольтметрами, амперметрами, реостатами, предохранителями, индукторами и т.

Затем он скрылся за небольшой перегородкой, и Горовиц услышал щелканье тумблеров и жужжание реостатов.

Здесь не было ни подсветок, ни хитрого сплетения соленоидов и реостатов, ни покрытых коврами пьедесталов.

Михаил нажал кнопку остановки форвакуумного насоса, включив другой рукой реостат.

Источник: библиотека Максима Мошкова

Источник

Устройства для регулирования напряжения в сетях промышленных предприятий

Устройства для регулирования напряжения в сетях промышленных предприятийДля выбора средств регулирования напряжения и их размещения в системе электроснабжения необходимо выявить уровни напряжения в различных ее точках с учетом мощностей, передаваемых по ее отдельным участкам, технических параметров этих участков, сечения линий, мощностей трансформаторов, типов реакторов и т. д. При определении средств регулирования исходят не только из технических, но и из экономических критериев.

Основными техническими средствами регулирования напряжения в системах электроснабжения промышленных предприятий являются:

силовые трансформаторы с устройствами регулирования под нагрузкой (РПН),

вольтодобавочные трансформаторы с регулированием под нагрузкой,

конденсаторные батареи продольного и поперечного включения, синхронные двигатели с автоматическим регулированием тока вбзбуждения,

статические источники реактивной мощности,

генераторы местных электростанций, имеющихся на большинстве крупных промышленных предприятий.

На рис. 1 показана схема централизованного регулирования напряжения в распределительной сети промышленного предприятия, оно осуществляется трансформатором с устройством для автоматического регулирования напряжения под нагрузкой . Трансформатор установлен на главной понизительной подстанции (ГПП) предприятия. Трансформаторы, имеющие устройства РПН, комплектуются блоками для автоматического регулирования напряжения под нагрузкой (АРН).

Схема централизованного регулирования напряжения в распределительной сети промышленного предприятия

Рис. 1. Схема централизованного регулирования напряжения в распределительной сети промышленного предприятия

Централизованное регулирование напряжения в ряде случаев оказывается недостаточным. Поэтому для электроприемников, чувствительных к отклонениям напряжения, в распределительной сети устанавливают вольтодобавочные трансформаторы или индивидуальные стабилизаторы напряжения .

Цеховые трансформаторы распределительных сетей, трансформаторы Т1 — ТЗ (см. рис. 1), как правило, не имеют устройств для регулирования напряжения под нагрузкой и оснащаются устройствами регулирования без возбуждения типа ПБВ, позволяющими переключать ответвления силового трансформатора при отключении его от сети. Указанные устройства используются обычно для сезонного регулирования напряжения.

Важным элементом, улучшающим режим напряжения в сети промышленного предприятия, являются устройства компенсации реактивной мощности — конденсаторные батареи поперечного и продольного включения. Установка последовательно включенных конденсаторов (УПК) дает возможность снизить индуктивное сопротивление и потерю напряжения в линии. Для УПК отношение емкостного сопротивления конденсаторов хк к индуктивному сопротивлению линии хл называется процентом компенсации : С= (хк/хл) х 100 [%].

Устройства УПК осуществляют параметрическое, зависимое от величины и фазы тока нагрузки, регулирование напряжения в сети. На практике прибегают лишь к частичной компенсации реактивного сопротивления (С

Полная компенсация при резком изменении нагрузки и в аварийных режимах может вызвать перенапряжения. В связи с этим при значительных величинах С устройства УПК должны быть оснащены коммутаторами, шунтирующими часть батарей.

Для систем электроснабжения разрабатываются УПК с шунтировкой части секций батареи тиристорными ключами, что расширит область применения УПК в системах электроснабжения промышленных предприятий.

Конденсаторы, подключаемые параллельно сети, генерируют х реактивную мощность и одновременно напряжение, так как уменьшают потери в сети. Реактивная мощность, генерируемая подобными батареями — устройствами поперечной компенсации, Qк = U 2 2 π fC. Таким образом, реактивная мощность, отдаваемая батареей поперечно включенных конденсаторов, в значительной мере зависит от величины напряжения на ее зажимах.

При выборе мощности конденсаторов исходят из необходимости обеспечения соответствующего нормам отклонения напряжения при расчетной величине активной нагрузки, что определяется разностью потерь линии до и после включения конденсаторов:

где P1, Q2, Р2, Q2 — передаваемые по линии активные и реактивные мощности до и после установки конденсаторов, r с, хс — сопротивления сети.

Учитывая неизменность передаваемой по линии активной мощности (Р 1 = Р2), имеем:

Регулирующий эффект от подключения параллельно сети конденсаторной батареи пропорционален хс, т. е. повышение напряжения у потребителя в конце линии больше, чем в ее начале.

Основным средством регулирования напряжения в распределительных сетях промышленных предприятий являются трансформаторы с регулированием под нагрузкой . Регулировочные ответвления таких трансформаторов располагаются на обмотке высшего напряжения. Переключатель размещают обычно в общем баке с магнитопроводом и приводят в действие электродвигателем. Приводной механизм оснащен конечными выключателями, размыкающими электрическую цепь питания двигателя при достижении переключателем крайнего положения.

На рис. 2, а представлена схема многоступенчатого переключателя типа РНТ-9, имеющего восемь позиций и глубину регулирования ±10 %. Переход между ступенями осуществляется посредством шунтирования смежных ступеней на реактор.

Читайте также:  3 фазный ток цвета

 Переключающие устройства силовых трансформаторов

Рис. 2. Переключающие устройства силовых трансформаторов: а — переключатель типа РНТ, Р — реактор, РО — регулировочная часть обмотки, ПК — подвижные контакты переключателя, б — переключатель типа РНТА, ТС — токоограничивающее сопротивление, ПГР переключатель грубой регулировки, ПТР — переключатель тонкой регулировки

Отечественная промышленность выпускает также переключатели серии РНТА с активным токоограничивающим сопротивлением, имеющие более мелкие ступени регулирования — по 1,5 %. Показанный на рис. 2, б переключатель РНТА имеет семь ступеней тонкой регулировки (ПТР) и ступень грубой регулировки (ПГР).

В настоящее время электротехнической промышленностью также выпускаются статические переключатели отпаек силовых трансформаторов , позволяющие производить быстродействующее регулирование напряжения в сетях промышленных предприятий.

На рис. 3 представлена одна из осваиваемых электротехнической промышленностью систем переключения отпаек силового трансформатора — переключатель «через резистор».

На рисунке показана регулировочная зона трансформатора, имеющая восемь отпаек, соединенных с выходным его зажимом посредством биполярных групп VS1—VS8. Кроме этих групп, имеется биполярная тиристорная переключающая группа, соединенная последовательно с токоограничивающим резистором R.

Статический переключатель отпаек с токоограничивающим резистором

Рис. 3. Статический переключатель отпаек с токоограничивающим резистором

Принцип работы переключателя состоит в следующем: при переходе с отпайки на отпайку во избежание короткого замыкания секции или разрыва цепи полностью гасится выходящая из работы биполярная группа путем перевода тока на отпайку с резистором, а затем ток переводится на необходимую отпайку. Например, при переходе с отпайки VS3 на VS4 происходит следующий цикл: включается VS.

Ток КЗ секции ограничивается токоограничивающим резистором R, гасятся тиристоры VS3, включается VS4, отключаются тиристоры VS. Аналогично выполняются другие коммутации. Биполярные тиристорные группы VS10 и VS11 производят реверсирование регулировочной зоны. Переключатель имеет усиленный блок тиристоров VS9, осуществляющий нулевую позицию регулятора.

Особенностью работы переключателя является наличие блока автоматического управления (БАУ), выдающего команды управления на VS9 в интервале включения трансформатора на холостой ход. БАУ работает в течение некоторого времени, необходимого для того, чтобы источники, питающие тиристорные группы VS1—VS11 и VS, вышли на режим, поскольку источником питания системы управления переключателя служит сам трансформатор.

Источник

Регулирование напряжения в цепях постоянного тока

Довольно большое количество промышленных электроприводов и технологических процессов для своего питания используют постоянный ток. Причем в таких случаях довольно часто необходимо изменять значение этого напряжения. Такие виды транспорта как метрополитен, троллейбусы, электрокары и другие виды транспорта получают питающее напряжения из сетей постоянного тока с неизменным напряжением. Но ведь многие из них нуждаются в изменении значения напряжения, подводимого к якорю электродвигателя. Классическими средствами получения необходимых значений являются резистивное регулирование и система генератор-двигатель, или система Леонардо. Но эти системы являются устаревшими, и встретить их можно довольно редко (особенно систему генератор-двигатель). Более современными и активно внедряемыми сейчас являются системы тиристорный преобразователь-двигатель, импульсный преобразователь двигатель. Рассмотрим каждую систему более подробно.

Резисторное регулирование

Для регулирования пускового тока и напряжения, подводимого к электродвигателю, в якорную цепь последовательно якорю (или якорю и обмотке возбуждения в случае двигателя последовательного возбуждения) подключают резисторы:

Резистивно-контакторная схема управления

Таким образом, регулируется ток, подводимый к электрической машине. Контакторы К1, К2, К3 шунтируют резисторы при необходимости изменения какого-либо параметра или координаты электропривода. Этот способ довольно еще широко распространен, особенно в тяговых электроприводах, хотя ему сопутствуют большие потери в резисторах и, как следствие, довольно низкий КПД.

Система генератор-двигатель

В такой системе необходимый уровень напряжения формируется путем изменения потока возбуждения генератора:

Система генератор-двигатель с приводным двигателем постоянного тока

Наличие в такой системе трех электромашин, больших массогабаритных показателей и длительного времени ремонта при поломках, а также дорогостоящего обслуживания и большую инерционность такой установки сделали КПД такой машины очень низким. Сейчас систем генератор-двигатель практически не осталось, все они активно заменяются на системы тиристорный преобразователь – двигатель ТП-Д, который обладает рядом преимуществ.

Тиристорный преобразователь – двигатель

Получила свое массовое развитие в 60-х годах, когда начали появляться тиристоры. Именно на их базе были созданы первые статичные маломощные тиристорные преобразователи. Такие устройства подключались напрямую к сетям переменного тока:

Структурная схема тиристорного электпропривода постоянного тока

Регулирование напряжения происходит путем изменения угла открывания тиристора. Регулирование через тиристорный преобразователь имеет ряд преимуществ перед установкой генератор-двигатель, такие как высокое быстродействие и КПД, плавное регулирование напряжения постоянного и много других.

Преобразователь с промежуточным звеном постоянного напряжения

Здесь все немного сложнее. Чтоб получить постоянное напряжение необходимой величины применяют еще вспомогательные устройства, а именно инвертор, трансформатор, выпрямитель:

инвертор в цепи постоянного тока

Здесь постоянный ток преобразуют в переменный с помощью инвертора тока, потом с помощью трансформатора понижают или повышают (в зависимости от надобности), а потом снова выпрямляют. Значительно удорожает установку наличие трансформатора и инвертора, укрупняет систему, чем снижает КПД. Но есть и плюс – гальваническая развязка между сетью и нагрузкой из – за наличия трансформатора. На практике такие устройства встречаются крайне редко.

Импульсные преобразователи постоянного напряжения

Это пожалуй самые современные устройства регулирования в цепях постоянного тока. Его можно сравнить с трансформатором, поскольку поведение импульсного преобразователя подобно трансформатору с плавно меняющимся количеством витков:

Импульсные преобразователи цепи постоянного тока

Такие системы активно заменяют электроприводы с резистивным регулированием, путем подключения их к якорю машины последовательно, вместо резистивно-контакторной группы. Их довольно часто применяю в электрокарах, а также довольно большую популярность они обрели в подземном транспорте (метрополитен). Такие преобразователи выделяют минимум тепла, что не нагревает тоннелей и могут реализовывать режим рекуперативного торможения, что является большим плюсом для электроприводов с частым пуском и торможением.

Читайте также:  Пугв 1х25 характеристики по току

Большим плюсом таких устройств есть то, что они могут осуществить рекуперацию энергии в сеть, плавно регулируют скорость нарастания тока, обладают высоким КПД и быстродействием.

Источник

Тема 5.2. Регулирование напряжения в электрических сетях

5.2.1. Методы и принципы регулирования напряжения

Различным режимам работы потребителей соответствуют разные потоки мощности, передаваемые по сети, и, следовательно, разные потери напряжения [1]. В режиме наибольших нагрузок сеть, как правило, сильно загружена и потери напряжения в ее элементах большие. В нормальных режимах потери напряжения меньше, а в режиме наименьших нагрузок могут быть совсем незначительными.

Работа электроприемников с наилучшими технико-экономическими показателями (высокий КПД, надежность, электромагнитная безопасность и т.п.) возможна только при небольших отклонениях напряжения на их выводах. Для трансформаторов электрической сети устанавливается превышение напряжения не более чем на 5%относительно напряжения рабочего ответвления регулирующего устройства, что связано с недопустимостью перехода на нелинейную часть кривой намагничивания трансформатора.

Нижний уровень напряжений в электрической сети определяется условиями регулирования напряжения в распределительных сетях и устойчивостью работы ЭЭС. Указанные требования к отклонению напряжения в электрической сети и на выводах электроприемников обусловливают необходимость регулирования напряжения во всех видах электрических сетей. Различают централизованное и локальное регулирования напряжения.

При централизованном регулировании напряжение изменяют в центре питания (электростанции, подстанции). Локальное регулирование используют в питающих и распределительных сетях для отдельных групп потребителей или электроприемников (групповое регулирование). Иногда регулирование выполняют для отдельного электроприемника (индивидуальное регулирование).

Для того, чтобы рабочее напряжение сети можно было поддерживать выше номинального напряжения из-за необходимости компенсации потерь напряжения, силовые трансформаторы, как правило, имеют номинальные напряжения обмоток на 5. 10% выше номинального напряжения сети, к которой они присоединены.

Регулирование напряжения в электрических сетях выполняется по одному из трех принципов:

— стабилизация по заданному графику напряжения;

— встречное (согласное) регулирование.

В соответствии с принципом стабилизации напряжение на шинах нагрузки поддерживается всегда на заданном уровне (рисунок 5.5, а). Регулирование по заданному графику предусматривает стабилизацию разных заданных значений напряжений на различных временных интервалах. В этом случае график напряжения является ступенчатым, например, в часы утреннего и вечернего максимумов напряжение поддерживается выше, чем в остальные часы суток (рисунок 5.5, б).

Принципы стабилизации используются при регулировании напряжения на электростанциях и в специальных случаях – для индивидуального регулирования напряжения у некоторых электроприемников.

Рисунок 5.5. Графики напряжений

Принцип встречного регулирования устанавливает значение напряжения на шинах НН понижающих подстанций в зависимости от тока нагрузки. Согласно Правилам устройства электроустановок, на шинах ЦП 6. 20 кВ должно обеспечиваться встречное регулирование напряжения, при котором напряжение ЦП увеличивается по мере роста нагрузки. В часы максимальной нагрузки напряжение поддерживается на 5. 10% выше номинального (не ниже 1,05 от номинального напряжения), а в часы минимальных нагрузок не выше номинального значения.

К средствам регулирования напряжения относятся:

— регуляторы напряжения на электростанциях;

— регулирующие устройства на понижающих трансформаторах;

— специальные регулировочные трансформаторы;

Кроме того, к средствам регулирования напряжения можно отнести системы отключения (включения) части параллельно работающих элементов электрической сети.

5.2.2. Регулирование напряжения на электростанциях

Рабочее напряжение на генераторах может изменяться в пределах от 0,95Uг ном до 1,05Uг ном. Регулирование напряжения на шинах электрической станции производится автоматически с помощью быстродействующего автоматического регулятора возбуждения (АРВ) синхронных генераторов [1].

В зависимости от электрической схемы станции используются различные устройства регулирования напряжения. В общем случае можно выделить индивидуальные АРВ генераторов, к которым подводятся сигналы по напряжению и току, а также устройства группового регулирования напряжения (ГРН), которые должны обеспечивать автоматическое распределение реактивной мощности между генераторами и поддерживать напряжение на шинах электростанции или в другой точке ЭЭС согласно заданному режиму работы. Кроме того, к управляющим устройствам регулирования напряжения на электростанции следует отнести блоки ограничения перегрузки ротора и минимального возбуждения (ОМВ), которые связаны с условиями нагрева стали статора и ротора генератора и статической устойчивостью. На рисунке 5.6 показана управляющая схема автоматического регулирования напряжения на электростанции.

Рисунок 5.6. Схема автоматического регулирования напряжения

АРВ является первичным регулятором напряжения и аналогично АРС турбин при регулировании частоты имеет статизм. На рисунке 5.7 показана статическая характеристика реактивной мощности потребления ЭЭС по напря-жению ΣQп, пересечение которой с характеристикой АРВ является рабочей точкой (а) исходного режима с напряжением на шинах станции U. Реактивная мощность исходного режима равна Q.

При изменении режима потребления реактивной мощности, например увеличении потребления на ∆Q, в соответствии со статической характеристикой АРВ рабочая точка установится на пересечении новой статической характеристики ΣQп +∆Q (точка b) – это стадия первичного регулирования напряжения устройством АРВ. Точке b соответствуют напряжение U1 и реактивная мощность Q1 при этом U1 (В) – напряжение на выводах обмотки НН, приведенное к напряжению ВН.

Напряжение на шинах НН вычисляется по формуле

где UH (В) = |UВ – ∆U|; ∆U – падение напряжение на сопротивлениях обмоток трансформатора; UВ – напряжение на шинах ВН; kт – коэффициент трансформации, подлежащий определению; U – искомое напряжение ответвления.

Из (5.1) найдем напряжение ответвления Uотв при условии, что напряжение на шинах НН равно желаемому напряжению, т.е. UH = Uжел:

Вычисленное по (5.4) напряжение ответвления следует использовать для определения напряжения ближайшего стандартного ответвления. Ряд стандартных напряжений ответвлений может быть получен по формуле

Uотв ст = UВ ном ±mUотв = UВ ном ±m UВ ном, (5.5)

Читайте также:  Почему материал проводит электрический ток

где m – номер ответвления в сторону увеличения (знак плюс) или уменьшения (знак минус) коэффициента трансформации (m = 0,1. mmax); mmax – максимально возможное количество ответвлений трансформатора в сторону увеличения kтm + max или в сторону уменьшения mmax, обычно m + max = mmax; ∆ Uотв и ∆ U’отв – шаг изменения напряжения при переходе на соседнее ответвле­ние в киловольтах и процентах соответственно.

Следует заметить, что уменьшение коэффициента трансформации приводит к увеличению напряжения на шинах НН, а увеличение – к его уменьшению.

Действительное напряжение на шинах НН с учетом выбранного ответвления

Для проверки возможности регулирования напряжения с помощью ответвлений РПН или ПБВ можно не определять напряжения ответвлений, а вычислить номер ответвления, обеспе­чивающий желаемое напряжение.

Если m входит в допустимый диапазон номеров (0,1. mmax), то регулирование возможно; в противном случае необходимы дополнительные средства регулирования напряжения на данной подстанции или изменение сделанных ранее проектных решений.

Регулирование напряжения на понижающих подстанциях с трехобмоточными трансформаторами и автотрансформаторами. Трехобмоточные трансформаторы на 110 и 220 кВ изготавливают с РПН только в обмотке ВН, а обмотка СН имеет ответвления ПБВ для изменения коэффициента трансформации ±2×2,5% UС ном

Схема регулирования напряжения со стороны ВН на трехобмоточных трансформаторах такая же, как на двухобмоточных. Однако изменение числа витков на стороне ВН приводит к изменению коэффициента трансформации как между обмотками ВН и СН (kтв-с) так и между ВН и НН (kтв_н) (рисунок 5.9, а). Такое регулирование называется связанным (зависимым), т.е. обеспечение регулирования на одних шинах, например НН, вынужденно меняет напряжения и на других шинах – СН. Если графики нагрузок на шинах СН и НН схожи по форме, то вполне возможно, что устройства РПН окажется вполне достаточно для регулирования напря­жения в сетях обеих ступеней номинальных напряжений.

В случае, когда требования к регулированию напряжения на обеих системах шин противоречивы, устанавливают дополнительные средства регулирования. К ним относятся КУ (рисунок 5.9, б) и специальные регулировочные трансформаторы – линейные регуляторы (ЛР), которые включаются последовательно с одной из вторичных обмоток трансформатора (рисунок 5.9, в).

Рисунок 5.9. Регулирование напряжения на подстанции

с трехобмоточным трансформатором

Линейные регуляторы выпускаются мощностью от 16 до 100 MB-А на напряжение 6. 35 кВ и предназначены для установки последовательно с нерегулируемыми обмотками трансформаторов, а также непосредственно в ЛЭП. Конструктивно по отношению к основному трансформатору эти устройства являются внешними. На рисунке 5.10 показана схема одной фазы ЛР типа ЛТДН с ре­версивной обмоткой регулирования. Диапазон регулирования ЛР ±10х1,5% = ±15%.

От регулируемой обмотки (РО) через переключатели П1 и П2 питается обмотка возбуждения (ОВ) последовательного трансформатора (ПТ). В последовательной обмотке (ПО), включенной в рассечку линии, наводится ЭДС ∆Е, величина которой зависит от положения переключателей на регулируемой обмотке, а направление – от положения переключателя реверсирования (ПР).

В положении, изображенном на рисунке 5.10, отрегулированное напряжение в линии (точка b) превышает подведенное (точка а).

Работа переключающего устройства в ЛР выполняется так же, как и в РПН двухобмоточного трансформатора. При необходимости снижения выдаваемого напряжения ЛР (точка b) переключатели П1 и П2 переводятся на одно ответвление вверх по направлению к ответвлению 10. Дойдя до последнего ответвления 10 (это соответствует регулированию 0% Uном), переключатель реверсирования ПР переходит из положения 1 в положение 2, а переключатели П1 и П2, вращаясь по кругу (ответвления 10 и 1 являются соседними), – на ответвление 1. Направление ЭДС в последовательной обмотке изменится на обратное, и передвижение переключающего устройства вверх от ответвления 1 к ответвлению 10 будет приводить к дальнейшему понижению напряжения в точке b.

Рисунок 5.10 Схема одной фазы ЛР

Повышение выдаваемого напряжения идет в обратном порядке. Максимальная величина добавки напряжения ЛР составляет ±0,15 U (U – величина подведенного к ЛР напряжения).

На подстанциях с номинальным напряжением 220 кВ и выше устанавливаются автотрансформаторы.

Устройство регулирования напряжения у автотрансформаторов встраивается на линейном конце обмотки СН (рисунок 5.11, а), что обеспечивает изменение коэффициента трансформации только между обмотками ВН и СН (kтВ_С). Регулирование напряжения на обмотке НН автотрансформатора может быть выполнено путем установки ЛР последовательно с обмоткой НН или с помощью КУ.

Рисунок 5.11. Схемы регулирования напряжения автотрансформатора:

а – на линии со стороны СН и б – с помощью вольтодобавочного

Иногда для регулирования напряжения в автотрансформаторах используют устройства, аналогичные ЛР, – так называемые вольтодобавочные трансформаторы (ВДТ), специальная обмотка которых соединяется последовательно с обмотками фаз ВН (рисунок 5.11, б).

На рисунке 5.12 изображена схема ВДТ для регулирования напряжения в фазе С автотрансформатора. В состав ВДТ входят два трансформатора – питающий, состоящий из питающей (ПО) и регулирующей (РО) обмоток, и последовательный, который имеет обмотку возбуждения (ОВ) и вольтодобавочную обмотку (ВДО).

Рисунок 5.12 Схема регулирования ВДТ

Первичная обмотка питающего трансформатора может получать питание от фазы А или фаз В, С обмотки НН автотрансформатора. Вторичная обмотка питающего трансформатора имеет такое же переключающее устройство, как РПН. Один конец обмотки возбуждения последовательного трансформатора подключен к средней точке (нулевому ответвлению) РО, другой – к переключающему устройству (ПУ).

Вольтодобавочная обмотка последовательного трансформатора соединена последовательно с обмоткой ВН автотрансформатора, и добавочная ЭДС ∆Е складывается с напряжением обмотки ВН.

5.2.4. Регулирование напряжения методом

изменения потерь напряжения в сети

Дата добавления: 2018-02-28 ; просмотров: 3332 ; Мы поможем в написании вашей работы!

Источник