Меню

Установка по закалке токами высокой частоты



НПП «ЭЛСИТ»

Продукция «ЭЛСИТ»

  • СПРАВОЧНИК
    • Термообработка
    • Индукционная пайка
    • Плавка
    • Закалка ТВЧ
  • Карта сайта
  • ЗАДАТЬ ВОПРОС
  • Вопрос-Ответ
  • Заказать звонок

Установка ТВЧ для закалки

установка твч, закалка твч, установка для закалки твчТок высокой частоты образуется в установке благодаря индуктору и позволяет нагревать изделие, размещенное в непосредственной близости с индуктором. Индукционная установка идеально подходит для закалки металлических изделий. Именно в ТВЧ установке можно четко запрограммировать: нужную глубину проникновения тепла, время закалки, температуру нагрева и процесс охлаждения.

Впервые индукционное оборудование было использовано для закалки после предложения, поступившего от В.П. Володина в 1923 году. После долгих проб и тестирований ТВЧ нагрева его стали использовать для закалки стали с 1935 года. Установки ТВЧ для закалки на сегодняшний день являются наиболее продуктивным способом термообработки металлических изделий.

Почему индукционная установка лучше подходит для закалки

Закалка ТВЧ металлических деталей производится для повышения устойчивости верхнего слоя изделия к механическим повреждениям, при этом центр заготовки имеет повышенную вязкость. Важно отметить, что сердцевина изделия при ТВЧ закалке остается полностью неизменной.
Индукционная установка имеет немало очень важных преимуществ в сравнении с альтернативными видами нагрева: если раньше ТВЧ установки были более громоздкими и неудобными, то сейчас этот недостаток исправили, и оборудование стало универсальным для термообработки изделий из металла.

Преимущества индукционного оборудования

  1. Индукционный нагрев позволяет изменять только ту часть детали, которая нуждается в нагреве. ТВЧ-нагрев получается наиболее экономичным, чем другие способы нагрева. Закалка в ТВЧ установке занимает немного времени и позволяет повысить уровень производительности на предприятии.
  2. Установка для ТВЧ закалки позволяет избежать появления трещин, окалины и сколов на изделии, кроме того, значительно снижается риск получения брака из-за коробления.
  3. Если необходимо, то глубину закаливаемого слоя можно увеличить или уменьшить.
  4. Благодаря воздействию токов высокой частоты, можно усилить физические свойства металла.
  5. Индукционная закалка позволяет избежать деформации металла во время нагрева изделия.

Один из минусов индукционной установки для закалки – это невозможность обработки некоторых изделий, имеющих сложную форму.

Разновидности закалки металла

Закалка металла бывает нескольких типов. Для одних изделий достаточно нагреть металл и сразу же остудить, а для других необходима выдержка при определенной температуре.
Существуют следующие виды закалки:

  • Стационарная закалка: применяется, как правило, для деталей, имеющих небольшую плоскую поверхность. Положение детали и индуктора при использовании данного способа закалки остается неизменным.
  • Непрерывно-последовательная закалка: применяется для закалки цилиндрических или плоских изделий. При непрерывно-последовательной закалке деталь может перемещаться под индуктором, либо сохраняет свою позицию неизменной.
  • Тангенциальная закалка изделий: отлично подходит для обработки небольших деталей, имеющих цилиндрическую форму. Тангенциальная непрерывно-последовательная закалка прокручивает изделие единожды в течение всего процесса термообработки.
  • Установка ТВЧ для закалки – это оборудование, способное произвести качественную закалку изделия и при этом сэкономить производственные ресурсы.

Источник

Технология термообработки ТВЧ

Закалка ТВЧ

Индукционный нагрев происходит в результате размещения обрабатываемой детали вблизи проводника переменного электрического тока, который называется индуктором. При прохождении по индуктору тока высокой частоты (ТВЧ) создаётся электромагнитное поле и, если в этом поле располагается металлическое изделие, то в нем возбуждается электродвижущая сила, которая вызывает прохождение по изделию переменного тока такой же частоты, как и ток индуктора.

Закалка ТВЧ

Таким образом наводится тепловое воздействие, которое вызывает разогрев изделия. Тепловая мощность Р, выделяемая в нагреваемой детали, будет равна:

Мощность при закалке ТВЧ

где К – коэффициент, зависящий от конфигурации изделия и величины зазора, образующегося между поверхностями изделия и индуктора; Iин — сила тока; f – частота тока (Гц); r – удельное электрическое сопротивление (Ом·см); m – магнитная проницаемость (Г/Э) стали.

На процесс индукционного нагрева существенное влияние оказывает физическое явление, называемое поверхностным (скин) эффектом: ток индуцируется преимущественно в поверхностных слоях, и при высоких частотах плотность тока в сердцевине детали мала. Глубина нагреваемого слоя оценивается по формуле:

Глубина слоя после закалки ТВЧ

Повышение частоты тока позволяет концентрировать в небольшом объёме нагреваемой детали значительную мощность. Благодаря этому реализуется высокоскоростной (до 500 С/сек) нагрев.

Параметры индукционного нагрева

Индукционный нагрев характеризуется тремя параметрами: удельной мощностью, продолжительностью нагрева и частотой тока. Удельная мощность — это мощность переходящая в теплоту на 1 см2 поверхности нагреваемого металла (кВт/см2). От величины удельной мощности зависит скорость нагрева изделия: чем она больше, тем быстрее осуществляется нагрев.

Продолжительность нагрева определяет общее количество передаваемой тепловой энергии, а соответственно и достигаемую температуру. Также важно учитывать частоту тока, так как от нее зависит глубина закаленного слоя. Частота тока и глубина нагреваемого слоя находятся в противоположной зависимости (вторая формула). Чем выше частота, тем меньше нагреваемый объем металла. Выбирая величину удельной мощности, продолжительность нагрева и частоту тока, можно в широких пределах изменять конечные параметры индукционного нагрева — твердость и глубину закаленного слоя при закалке или нагреваемый объем при нагреве под штамповку.

На практике контролируемыми параметрами нагрева, являются электрические параметры генератора тока (мощность, сила тока, напряжение) и продолжительность нагрева. При помощи пирометров также может фиксироваться температура нагрева металла. Но чаще не возникает необходимости в постоянном контроле температуры, так как подбирается оптимальный режим нагрева, который обеспечивает постоянное качество закалки или нагрева ТВЧ. Оптимальный режим закалки подбирается изменением электрических параметров. Таким образом осуществляют закалку нескольких деталей. Далее детали подвергаются лабораторному анализу с фиксированием твёрдости, микроструктуры, распределения закалённого слоя по глубине и плоскости. При недогреве в структуре доэвтектоидных сталей наблюдается остаточный феррит; при перегреве возникает крупноигольчатый мартенсит. Признаки брака при нагреве ТВЧ такие же, как и при классических технологиях термообработки.

При поверхностной закалке ТВЧ нагрев проводится до более высокой температуры, чем при обычной объемной закалке. Это обусловлено двумя причинами. Во-первых, при очень большой скорости нагрева температуры критических точек, при которых происходит переход перлита в аустенит, повышаются, а во-вторых, нужно, чтобы это превращение успело завершиться за очень короткое время нагрева и выдержки.

Несмотря на то, что нагрев при высокочастотной закалке проводится до более высокой температуры, чем при обычной, перегрева металла не происходит. Так происходит из-за того, что зерно в стали попросту не успевает вырасти за очень короткий промежуток времени. При этом также стоит отметить, что по сравнению с объемной закалкой, твердость после закалки ТВЧ получается выше примерно на 2— 3 единицы HRC. Это обеспечивает более высокую износостойкость и твердость поверхности детали.

Преимущества закалки токами высокой частоты

  • высокая производительность процесса
  • легкость регулирования толщины закаленного слоя
  • минимальное коробление
  • почти полное отсутствие окалины
  • возможность полной автоматизации всего процесса
  • возможность размещения закалочной установки в потоке механической обработки.

Наиболее часто поверхностной высокочастотной закалке подвергают детали, изготовленные из углеродистой стали с содержанием 0,4—0,5% С. Эти стали после закалки имеют поверхностную твердость HRC 55—60. При более высоком содержании углерода возникает опасность появления трещин из-за резкого охлаждения. Наряду с углеродистыми применяются также низколегированные хромистые, хромоникелевые, хромокремнистые и другие стали.

Оборудование для выполнения индукционной закалки (ТВЧ)

Индукционная закалка требует специального технологического оборудования, которое включает три основных узла: источник питания — генератор токов высокой частоты, индуктор и устройство для перемещения деталей в станке.

Генератор токов высокой частоты это электрические машины, различающиеся по физическим принципам формирования в них электрического тока.

  1. Электронные устройства, работающие по принципу электронных ламп, преобразующих постоянный ток в переменный ток повышенной частоты – ламповые генераторы.
  2. Электромашинные устройства, работающие по принципу наведения электрического тока в проводнике, перемещающихся в магнитном поле, преобразующие трехфазный ток промышленной частоты в переменный ток повышенной частоты – машинные генераторы.
  3. Полупроводниковые устройства, работающие по принципу тиристорных приборов, преобразующих постоянный ток в переменный ток повышенной частоты – тиристорные преобразователи (статические генераторы).
Читайте также:  Вода щиплет током в частном доме

Генераторы всех видов различаются по частоте и мощности генерируемого тока

Виды генераторов Мощность, кВт Частота, кГц КПД

Ламповые 10 — 160 70 — 400 0,5 — 0,7

Машинные 50 — 2500 2,5 — 10 0,7 — 0,8

Тиристорные 160 — 800 1 — 4 0,90 — 0,95

Поверхностную закалку мелких деталей (иглы, контакты, наконечники пружин) осуществляют с помощью микроиндукционных генераторов. Вырабатываемая ими частота достигает 50 МГц, время нагрева под закалку составляет 0,01-0,001 с.

Способы закалки ТВЧ

По выполнению нагрева различают индукционную непрерывно-последовательную закалку и одновременную закалку.

Непрерывно-последовательная закалка применяется для длинномерных деталей постоянного сечения (валы, оси, плоские поверхности длинномерных изделий). Нагреваемая деталь перемещается в индукторе. Участок детали, находящийся в определенны момент в зоне воздействия индуктора, нагревается до закалочной температуры. На выходе из индуктора участок попадает в зону спрейерного охлаждения. Недостаток такого способа нагрева – низкая производительность процесса. Чтобы увеличить толщину закленного слоя необходимо увеличить продолжительность нагрева с помощью снижения скорости перемещения детали в индукторе. Одновременная закалка предполагает единовременный нагрев всей упрочняемой поверхности.

Эффект самоотпуска после закалки

После завершения нагрева поверхность охлаждается душем или потоком воды непосредственно в индукторе либо в отдельном охлаждающем устройстве. Такое охлаждение позволяет выполнять закалку любой конфигурации. Дозируя охлаждение и изменяя его продолжительность, можно реализовать эффект самоотпуска в стали. Данный эффект заключается в отведении тепла, накопленного при нагреве в сердцевине детали, к поверхности. Говоря другими словами, когда поверхностный слой охладился и претерпел мартенситное превращение, в подповерхностном слое еще сохраняется определенное количество тепловой энергии, температура которой может достигать температуры низкого отпуска. После прекращения охлаждения эта энергия за счет разницы температур будет отводиться на поверхность. Таким образом отпадает необходимость в дополнительных операциях отпуска стали.

Конструкция и изготовление индукторов для закалки ТВЧ

Индуктора изготавливают из медных трубок, через которые в процессе нагрева пропускается вода. Таким образом предотвращается перегрев и перегорание индукторов при работе. Изготавливаются также индукторы, совмещаемые с закалочным устройством — спрейером: на внутренней поверхности таких индукторов имеются отверстия, через которые на нагретую деталь поступает охлаждающая жидкость.

Для равномерного нагревания необходимо изготавливать индуктор таким образом, чтобы расстояние от индуктора до всех точек поверхности изделия было одинаковым. Обычно это расстояние составляет 1,5-3 мм. При закалке изделия простой формы это условие легко выполняется. Для равномерности закалки, деталь необходимо перемещать и (или) вращать в индукторе. Это достигается применением специальных устройств — центров или закалочных столов.

Разработка конструкции индуктора предполагает прежде всего определение его формы. При этом отталкиваются от формы и габаритов закаливаемого изделия и способа закалки. Кроме того, при изготовлении индукторов учитывается характер перемещения детали относительно индуктора. Также учитывается экономичность и производительность нагрева.

Охлаждение деталей может применяется в трех вариантах: водяным душированием, водяным потоком, погружением детали в закалочную среду. Душевое охлаждение может осуществляться как в индукторах-спрейерах, так и в специальных закалочных камерах. Охлаждение потоком позволяет создавать избыточное давление порядка 1 атм, что способствует более равномерному охлаждению детали. Для обеспечения интенсивного и равномерного охлаждения необходимо, чтобы вода перемещалась по охлаждаемой поверхности со скоростью 5-30 м/сек.

Источник

Импульсная высокочастотная закалка металлов

Закаленные структуры, как правило, имеют более мелкое зерно и более высокую, чем указанно в справочной литературе, твердость (на 3-10 ед. HRC, для различных сталей и чугунов), что позволяет в ряде случаев производить замену материала и отказаться от химико-термической обработки.

микроструктура

Точно дозируемая энергия ВЧ-импульсов, перемежаемых паузами, и кратность их воздействия на материал (десятые и сотые доли секунды) позволяет закаливать большинство машиностроительных деталей без изменения их микро- и макрогеометрии, а также реализовать, неразрешимые с позиций традиционных методов термообработки, конструкторские решения (например, предотвратить поломки коленчатого вала на форсируемом двигателе внутреннего сгорания или повысить ресурс гильзы цилиндра, как в части износа зеркала, так и сопротивления кавитации).

схема

Закалка может быть сплошной, локальной, слоеной, иметь рисунок, переменную глубину и т.д. а, в целом, с ее помощью любой узел (кинематическая пара) получит новое качество и конструкторский запас, а конструктор — технологический инструмент осуществления самых смелых проектов.

Установка ИВЧ

Состав установки ИВЧ:

  • импульсный высокочастотный генератор мощностью 20-120 кВт;
  • блок питания;
  • универсальное согласующее устройство;
  • универсальная стойка.

Виды ИВЧ закалки:

  • Сплошная.
  • Локальная (точечная, зонная).
  • Слоёная.
  • Имеет рисунок.
  • Имеет переменную глубину.

виды ивч-закалки

Преимущества ИВЧ закалки перед другими видами закалки

  • Можно производить закалку без предварительного нагрева в термических агрегатах
  • Можно получать глубину закалки до 6 мм за счет изменения удельной плотности энергии (тока).
  • Можно производить закалку деталей из биметаллов.
  • Можно осуществлять закалку деталей, выполненных из различных сталей и других металлов, которые невозможно закалить при помощи существующих технологий.
  • Твердость закаленного материала по данной технологии на 3-10 единиц твердости выше значений, полученных при помощи традиционных технологий.
  • Время закаливания металла сокращается в несколько раз, так как отпадает необходимость в операции нагрева, выдержки и охлаждения, присущих традиционным методам закалки (в нагревательных агрегатах).
  • Можно производить фрагментарную закалку детали (точечная, зонная, с рисунком и т.п.).
  • Закалку можно производить на заключительном этапе механической обработки, например, при изготовлении деталей, выполненных в форме вращения.
  • Аппаратурно легко встраивается в любую технологическую линию, независимо от серийности и габаритов выпускаемой детали.

применение ивч-закалки

Основные направления применения импульсной высокочастотной закалки

  1. Лисовые материалы, в том числе полосы, рессоры;
  2. Детали в виде тел вращения;
  3. Детали, имеющие сложную форму, в том числе:
    1. Шестерни;
    2. Коленвалы;
    3. Подшипники;
    4. Карданы;
    5. Оси, полуоси.
  4. Быстрорежущий, медленнорежущий и долбёжный инструменты;
  5. Рельсы, колёса, стрелки;
  6. Детали из различных марок стали и цветных металлов, которые раньше не подлежали закалке
  7. Опорные ролики;
  8. Отжиг сварных швов;
  9. Сложные профили.
    1. Прессформы;
    2. Штампы;
    3. Пуансоны;
    4. Матрицы.

Импульсный метод высокочастотной закалки — преимущества без недостатков!

Источник

Индукционный нагрев ТВЧ :: Статьи

Закалка ТВЧ. Преимущества и недостатки высокочастотной закалки.

Услуга закалки ТВЧ. На производственной площадке — РФ, г.Томск, ООО «ТЕСЛАЙН ИНДАКТИВ» — мы осуществляем ТВЧ закалку опытных образцов и принимаем заказы на серийную закалку деталей.

При поверхностной закалке высокую твердость и прочность приобретает лишь небольшой, толщиной не­сколько миллиметров, поверхностный слой детали. По­чему же такая закалка во многих случаях оказывается не менее, а иногда даже и более эффективной чем сквоз­ная закалка по всему объему? Это объясняется двумя причинами. Во-первых, в условиях ра­боты в подавляющем большин­стве случаев максимальные на­пряжения возникают на поверх­ности деталей, поэтому, повы­шая твердость и прочность по­верхности, мы тем самым повы­шаем и работоспособность всей детали в целом. Во-вторых, при­менение поверхностной закалки значительно снижает хрупкость детали, особенно, если она имеет, сложную форму, поскольку наря­ду с прочной, твердой поверхно­стью сохраняется сравнительно вязкая, пластичная сердцевина детали, чего нельзя достичь при сквозной закалке.

С помощью токов высокой частоты (ТВЧ) можно провести нагрев поверхностного слоя детали на глуби­ну в несколько миллиметров. Как и почему нагревается поверхностный слой?

Представим себе проводник электрического тока, на­пример в виде медной трубки, свернутой в незамкнутое кольцо. Внутрь такого кольца вставили металлический стержень так, чтобы он не касался трубки. Если теперь концы трубки включить в цепь переменного тока высо­кой частоты, то появится переменное электромагнитное поле такой же частоты. Силовые линии поля будут пронизывать стержень, благодаря чему в нем возникнет пе­ременный ток высокой частоты (рис. 1). Это так назы­ваемые вихревые токи Фуко. Такой способ наведения пе­ременного тока в проводнике без непосредственного включения его в электрическую цепь называется элект­ромагнитной индукцией, а медная трубка, которая ис­пользуется для нагрева, — индуктором. Индукция в пе­реводе с английского значит наведение.

Читайте также:  Диод как источник тока

Нагрев ТВЧ

1 — деталь; 2 — индуктор; 3 — силовые линии электро­магнитного поля

Особенностью тока высокой частоты является то, что он проходит не по всему сечению проводника, а только у его поверхности. При этом, чем выше частота тока, тем меньше глубина его проникновения в поверхность. Прохождение тока по проводнику, как известно, сопровождается выделением теплоты. Роль такого проводника выполняет нагреваемая деталь. Поскольку ток проходит только по ее поверхности, то и нагревается не вся де­таль, а лишь ее поверхность. Продолжительность нагре­ва поверхности до закалочной температуры очень не­большая, обычно 1 -10 с. Во избежание нагрева индук­тора внутри его циркулирует проточная вода.

Если нагретую до закалочной температуры поверх­ность детали быстро охладить, например, с помощью во­дяного душа, то произойдет поверхностная закалка. Та­ким образом, закалка ТВЧ , или, как ее иногда называ­ют, индукционная закалка, это по существу поверхност­ная закалка, отличающаяся лишь способом нагрева деталей.

Для получения переменного тока высокой частоты применяют специальные устройства — генераторы. Они бывают машинные и ламповые. Для закалки деталей на небольшую глубину (1-2 мм) удобнее использовать ламповые генераторы. Они имеют частоту до 10 млн. Гц при мощности до 250 кВт. Для закалки на большую глубину (до 10 мм и более) используют машинные генераторы частотой до 10 тыс. Гц и мощностью до 1000 кВт.

Основной отличительной особенностью установки с ламповым генератором является то, что в ней преобразование тока промышленной частоты в ток высокой часто­ты осуществляется с помощью электронной лампы. Важ­ным достоинством таких генераторов является то, что они не имеют вращающихся и трущихся частей, бесшум­ны в работе и не требуют специальных фундаментов.

При закалке ТВЧ применяют три метода: одновре­менный, последовательный, непрерывно-последователь­ный.

кольцевой индуктор для закалки одновременным методом

кольцевой индуктор для закалки непрерывно-последователь­ным методом

Одновременный метод заключается в том, что зака­ливаемая деталь устанавливается в индуктор и нагрева­ется одновременно по всей поверхности, которую нужно закаливать. Этот метод применяют для деталей с не­большой поверхностью (втулок, пальцев, роликов и т. п.). Если деталь круглой формы, то для более равномерного нагрева ее приводят во вращение. После нагрева до тре­буемой температуры индуктор отключается, и автома­тически включается подача охлаждающей воды. Ох­лаждение, как и нагрев, проводится одновременно по всей поверхности. При таком методе обработки целесо­образно охлаждающую воду подавать через спрейерное устройство, смонтированное в самом индукторе. С этой целью внутренняя часть индуктора выполняется в виде двух кольцевых камер. В наружной камере циркулирует вода, охлаждающая индуктор в период нагрева детали, а во внутреннюю вода подается только в период охлажде­ния детали, когда индуктор отключен. На внутренней стен­ке этой камеры, обращенной к поверхности детали, имеет­ся множество отверстий, через которые вода тонкими струйками подается на поверхность детали (рис. 2,а).

Последовательный метод обработки предусматривает последовательную (поочередную) закалку отдельных элементов детали, например шеек коленчатого вала или зубьев крупных шестерен (зуб за зубом). Применение такого метода позволяет упростить конструкцию индук­тора и снизить потребную мощность высокочастотного генератора.

Непрерывно-последовательный метод обработки сос­тоит в том, что индуктор непрерывно перемещается от­носительно детали, а за индуктором движется сблокиро­ванное с ним охлаждающее устройство в виде спрейера (рис. 2, б). Таким образом последовательно нагрева­ется и закаливается вся поверхность детали. Если де­таль имеет круглую форму, то для большей равномерно­сти нагрева она вращается вокруг своей оси.

Такой метод обработки применяют для деталей, име­ющих сравнительно большую закаливаемую поверх­ность, например длинных валов, направляющих станин и др. В этих случаях для одновременного нагрева мощ­ность генератора может оказаться недостаточной, либо индуктор получается неконструктивных размеров. Для закалки этим методом плоских поверхностей применяют петлевые индукторы (рис. 2, в).

Из всего сказанного становится ясным, что для высо­кочастотной закалки кроме установки ТВЧ и индуктора необходимо также иметь, особенно в условиях массового производства, закалочный станок, в котором можно за­креплять и перемещать соответствующим образом обра­батываемую деталь. Для массового и крупносерийного производства все большее распространение получают станки-автоматы и полуавтоматы, а для мелкосерийного и единичного — универсальные станки.

Важную роль при высокочастотной закалке играет правильный выбор способа и среды охлаждения. В боль­шинстве случаев для охлаждения применяют воду, которую подают через душирующие устройства — спрейеры.

Для получения стабильных результатов закалки при охлаждении водяным душем необходимо поддерживать постоянную температуру воды в пределах 20-30°C. С этой целью используют воду не из общей магистрали, а из замкнутой циркуляционной системы, специально предназначенной для закалки. Охлаждающая способность воды при душевой закалке зависит от ее расхода в единицу времени, который, в свою очередь, зависит от давления воды. Непосредственно в спрейере давление обычно не превышает 1 ат.

Равномерность охлаждения во многом зависит от диаметра и взаимного расположения отверстий в спрейере. Эти отверстия диаметром 1,5-2,5 мм располагают на расстоянии 3-7 мм друг от друга.

Интенсивное охлаждение, которое дает водяной душ, в некоторых случаях оказывается нежелательным. Так бывает при закалке деталей сложной формы или деталей, изготовленных из некоторых легированных сталей, склонных к образованию трещин. В таких случаях для охлаждения используют водные эмульсии или масло. На некоторых заводах применяют 20-30%-ный раствор глицерина в воде.

Эмульсию изготовляют путем введения в воду 3- 6% эмульсола. Во избежание всплывания составных частей эмульсии ее нужно интенсивно перемешивать. Эмульсия подается насосами под давлением 2-3 ат.

В ряде случаев хорошие результаты по предупреж­дению трещин получают путем применения масляного душа. При этом, правда, возникают определенные тех­нические трудности: необходимо создавать специальную замкнутую систему подачи масла, поддерживать посто­янную температуру его, предусмотреть усиленную вен­тиляцию для вытяжки дыма, так как возможны вспышки масла в момент подачи его па раскаленную поверхность детали. При непрерывно-последовательной закалке во избежание горения масла нагрев следует осуществлять под слоем масла. Поскольку масло является диэлектри­ком, то это не приводит к замыканию между индуктором и нагреваемой деталью.

Несмотря на все эти трудности, уже созданы и нашли применение полуавтоматические станки для одновре­менной и непрерывно-последовательной закалки, в кото­рых успешно используется устройство с масляным ду­шем.

При поверхностной закалке ТВЧ нагрев проводится до более высокой температуры, чем при обычной объем­ной закалке. Это обусловлено двумя причинами. Во-пер­вых, при очень большой скорости нагрева температуры критических точек, при которых происходит переход пер­лита в аустенит, повышаются, а во-вторых, нужно, чтобы это превращение успело завершиться за очень короткое время нагрева, а чем выше температура, тем быстрее оно происходит. Так, например, при печном нагреве со скоростью 2-3°С/с температура нагрева под закалку стали 45 составляет 840-860°С, при нагреве ТВЧ со ско­ростью 250°С/с — 880-920°С, а при скорости 500°С/с — 980-1020°С.

Несмотря на то, что нагрев при высокочастотной за­калке проводится до более высокой температуры, чем при обычной, перегрева металла не происходит. Это объясняется тем, что время высокочастотного нагрева очень короткое, и зерно в стали не успевает вырасти. С другой стороны, благодаря более высокой температуре нагрева и более интенсивному охлаждению твердость после закалки ТВЧ получается выше примерно на 2- 3 единицы по Роквеллу. Это обеспечивает более высокую прочность и износостойкость поверхности детали.

Читайте также:  Переменный ток это ток сила которого изменяется с течением времени по закону

Наряду с этим действует еще один важный фактор, способствующий повышению эксплуатационной прочнос­ти деталей, закаленных с помощью ТВЧ. Это появление на поверхности сжимающих напряжений благодаря об­разованию мартенситной структуры. Чем меньше глуби­на закаленного слоя, тем в большей мере проявляется действие таких напряжений.

Кроме этого, высокочастотная закалка дает и другие важные преимущества: высокую производительность; легкость регулирования толщины закаленного слоя; ми­нимальное коробление; почти полное отсутствие окали­ны; возможность полной автоматизации всего процесса; облегчение условий труда; возможность размещения закалочной установки в потоке механической обработки.

Наиболее часто поверхностной высокочастотной за­калке подвергают детали, изготовленные из углеродис­той стали с содержанием 0,4-0,5% С. Эти стали после закалки имеют поверхностную твердость HRC 55-60. При меньшем содержании углерода такая твердость уже не достигается, а при большем содержании возни­кает опасность появления трещин в условиях резкого охлаждения водяным душем. Наряду с углеродистыми применяются также низколегированные хромистые, хро­моникелевые, хромокремнистые и другие стали.

Во многих случаях высокочастотная закалка позво­ляет заменить легированные стали более дешевыми — углеродистыми. Объясняется это тем, что такие важные преимущества легированных сталей, как глубокая прокаливаемость и меньшая деформация, для ряда деталей утрачивают свое значение. Так, например, при закалке шестерен с мелким зубом глубокая прокаливаемость да­же нежелательна, поскольку при этом может произойти сквозная закалка зубьев, что вызовет их хрупкость. В та­ких случаях целесообразно применение углеродистых сталей пониженной прокаливаемости. В обозначении та­ких сталей ставятся соответственно буквы ПП (напри­мер, сталь 55ПП). При закалке мелкомодульных шесте­рен из такой стали, хотя зуб и прогревается насквозь, однако закаливается он всего на глубину 1-2 мм. Более того, поскольку сердцевина зуба была нагрета до темпе­ратуры критических точек, а охлаждение ее происходи­ло с умеренной скоростью, примерно, как при нормали­зации, произойдет улучшение структуры сердцевины: она получится более однородной и мелкозернистой. Это, несомненно, будет способствовать повышению прочности зуба.

Такой способ поверхностной закалки, при котором нагрев производится на большую глубину, чем необхо­димая глубина поверхностно-закаленного слоя, называ­ют закалкой с глубинным нагревом. В ряде случаев он дает очень большой эффект. На Минском автозаводе разработан и внедрен процесс глубинной закалки шквор­ня из стали 45. Благодаря этому упразднена операция предварительной нормализации, а сопротивление уста­лости шкворня повысилось более чем в 10 раз.

После проведения поверхностной высокочастотной закалки детали подвергают низкому отпуску при темпе­ратуре 160-200°С. Это способствует уменьшению хруп­кости закаленного слоя. Отпуск проводится в электропе­чах. Можно также осуществить самоотпуск. С этой це­лью спрейер, подающий воду, отключается несколько раньше, и благодаря этому охлаждение происходит не полностью. В детали сохраняется теплота, которая обеспечивает нагрев закаленного слоя до температуры низ­кого отпуска.

После закалки применяется также электроотпуск, при котором нагрев проводится с помощью высокочас­тотной установки. При этом для получения хороших ре­зультатов нагрев нужно осуществлять с меньшей скоро­стью, чем при закалке, и на большую глубину. Требуе­мый режим нагрева устанавливается опытным путем.

Для повышения механических свойств сердцевины и обшей прочности детали перед поверхностной закалкой проводят нормализацию или объемную закалку в соче­тании с высоким отпуском (улучшение).

Дефекты закалки с нагревом ТВЧ и их предупреждение

Деформация. Хотя деформация деталей при высоко­частотной закалке значительно меньше, чем при объем­ной, тем не менее и в этом случае она может быть при­чиной брака. Как и при объемной закалке, деформация связана, во-первых, с неравномерностью нагрева и ох­лаждения и, во-вторых, с увеличением объема стали при образовании мартенсита.

Неравномерность нагрева при высокочастотной за­калке вызывается неравномерным зазором по окружно­сти между индуктором и нагреваемой деталью. В тех местах, где зазор меньше, нагрев происходит сильнее. Такое явление называется эффектом близости. Во избе­жание этого проводят, как указывалось выше, вращение детали при нагреве. Вращение, однако, не дает эффекта, если сама нагреваемая деталь имеет эксцентриситет, или центры станка, в которых она устанавливается, имеют биение.

Неравномерность охлаждения вызывается неравномерной подачей воды через спрейер.

В результате неравномерности нагрева и охлажде­ния может произойти искривление геометрической оси при закалке цилиндрических изделий типа валов, шпин­делей и т. п.

Наибольшая деформация наблюдается при односто­ронней поверхностной закалке, особенно в тех случаях, когда детали не обладают достаточной жесткостью, как, например, пластины. Однако даже изделия, обладающие высокой жесткостью, такие как рельсы, балки и др., но имеющие большую длину, при односторонней закалке склонны к деформации. В этих случаях уменьшение де­формации может быть достигнуто снижением толщины закаленного слоя, а также закалкой обратной, нерабо­чей стороны пластин или балок.

Увеличение объема при высокочастотной закалке происходит только в поверхностном слое детали, где об­разуется мартенситная структура. Несмотря на то, что глубина закаленного слоя в большинстве случаев не превышает 2-3 мм, изменение объема даже в таком не­большом слое может привести к ощутимому и нежела­тельному изменению размеров детали. Например, при поверхностной закалке цилиндрической детали, при рав­номерном расширении слоя во всех направлениях можно было бы ожидать увеличения диаметра детали пример­но, на 3 мкм на каждый миллиметр толщины закаленно­го слоя. Если же учесть, что в большинстве случаев уве­личение объема при поверхностной закалке происходит в основном в направлении глубины слоя (но диаметру детали), то увеличение диаметра можно принять в 3 ра­за большим, т. е. оно составит примерно 0.01 мм на каж­дый миллиметр толщины слоя.

Наряду с увеличением диаметра при закалке цилинд­рических деталей, особенно в тeх случаях, когда длина их значительно превышает диаметр, происходит уменьшение длины. Такое уменьшение может достигать 1% от длины закаленного участка.

Важным преимуществом высокочастотной закалки является то, что изменение объема, связанное со струк­турными превращениями, а значит и изменение разме­ров обрабатываемой детали, могут быть более или менее точно учтены.

Трещины. Первопричиной появления трещин при высокочастотной поверхностной закалке, как и при обычной закалке, являются внутренние напряжения. Это все те же термические напряжения, возникающие вследствие уменьшения объема металла при охлажде­нии, и структурные напряжения вследствие увеличения объема стали при образовании мартенсита. Однако условия возникновения трещин, их вид и размеры при высокочастотной закалке имеют свои характерные осо­бенности. Сущность их сводится к следующему. По­скольку нагреву подвергается только тонкий поверх­ностный слой металла, то при последующем резком охлаждении он будет стремиться уменьшиться в объе­ме, но этому будет препятствовать лежащий под ним холодный слой металла. В результате в поверхностном слое возникнут растягивающие напряжения. До 600- 500°С нагретый металл еще сохраняет сравнительно высокую пластичность, но ниже этой температуры пла­стичность падает, и такие напряжения могут привести к трещинам. При дальнейшем охлаждении ниже 300- 200°С, когда в поверхностном слое образуется мартен­сит, происходит увеличение объема металла, и это уменьшает растягивающие напряжения, поэтому воз­никшие трещины, как правило, не увеличиваются по глубине. По существу это микротрещины, которые во многих случаях могут быть удалены при последующей шлифовке.

Возникновению микротрещин способствует неравно­мерность охлаждения водяным душем, когда разобщен­ные тонкие струйки воды, попадая на закаливаемую поверхность, создают неоднородное охлаждение. Обра­зующиеся микротрещины имеют характерное для этого случая расположение, соответствующее расположению отверстий в спрейере.

Неоднородность охлаждения уменьшается при вра­щении детали. Действенной мерой является также при­менение индукторов с коническими душирующими отверстиями. В таких спрейерах струя воды по выходе из отверстия расширяется, и при попадании на поверх­ность детали отдельные струи воды сливаются в общий поток. Применяемое в настоящее время в практике за­водов охлаждение масляным душем — эффективное средство борьбы с трещинами.

Источник: «Термическая обработка. В помощь рабочему-термисту» Райцес В.Б.

Источник