Меню

Usb максимальный ток нагрузки



Как выбрать электронную USB нагрузку

В связи с большим распространением блоков питания и внешних аккумуляторов со стандартным USB разъемом, появился отдельный класс электронных нагрузок для их тестирования.

В этой статье мы расскажем об особенностях этих устройств, о моделях USB нагрузок и о их применении.

Время чтения: 15 минут
Автор статьи — Андрей Кириченко

Краткий обзор: как выбрать USB нагрузку

У USB нагрузок много общего с обычными, но, из-за особенностей применения, они имеют функции, которых нет у обычных, но при этом они могут не уметь то, что умеют их «старшие братья».

С их помощью тестируют нагрузочную способность блоков питания (зарядных) и оценивают емкости внешних аккумуляторов (повербанков).

Объединяет обычные и USB нагрузки то, что и те, и другие имеют в конструкции силовой узел, состоящий из транзистора высокой мощности, узла контроля тока и радиатора с вентилятором. Из-за этого параметры выбора USB нагрузки совпадают с таковыми у обычных: ток, напряжение и мощность.

Пример электронной USB нагрузкиПример электронной USB нагрузки

Важная особенность USB нагрузок и состоит в том, что они имеют «на борту» соответствующие разъемы и это один из критериев выбора.

Есть модели, где на плате установлены только гнезда, к ним источники подключаются при помощи стандартных USB кабелей. При этом обычно стоит как минимум два типа разъемов: MicroUSB и USB Type-C, но иногда попадается и «вымирающий» MiniUSB.

Второй тип подключения подразумевает на плате штекер USB-A, тогда нагрузка подключается непосредственно к блоку питания.

Разъёмы для подключения источников питания к USB нагрузкамРазъёмы для подключения источников питания к USB нагрузкам

К устройствам ZKEtech можно докупить USB адаптер. Он не блещет разнообразием разъемов, но имеет пару особенностей: четырехпроводное подключение и возможность измерения тока в режиме мониторинга, т.е. можно следить за током, который потребляет другая нагрузка, например, смартфон.

Четырехпроводной способ подключения электронной USB нагрузкиЧетырехпроводной способ подключения электронной USB нагрузки

На случай, если нагрузка не имеет нужных разъемов, существуют специальные платы-адаптеры, которые используются как в цельном виде, так и делятся на составные части.

Платы-адаптеры для расширения функционала USB нагрузкиПлаты-адаптеры для расширения функционала USB тестера

Еще один фактор — это поддержка электронной нагрузкой управления протоколами быстрого заряда, например, Quick Charge и Power Delivery. Эта функция встречается редко, особенно Power Delivery. Но даже для такого случая есть варианты решения: использовать один из разъемов для подключения USB тестера или триггера переключения протоколов, причем первый вариант предпочтительнее, хотя и дороже.

Один из факторов выбора USB нагрузки - поддержка протоколов быстрого зарядаОдин из факторов выбора USB нагрузки: поддержка протоколов быстрого заряда

Тестер или триггер протоколов может быть включен и последовательно с входом нагрузки.

Последовательное подключение триггера с электронной USB нагрузкойПоследовательное подключение триггера с электронной USB нагрузкой

И последний решающий фактор — мощность.

Для большинства бытовых применений достаточно 10

35 Вт. Если нужен тестер для любых USB блоков питания, потребуется 100 Вт, такая мощность максимальна для протокола Power Delivery, но если устройство берется «на вырост», тогда лучше смотреть на модели 150

Самый простой и правильный вариант — резистивная нагрузка. Конечно, здесь нельзя плавно регулировать ток, а вся индикация сводится к паре светодиодов, но даже в таком виде их можно использовать для тестирования USB зарядных и для оценки емкости повербанков.

В первом случае можно использовать нагрузку саму по себе, переключая величину тока, во втором — потребуется USB тестер, ну или, по крайней мере, секундомер. Из недостатков — отсутствие стабилизации тока (ток зависит от напряжения), тестируемое напряжение только до 5 вольт (при большем будет перегрев), нет никаких сервисных возможностей. Преимущество — цена.

Электронные USB нагрузки мощностью до 35 Вт

USB нагрузки JUWEI

Нагрузку можно сделать самостоятельно из нескольких резисторов, но лучше взглянуть на продукцию JUWEI. Представлены два варианта, отличающиеся диапазоном и дискретностью установки. Первая имеет три ступени: 1, 2 и 3 А — вторая позволяет выставить от 0.25 до 4 А с шагом 0.25 А, токи для обоих моделей указаны для напряжения 5 В.

Простые электронные USB нагрузки от JUWEI

Простые электронные USB нагрузки от JUWEI

Поскольку при токе в 4 А и напряжении 5 В мощность достигает 20 Вт, производитель задумался об охлаждении и выпустил модель с вентилятором.

USB нагрузка с вентилятором JUWEI GLDZ 4 Fan

Части описанных недостатков лишена регулируемая USB нагрузка JUWEI, она плавно изменяет ток до 3 А и имеет максимальную мощность 15 Вт в диапазоне напряжений от 3.7 до 13 В. В качестве «бонуса» к ней даются провода с крокодилами.

JUWEI JW-D2LCDS-35W имеет больше функций, чем предыдущая модель. Здесь добавлена регулировка посредством двух переменных резисторов (грубо и точно), много вариантов разъемов для подключения, дисплей с отображением как тока и напряжения по входу, так и напряжения на линиях данных USB порта, а также подсчет емкости в Ач. Здесь мощность составляет уже серьезные 35 Вт в диапазоне от 3 до 21 В.

По сути она некий гибрид нагрузки и USB тестера. Можно сказать даже по-другому: производитель взял электронную нагрузки и прикрутил к ней USB тестер, потому это устройство «два в одном».

Электронные нагрузки USB RuiDeng

На рынке USB нагрузок известна фирма RuiDeng, которая производит нагрузки, тестеры, преобразователи напряжения.

Самые простые модели – LD25 и LD35. У них несколько вариантов подключения, простой светодиодный дисплей и переменный резистор для установки тока. На дисплей выводится измеренное значение тока и напряжения, а также рассчитанная потребляемая мощность.

Электронные USB нагрузки RuiDeng HD25 и RuiDeng HD35

Электронные USB нагрузки RuiDeng HD25 и RuiDeng HD35

Электронные USB нагрузки RuiDeng HD25 и RuiDeng HD35

Но если смотреть на все продукты RuiDeng, то есть пара моделей с дополнительными функциями: HD25 и HD35 — они похожи на предыдущие, но поддерживают управление протоколами QC2.0 5 В, 9 В, 12 В, 20 в, QC3.0, FCP, AFC9V.

Различия моделей в максимальном токе (4 и 5 А), мощности (25 и 35 Вт) и поддержке управления протоколами быстрого заряда. При одинаковых внешних размерах 35-ваттные версии больше рассеивают мощность, поскольку на них установлен более производительный вентилятор.

Наименование модели LD25 LD35 HD25 HD35
Номинальное рабочее напряжение DC4-25.0V
Максимальная мощность нагрузки 25 Вт 35 Вт 25 Вт 35 Вт
Номинальный рабочий ток 0,25 А — 4 А 0,25 А — 5 А 0,25 А — 4 А 0,25 А — 5 А
Скорость вентилятора Масляный подшипник
Интеллектуальный вентилятор контроля температуры, скорость 5800 ± 10 % об/мин
Гидравлический подшипник
Умный вентилятор контроля температуры, скорость 80000 ± 10 % об/мин
Масляный подшипник
Интеллектуальный вентилятор контроля температуры, скорость 5800 ± 10 % об/мин
Гидравлический подшипник
Умный вентилятор контроля температуры, скорость 80000 ± 10 % об/мин
Режим запуска быстрой зарядки Нет Нет QC2.0 5 В, 12 В, 20 В, QC3.0, FCP, AFC9V QC2.0 5 В, 12 В, 20 В, QC3.0, FCP, AFC9V
Точность измерения постоянного тока ± (2 % + 3 цифры)
Точность измерения постоянного напряжения ± (2 % + 3 цифры)
Размеры устройства 84 мм х 41 мм х 28 мм

Еще более интересным решением выглядит USB нагрузка DTU-CCL01, она также имеет несколько разъемов для подключения, встроенный триггер протоколов и мощность до 35 Вт при напряжении до 30 В и токе до 3 А, но гораздо более информативный экран.

Снизу установлена алюминиевая пластина, она не участвует в охлаждении, но призвана защищать электронные компоненты платы от повреждения.

Сравнение электронных USB нагрузок RuiDengНагрузка DTU-CCL01: вид снизу

Нагрузка поддерживает протоколы быстрого заряда, измеряет сопротивления кабелей, защищена от перегрузки и имеет программную калибровку измерения тока, но устанавливается ток, как и у более простых, при помощи двух резисторов (грубо, точно).

Нагрузка DTU-CCL01 - меню управленияНагрузка DTU-CCL01: меню управления

USB нагрузки «всё в одном»

Иногда в построении устройств китайские разработчики немного увлекаются и получаются целые тестовые стенды «все в одном», как пример — JUWEI Atorch Q7-T.

Эта модель имеет характеристики сходные с моделями показанными выше, мощность 30Вт при токе до 2.8А и напряжении до 24В, много вариантов подключения, установку тока при помощи пары «крутилок».

Читайте также:  Как изменить ток не изменяя напряжения

Устройство «гибридное» и состоит из нескольких модулей, один из которых — аналог USB тестера UM24C. Об этом говорит меню с воодушевляющим набором настроек и высокая точность измерения тока и напряжения. Поддерживается определение протоколов быстрого заряда, но управление ими отсутствует.

USB тестер Juwei Atorch Q7-T - меню управленияUSB тестер Juwei Atorch Q7-T: меню управления

Зато у Juwei Atorch Q7-T есть и своя «изюминка», в отличие от предыдущих, здесь один из модулей — это приемник для работы с беспроводными зарядными устройствами.

Особенность Juwei Atorch Q7-T - работа с беспроводными зарядкамиОсобенность Juwei Atorch Q7-T : работа с беспроводными зарядками

Поскольку за измерение отвечает аналог тестера UM24C, а «на борту» расположен еще и Bluetooth, то, при установке соответствующей программы, тестер (нагрузкой это устройство уже сложно назвать) может контролировать измерения при помощи компьютера или смартфона.

Управление USB нагрузкой Juwei Atorch Q7-T с помощью компьютераУправление USB нагрузкой Juwei Atorch Q7-T с помощью компьютера

Минус тестера в невозможности управления функцией быстрого заряда.

А вот эта USB нагрузка хоть и выглядит, как предыдущие, но в действительности сильно отличается от них функционально. Это устройство производителя ZKEtech, модель EBD-USB+.

В плане характеристик здесь все те же 35 Вт, 4 А, 0.4

21 В, но внимательный читатель заметит, что нижний диапазон напряжений начинается c 0.4 В. Эта нагрузка питается отдельно (через разъем MicroUSB), потому может не только измерять малые напряжения, но и использоваться для тестирования емкости аккумуляторов.

Тестер USB ZKEtech EBD-USB+Тестер USB ZKEtech EBD-USB+

Еще более внимательные читатели заметят, что у EBD-USB+ нет ни ручек для регулировки тока, ни кнопок для управления режимами, ни даже экрана. Объясняется это тем, что всё управление производится посредством компьютера при помощи специализированного ПО, причем оно универсально для почти всех устройств (исключение серия EBC-X). Эта особенность — основная «фишка», так как даёт гораздо больший функционал.

Здесь, как и у других моделей ZKEtech, задаются пороги отключения для тестирования аккумуляторов, имеется автотест для проверки блоков питания, калибровка и возможность строить графики с сохранением их в файл формата .csv.

Управление USB ZKEtech EBD-USB+ с помощью компьютераУправление USB ZKEtech EBD-USB+ с помощью компьютера

USB ZKEtech EBD-USB+ - управление протоколами быстрого зарядаUSB ZKEtech EBD-USB+: управление протоколами быстрого заряда

К сожалению, выбор разъемов для подключения ограничен только типом USB-A, но при необходимости можно докупить небольшую плату-адаптер и тем самым получить как microUSB, так и более новый USB Type-C.

Показанные нагрузки отличаются функционалом, конструкцией, наличием дисплея, органами регулировки. Их объединяет одно: мощность ограничена на уровне 30-35 Вт. Для тех, кому этого мало, производятся и гораздо более мощные USB электронные нагрузки, хотя в данном случае эта функция скорее вспомогательная.

USB нагрузки до 180 Вт

Как пример, пара моделей JUWEI Atorch. Они отличаются только размерами радиатора и максимальной мощностью в 150 Вт и 180 Вт соответственно.

Электронные USB нагрузки JUWEI AtorchЭлектронные USB нагрузки JUWEI Atorch

Кроме мощности различается и диапазон входного напряжения (до 200 В) и тока (до 20 А), что ставит эти электронные нагрузки в один ряд с более серьезными моделями, а так как собственная потребляемая мощность высокая, то питание только внешнее (MicroUSB или круглый разъем 5мм).

Не рекомендована длительная эксплуатация при максимальном входном напряжении и максимальной мощности нагрузки.

Обе нагрузки имеют большой экран на который выводятся измеренные параметры, сервисная информация и расчетные данные (мощность, емкость).

Для тестирования USB блоков питания и внешних аккумуляторов есть три вида разъемов: MicroUSB, MiniUSB и USB Type-C — встроенного триггера протоколов нет, но есть USB-A для подключения внешнего триггера. Кроме этого, есть отдельные клеммы для подключения к мощным источникам.

Управление классическое, при помощи двух переменных резисторов (грубо, точно) и одной кнопки.

Тестер USB нагрузки JUWEI AtorchТестер USB нагрузки JUWEI Atorch

Нагрузка имеет настройки, позволяющие установить лимиты по мощности, минимальному и максимальному напряжению, отрегулировать яркость подсветки и пр.

Собственно это обычная электронная нагрузка со свойственными им настройками и возможностями, но с добавленными USB разъемами, потому она пригодится не только для тестирования зарядных и повербанков.

Меню управления USB тестера JUWEI AtorchМеню управления USB тестера JUWEI Atorch

Не так давно появилась обновленная версия нагрузки JUWEI Atorch, она также выпускается в двух вариантах мощности (150 и 180 Вт), но у неё существенно переработано управление, а также добавлено много новых функций.

Обновлённая версия электронной USB нагрузки JUWEI AtorchОбновлённая версия электронной USB нагрузки JUWEI Atorch

Комплект разъемов соответствует предыдущей версии, но на экран выводится больше информации, да и сам экран теперь цветной. Переменные резисторы заменили на цифровое управление осуществляемое при помощи четырех кнопок.

Новые возможности JUWEI AtorchНовые возможности JUWEI Atorch

Как еще один признак принадлежности к более серьезным моделям — четыре режима работы (CC, CV, CR, CP), возможность подключения внешнего датчика температуры и много настроек порогов защиты и автоотключения.

Режимы работы обновлённой версии электронной USB нагрузки JUWEI AtorchРежимы работы обновлённой версии электронной USB нагрузки JUWEI Atorch

Но помимо этого есть возможность подключения к компьютеру или смартфону, причем поддерживается как проводное, так и беспроводное (bluetooth) подключение. Единственный недостаток — производитель убрал порт для подключения триггера протоколов быстрого заряда, а сама нагрузка данную функцию не поддерживает, потому скорее всего придется использовать переходники.

На самом деле, нельзя однозначно сказать, что одна USB нагрузка хорошая, а другая — плохая, это определяется задачами, которые поставлены перед ней и суммой, которую вы готовы потратить.

Например, даже самая простая резистивная нагрузка, в комплекте с USB тестером, позволит протестировать зарядные устройства или повербанки с выходом 5 вольт.

Более удобны устройства со встроенным индикатором, плавной регулировкой и различными сервисными возможностями, например продукция Rui Deng или DTU-CCL01, но в свете распространения зарядных с функцией Power Delivery они также могут потребовать применения дополнительного триггера протоколов.

Особняком стоит вариант фирмы ZKEtech — EBD-USB+, при относительно скромных технических характеристиках это устройство имеет продвинутое ПО, которое поддерживает управление несколькими нагрузками одновременно и позволяет собрать даже многоканальный стенд.

Ну а если функция поддержки USB нужна больше как дополнение, то лучше обратить внимание на модели 150, 180 Вт, которые можно использовать и как полноценные электронные нагрузки.

WARNING! У нас слишком много электронных USB нагрузок! Спешите!

Источник

Usb максимальный ток нагрузки

Прочитав много источников, находил везде одну и ту же информацию: порт USB 2.0 способен выдавать не более 500мА, обеспечивая мощность не более 2.5Вт. Однако некоторые вещи заставляют усомниться в этом.

Прежде всего, о полезном. Если в диспетчере устройств выбрать свойства «USB Root Hub» (не помню, как там по-русски, все устройства посмотрите), то на второй вкладке «Питание» отразится информация о подключенном устройстве: сколько для него необходимо миллиампер. Значение берется из начинки подключаемого устройства, это не фактический ток потребления на текущий момент:
— часть флешек требует 500мА (Kingston, Transcend), а часть 200мА (Toshiba). Причем опытным путем доказано, что флешка от Toshiba работает на любом удлинителе USB 1.8 метра, даже выполненном не по стандарту. Получается, чем меньше потребляет устройство — тем больше у него шансов заработать на удлинителе USB или некачественных передних разъемах корпуса;
— и действительно: оптическая мышка, потребляющая 100мА, без проблем работает на 3-метровом USB-удлинителе (а все флешки там уже «тю-тю»);
— кабель USB A-B, идущий к принтеру, отразился рекомендованным значением 98мА;
— USB-HDD «Silicon Power» на 320ГБ показал значение 2мА (подключен к одному порту USB и успешно функционирует). Выяснилась причина: под значение миллиампер в ОС отведен всего 1 байт, и максимальное значение этого счетчика 255. Каждое значение счетчика равно 2мА. Это значит, USB-HDD вышел за пределы возможного максимального числа, и счетчик обнулился +1 (соответствуя числу 514мА или 1026мА). Но это больше, чем 500мА, заявленных в стандарте!

Читайте также:  Ток по шести квадратам

Это было первым сомнением в истинности Iмакс = 500мА для порта USB.
Второе: один концентратор обслуживает сразу несколько USB-портов, при этом написано, что максимум 500мА на порт. Значит, в моем случае, концентратор способен отдать 2.5А (т.к. отвечает за 5 портов). Если он способен выдать в сумме 2.5А — что же ему должно мешать выдаче, например, 2.5А на один порт, а 4 других просто заблокировать.
Третье: данные разобранного USB-HDD по питанию составляют 5В/0.85А. Это уже больше 0.5мА. Мало того, опытным путем было установлено, что для запуска HDD (реактивная нагрузка) требуется гораздо больший ток, чем указано на HDD.
Четвертое: запитал роутер через USB-провод, и уже тогда я откуда-то знал про значение 1200мА. Вот она, борьба парадигм: там услышал, здесь увидел, там сказали, здесь написали.

Все предпосылки к эксперименту есть, чтобы получить реальные числа силы тока этого HDD. На протяжение месяца врежусь в кабель USB A-miniB высокоточным амперметром за 20000 рублей — и сниму с него показания. Глазами или телеметрией — как получится.

(добавлено 07.04.2015): эксперимент с USB-разъемом прошел успешно, и мои догадки подтвердились. Использовалось следующее оборудование:
— мультиметр DT838 (вот тебе и «высокоточный». );
— активная нагрузка: внешний HDD Samsung Momentus ST320LM001, USB-подогреватель кофе Orient W1002B;
— пассивная нагрузка: 4 резистора С5-16В-8вт 1Ом ±1%;
— штекер USB;
— материнские платы EliteGroup G31T-M7 и Gigabyte C51-MCP51.

В процессе отдельного и параллельного подключения активной нагрузки стало известно:
— предельная сила тока для HDD (0.85А) является предельно точной, она была получена при раскрутке диска и при его инициализации после загрузки Windows (доли секунды). Сила тока в режиме простоя: 0.28-0.35А, в режиме передачи со скоростью 28МБ/с: 0.56-0.63А;
— подогреватель потребляет постоянные 0.6А, в том числе и во время пуска: нет реактивной нагрузки. Подогреватель кофе с мощностью всего 3Вт не может рассматриваться как серьезный бытовой предмет;
— при параллельном подключении нагрузки удалось получить значение 1.19А. Это значение превышает заявленное в стандарте USB 2.0 в 2.38 раза.

Далее встал вопрос: а каков корректный предел? Неопытный техник устроил КЗ, когда я ему доверил вопрос пайки, — однако техника не пострадала, и КЗ не пропало зря: амперметр зафиксировал постоянное прохождение через него 3.3А, значит в материнской плате есть некий ограничитель по амперам (например, в контроллере). Причем ограничение сработало и при выключенном ПК.

Чтобы избежать повреждения активной нагрузки, было решено отказаться от нее в пользу пассивной, переводящей всю энергию в собственный нагрев: резисторы. Как ни странно, резисторы высокой мощности и малого сопротивления оказались в дефиците, и удалось найти всего 4. Причем им лет 25-30, а срок сохраняемости данного типа составляет 15 лет. Какое же было удивление, когда после окончания экспериментов выяснилось, что сопротивление одного из них увеличилось на +50%, до 1.5Ома. Тогда стали понятны все «погрешности» в эксперименте.

Сначала было получено 1.45А, которые успешно нагревали резисторы несколько минут. Далее, понижая сопротивление, было достигнуто значение тока 3.05А. И именно при этом значении автоматика (материнской платы или Windows?) отключила USB-разъем, но каким-то необычным способом: уменьшив значение силы тока не до 0, а до 0.4А.

Итак, предельное значение силы тока для USB-разъема висит в диапазоне [2.66;3.05)А, что превышает значение стандарта в 5-6 раз. Но для каждого разъема этот диапазон, или это суммарная величина разъемов контроллера USB? Единственный способ узнать это — подключить к двум портам USB нагрузку, вызывающую силу тока более 3.05А.

(добавлено 10.04.2015): поступил проще, отказавшись от поиска дополнительных резисторов. Взял USB-провод с двумя входами типа «A» и выходом miniUSB. Выход отрезал, припаял резисторы на примерно 1.5Ом. В итоге получил 3.1А (менее 3.33А, опять что-то подъедает: просроченные резисторы что ли разного номинала, несмотря на маркировку). 3.1А были применены в двух (пока) комбинациях:
— если за пару разъемов USB считать соседние друг с другом (горизонтальные пары), то сначала оба входа были подключены к одной паре USB. Сработала защита, и ток 3.1А успешно опустился до 0.4А. Не до 0.8А (т.к. разъема 2) — из этого следует, что есть нечто, контролирующее именно пару USB;
— далее каждый из разъемов был воткнут в соседние пары. В итоге ток 3.1А не оборвался, успешно продержавшись все время, пока не раскалились резисторы (далее отключил).

Пока выводы следующие:
— Windows неправильно показывает количество портов USB, отведенных контроллеру;
— контроллеров USB несколько, и вероятность того, что контроллер управляет лишь одной парой USB, — присутствует;
— получение больших значений тока способствует подключению к ПК USB-устройств, потребляющих более 50Вт. Если взять стандартную материнскую плату с восемью парами USB, значит без последствий можно получить ток в диапазоне [10.64;12.2)А, что даст мощность [50,32;61)Вт;
— подчиненные стандартизации, большинство USB-гаджетов являются бесполезными именно потому, что должны потреблять не более 0.5А. При корректных 2.66А можно было бы получить подогреватель кофе в 5 раз мощнее, а USB-лампу — в 5 раз ярче.

Осталось:
— уточнить допустимый диапазон максимальной силы тока для пары USB [2.66;3.05)А;
— узнать, есть ли проседание напряжения на нагрузке;
— проверить, потянет ли 2.66А по одному USB_разъему нетбук;
— подключить в USB активную нагрузку хотя бы на 2.5А — и использовать ее на протяжение нескольких часов, чтобы убедиться, что такие токи безопасны для материнской платы в течение продолжительного времени.

(добавлено 13.04.2015): результаты на материнской плате Asus P5Q SE2 получились не очень хорошими. Такое же поведение, как и у прочих плат: если контроллер контролирует какое-то количество USB — то при превышении ампер ограничивает ток до 0.4А. При подключении нагрузки в разные USB выяснилось, что контроллера всего 2, причем один отвечает только за одну заднюю пару USB, а второй — за вторую заднюю пару и все «косички». В итоге мне из платы более 5.2А выжать не удалось (дальше просто не стал экспериментировать).

Завтра воткну в нее нагрузку 2.66А и оставлю всю эту конструкцию на максимальное время, пока на резисторах нельзя будет жарить яичницу, или они просто не сгорят. В итоге оценю способность разъема, штекера, проводов и контроллера держать ток больше 2А длительное время.

(добавлено 20.04.2015): тест 2.6А на протяжение 6 часов длился на материнской плате Asus M2A-VM. Никаких дефектов не замечено, температура разъема USB не более 38 градусов. Падение напряжения было незначительным — списал на внутреннее сопротивление амперметра. Тестовый стенд был разобран, к нетбуку не подключал.

Источник

Какой максимальный ток выдержит USB и другие разъемы

Привет! С вами магазин Electronoff.

Мы немного устали снимать серьезные видео, поэтому сейчас будет развлекательно-познавательное.

В процессе проектирования разных устройств очень важным есть вопрос питания будущей конструкции. И если вы собираетесь делать что-нибудь такое большое и мощное, например стоваттный светодиодный фонарик, или большущий радиоуправляемый танк на аккумуляторах и ардуино, такие вещи, скорее всего, будут потреблять большой ток. Ну и, чтобы обеспечить долгую работоспособность всего прибора, нужно учитывать максимальный допустимый ток не только для проводов внутри устройства, но и всех силовых разъемов.

Проблема только в том, что для большинства популярных разъемов максимальный ток описан довольно расплывчато, а вдобавок зависит от качества изготовления у конкретного производителя. Так что мы решили проверить на деле, сколько же ампер могут без боли и последствий пережить различные разъемы, типа USB и microUSB, 5.5 x 2.1 мм, 3.5mm jack, и парочку других.

Устройством для тестирования разъемов у нас выступит импульсный лабораторный блок питания от BVP, максимальный выходной ток которого достигает 30 А.

Читайте также:  Bmw e39 ток покоя

Начнем с самых популярных сейчас USB коннекторов. Соединим между собой штекер и гнездо и создадим между ними короткое замыкание. Готово, теперь плавно увеличиваем ток и наблюдаем за процессом. Начнем с 2 А.

Результаты. Как видим, 2 ампера разъем держит без проблем. 3 А тоже держит достойно, так что попробуем поднять до 4-х. При 4-х амперах разъем нагрелся до 54 градусов — это, конечно, многовато, но еще в пределах нормальной работы. Ток в 5.5 А разъем перенес тяжело, с нагревом до 94 градусов. А при 7 амперах совсем расплавился.

Окей, давайте теперь проверим их младших собратьев, MicroUSB.

Результаты. При 2 А разъем нагрелся почти до 40 градусов. Это при условии естественного охлаждения. Так что можем сказать, что такой ток — близкий к максимальному для этого типа. При токе в 5.5 А температура выросла до 154 градусов. Ого! Но разъем все еще работает. А вот при 6 А, температура достигла 204 градусов и разъем немножко расплавился.

Следующими в списке будут стандартные разъемы питания 5.5 х 2.1 мм. Процедура точно такая же — соединяем гнездо и штекер, и на одном конце замыкаем плюс и минус.

Результаты. При силе тока в 5 А разъем нагрелся всего на пару градусов, что, в принципе, и ожидалось. Неплохо! Попробуем увеличить ток в 2 раза, до 10 А. Такой ток разъемы перенесли со скрипом, нагревшись почти до 100 градусов. Вывод — это их максимальный ток.

Интересно, а на какой ток рассчитаны аудио-разъемы типа minijack? Можно ли его использовать в качестве разъема питания устройств? Проверяем. Замыкаем гнездо и штекер, увеличиваем ток. Начнем с небольшой силы тока, равной 2 амперам.

Результаты. При токе в 2 А наш разъем уже нагрелся до 50 градусов, так что его предел — 2.5, или, совсем максимум, 3 А. Больше он не выдержит. Но как для сигнального разъема и такой результат вполне неплох!

Теперь стало значительно понятнее, на какую мощность рассчитаны разъемы, которые мы с вами используем практически каждый день. Вместе с этим (мы надеемся) стало более понятно, в каких ситуациях приемлимо использовать тот или иной разъем, а в каких лучше подобрать другой вариант, чтобы избежать различных неприятных, или даже опасных, последствий.

Источник

Типы стандартов USB и разница между ними

Типы стандартов USB и разница между ними

Аватар пользователя

Содержание

Содержание

Вроде мы слышали, что USB 3.0 — это круче, чем USB 2.0. Но чем именно — знают не все. А тут еще появляются какие-то форматы Gen 1, Gen 2, маркировки Superspeed. Разбираемся, что значат все эти маркировки и чем они отличаются друг от друга. Спойлер: версий USB всего четыре.

USB 2.0

Когда-то было слово только USB 1.0. Сейчас это уже практически архаика, которую даже на старых устройствах почти не встретить. Еще 20 лет назад на смену первопроходцу USB 1.0 пришел улучшенный USB 2.0. Как и первая версия, эта спецификация использует два вида проводов. По витой паре идет передача данных, а по второму типу провода — питание устройства, от которого и идет передача информации. Но такой тип подключения подходил только для устройств с малым потреблением тока. Для принтеров и другой офисной техники использовались свои блоки питания.

USB версии 2.0 могут работать в трех режимах:

  • Low-speed, 10–1500 Кбит/c (клавиатуры, геймпады, мыши)
  • Full-speed, 0,5–12 Мбит/с (аудио и видеоустройства)
  • High-speed, 25–480 Мбит/с (видеоустройства, устройства для хранения данных)

USB 3.0

Стандарт USB 3.0 появился в 2008 году и до сих пор используется во многих устройствах. Скорость передачи данных выросла с 480 Мбит/с до 5 Гбит/с. Помимо скорости передачи данных, USB 3.0 отличается от версии 2.0 и силой тока. В отличие от более ранней версии, которая выдавала 500 мА, USB 3.0 способен отдавать до 4.5 Вт (5 В, 900 мА).

Новое поколение USB обратно совместима с предыдущими версиями. То есть USB 3.0 может работать и с разъемами USB 2.0 и даже 1.1. Но в этом случае буду ограничения по скорости. Подключив USB 3.0 к устройству с USB 2.0 скорость, вы получите не больше 480 Мбит/с — стандарт для версии 2.0. И наоборот, кабель 2.0 не станет более скоростным, если подключить его в устройство с USB 3.0. Это связано с количеством проводов, используемых в конкретной технологии. В версии USB 2.0 всего 4 провода, тогда как у USB 3.0 их 8.

Если вы хотите получить скорость передачи, заявленную стандартом USB 3.0, оба устройства и кабель должны быть именно версии 3.0.

USB 3.1

В 2013 году появляется версия USB 3.1 с максимальной заявленной скорость передачи данных до 10 Гбит/с, выходной мощностью до 100 Вт (20 В, 5 А). С появлением USB 3.1 произошла революция в маркировках всех стандартов. Но с ней мы разберемся чуть позже. А пока запомним главное: пропускная способность USB 3.1 увеличилась вдвое по сравнению с версией 3.0. И одновременно с обновленным стандартом появился и принципиально новый разъем — USB type-С. Он навсегда решил проблему неправильного подключения кабеля, так как стал симметричным и универсальным, и теперь все равно, какой стороной подключать провод к устройству.

USB 3.2

В 2017 году появилась информация о новой версии — USB 3.2. Она получила сразу два канала (больше проводов богу проводов) по 10 Гбит/с в каждую сторону и суммарную скорость в 20 Гбит/с. Стандарт USB 3.2 также обратно совместим с режимами USB 3.1, 3.0 и ниже. Поддерживается типом подключения USB-C на более современных гаджетах.

Типы разъемов

Версий разъемов USB несколько, и для каждого есть свое предназначение.

  • type-А — клавиатуры, флешки, мышии т. п.
  • type-B — офисная техника (принтеры, сканеры) и т. п.
  • mini type-B — кардридеры, модемы, цифровые камеры и т. п.
  • micro type-B — была наиболее распространенной в последние годы . Большинство смартфонов использовали именно этот тип подключения, пока не появился type-C. До сих пор остается довольно актуальным.
  • type-C — наиболее актуальный и перспективный разъем, полностью симметричный и двухсторонний. Появился одновременно со стандартом USB 3.1 и актуален для более поздних версий стандартов USB.

Superspeed, Gen или как разобраться в маркировках стандартов USB

Как только в типах стандартов появилась USB 3.1, привычная цифровая маркировка изменилась и здорово запуталась. Вполне понятный и простой USB 3.0 автоматически превратился в USB 3.1 Gen 1 и ему была присвоена маркировка SuperSpeed. А непосредственно сам USB 3.1 стал называться USB 3.1 Gen 2 с маркировкой SuperSpeed +.

Но и это уже потеряло свою актуальность с выходом стандарта USB 3.2. Он получил название USB 3.2 Gen 2×2 и маркировку SuperSpeed ++. В итоге маркировка всех предшествующих стандартов опять меняется. Теперь USB 3.0, она же USB 3.1 Gen 1, превращается задним числом в USB 3.2 Gen 1 с прежней маркировкой SuperSpeed. А USB 3.1, ставшая USB 3.1 Gen 2, тоже поднялась до USB 3.2 Gen 2. При этом конструктивно все стандарты остались прежними — изменяются только названия. Если вы уже запутались во всех этих цифрах и маркировках, таблица ниже поможет внести ясность в актуальных названиях.

Если еще более кратко, то сейчас опознать стандарты USB можно так:

USB 3.0 — это USB 3.2 Gen 1, он же Superspeed
USB 3.1 — это USB 3.2 Gen 2, он же Superspeed+
USB 3.2 — это USB 3.2 Gen 2×2, он же Superspeed++

Источник