Меню

Угол сдвига фаз когда резонанс токов



Резонанс напряжений

Резонансом напряжений называется режим электрической цепи синусоидального тока с последовательным соединенением резистивного R, индуктивноо L и емкостного С элементов, при котором угол сдвига фаз между общим напряжением (напряжением сети) и током в цепи равен нулю.

Условием наступления резонанса напряженийявляется равенство индуктивного и емкостного сопротивлений цепи:

Электрическая цепь, питаемая синусоидальным переменным током, в которую входит конденсатор и катушка индуктивности называется колебательным контуром.

Резонанс напряжений можно получить тремя способами:

1. Изменением частоты w синусоидального тока;

2. Изменением величин индуктивности или емкости колебательного контура, при котором меняются индуктивное XL или емкостное XC сопротивление;

3. При одновременном изменении параметров w, L, C цепи колебательного контура.

Из условия резонанса напряжения (3.27) следует, что так как

XL = wL и XC = 1/wC,

то при резонансе напряжений

где wрез, рад/сек – резонансная частота.

Резонанс напряжений характеризуется рядом существенных особенностей:

1. Так как при резонансе напряжений угол сдвига фаз между напряжением и током равен нулю (j = yu – yi = 0), то коэффициент мощности при резонансе принимает наибольшее значение, равноеединице:

cosj = cos0° = 1. (3.29)

В этом случае, как видно из векторной диаграммы на рис. 3.22,а, вектор тока и вектор общего напряжения совпадают по направлению, так как они имеют равные начальные фазы yu = yi.

2. При резонансе напряжений векторы напряжения на индуктивном и емкостном элементах оказываются равными по величине и противоположными по фазе:

так как XLI = XCI, а в комплексной форме (см. рис. 3.22,а).

3. Напряжение на активном сопротивлении при резонансе напряжений оказывается равным напряжению сети (рис. 4.22,а) так как

В комплексной форме .

4. Отношение индуктивного или емкостного сопротивлений к активному сопротивлению цепи с R,L,C-элементами при резонансе называется добротностью колебательного контураQ

Умножив числитель и знаменатель этих дробей на ток I, получим выражения для добротности колебательного контура через отношения напряжений

При больших значениях индуктивного XL и емкостного XC сопротивлений и малых значениях активного сопротивления R цепи (R > U:

то есть напряжение на индуктивности и конденсаторе последовательного колебательного контура при его высокой добротности в режиме резонанса напряжений могут во много раз превысить напряжение питания.

Например, если у колебательного контура последовательной цепи с
R,L,C-элементами, питаемым синусоидальным напряжением U = 220 В, R = 1 Ом, XLрез = XCрез = 1000 Ом, то напряжение на индуктивности и конденсаторе, как следует из (3.34) равно:

ULрез = UCрез = U·Q=220·1000 = 220000 В = 220 кВ.

Поэтому при работе электротехнического оборудования, питаемого сетевым напряжением 220/380 вольт резонанс напряжений никогда не используется.

Однако в разнообразных устройствах радиотехники и электроники, где напряжение питания колебательного контура составляет микровольты
(1мкВ = 10 -6 В), резонанс напряжений широко используется, позволяя многократно усилить входной сигнал в виде синусоидального напряжения.

Рис. 3.22. Резонанс напряжений в цепи с последовательным соединением R,L,C-элементов

а) – векторная диаграмма; б) – вырожденный треугольник сопротивлений (Х = 0);

в) – вырожденный треугольник мощностей (Q = 0)

5. Так как при резонансе напряжений XL = XC (3.27), то полное сопротивление цепи принимает минимальное значение, равное активному сопротивлению:

а общее реактивное сопротивление цепи становится равным нулю:

Поэтому треугольник сопротивлений при резонансе напряжений имеет вырожденный характер, как показано на рис. 3.22,б.

6. На основании закона Ома и из формулы (3.35) следует, что ток I в цепи при резонансе напряжений достигает наибольшего значения:

Iрез = U/Zрез = U/R. (3.37)

Отсюда следует, что ток в цепи при резонансе напряжений может оказаться значительно больше тока, который мог бы быть при отсутствии резонанса.

Это свойство позволяет обнаружить резонанс напряжений при изменении частоты w, изменении индуктивности L или емкости С. Однако резонансный ток при определенных условиях опасен – он может, достигнув чрезмерно большой величины, привести к перегреву элементов цепи и выходу их из строя.

7. Активная мощность при резонансе напряжений имеет наибольшее значение, так как связана с квадратом тока

P = (Iрез) 2 R, (3.38)

а ток Iрез – максимален.

8. Общая реактивная мощность Q при резонансе напряжений равна нулю:

так как UL = UC . Поэтому треугольник мощностей при резонансе имеет вырожденный характер, как показано на рис. 3.22,в.

9. При условии R > S = P, (3.40)

то есть эти мощности могут во много раз превысить потребляемую полную мощность S. При этом полная мощность S при резонансе целиком выделяется на резистивном элементе R, в виде активной мощности Р.

Физически это объясняется тем, что при резонансе напряжений происходит периодический обмен энергии магнитного поля в индуктивном элементе и энергии электрического поля в конденсаторе. При этом интенсивность этого обмена, как величины реактивных мощностей QL и QC , в сравнении с потребляемой активной мощностью Р

QL/P = XL/R = Q; QC/P = XC/R = Q (3.41)

определяется соотношениями реактивных и активного сопротивления цепи, как и для напряжений UL, UC и U, то есть добротностью Q колебательного контура цепи (см. п.4).

Кривые, выражающие зависимость полного тока I, сопротивления цепи Z, напряжения на индуктивности UL и конденсаторе UС , коэффициента мощности cosj от емкости батареи конденсатора С, называются резонансными кривыми.

На рис. 3.23 приведены резонансные кривые (UL, UС, I, Z, cosj) = f(C), построенные в общем виде при U = const и w = 2pf = const.

Рис. 3.23. Резонансные кривые UL , UС , I , Z, cosj в зависимости от емкости С
при последовательном соединении катушки индуктивности и батареи конденсаторов

Анализ этих зависимостей показывает, что при увеличении емкости С батареи конденсаторов полное сопротивление цепи Z сначала уменьшается, достигает минимума в режиме резонанса и становится равным активному сопротивлению R , а затем снова возрастает с увеличением емкости. Соответственно изменению Z меняется полный ток цепи (по закону Ома I обратно пропорционален Z): с ростом емкости конденсаторов ток I вначале увеличивается, достигает максимума в режиме резонанса, а затем вновь уменьшается.

Коэффициент мощности cosj изменяется с изменением емкости С в том же порядке: сначала с увеличением емкости С коэффициент мощности возрастает, достигая максимума равного единице в режиме резонанса, а затем уменьшается, в пределе стремясь к нулю.

Напряжения на индуктивности и конденсаторах имеют максимумы вблизи режима резонанса и становятся равными друг другу в этом режиме. Следует отметить, что достигаемые величины напряжений на конденсаторах и катушке индуктивности в режиме резонанса напряжений и вблизи него могут во много раз превышать входное напряжение приложенное ко всей цепи (см. п. 4).

С точки зрения электробезопасности и безаварийного режима работы, это следует учитывать при проведении исследования резонанса напряжения на стенде, задавая величину напряжения питания цепи U в достаточно низких пределах (U = 20 ¸ 25 В).

Таким образом, резонансные кривые позволяют установить минимальное полное сопротивление и наибольший ток в цепи при максимуме коэффициента мощности, равном единице, когда в цепи с последовательным соединением катушки индуктивности и батареи конденсаторов возникает резонанс напряжений.

Читайте также:  Если ток нейтрали равен нулю

Выводы:

1. Резонанс напряжений в промышленных электротехнических установках, питаемых синусоидальным сетевым напряжением 220/380 В – нежелательное и опасное явление, так как может вызвать аварийную ситуацию при возможном перенапряжении на отдельных участках цепи, привести к пробою изоляции обмоток электрических машин и аппаратов, изоляции кабелей и конденсаторов и опасно для обслуживающего персонала.

2. В то же время, резонанс напряжений широко используется в радиотехнике, в автоматике и электронике для настройки колебательных контуров в резонанс на определенную частоту, а также в различного рода приборах и устройствах, основанных на резонансном явлении.

Содержание работы

Лабораторная работа 2б делится на четыре части:

1. Подготовительная часть.

2. Измерительная часть (проведение опытов и снятие показаний приборов).

3. Расчетная часть (определение расчетных величин по формулам).

4. Оформительская часть (построение векторных диаграмм).

Примечание

Электромонтажные работы по исследованию резонанса напряжений в цепи с последовательным соединением R,L,C-элементов на модернизированном лабораторном стенде ЭВ-4 не проводятся, в отличие от работ на старых стендах (см. в [2] – Работа 2б, п.2. Электромонтажная часть).

1. Подготовительная часть

Подготовка к проведению лабораторной работы включает:

1. Изучение теоретической части настоящего пособия и литературы [1,2,3,4], относящихся к теме данной работы.

2. Предварительное оформление лабораторной работы в соответствии с существующими требованиями [2,3].

В результате предварительного оформления лабораторной работы №2б в рабочей тетради или журнале (на листах формата А4 с компьютерной распечаткой) студентом должен быть заполнен титульный лист, в работе должны быть указаны название работы и ее цель, приведены основные сведения по работе, взятые из раздела выше и формулы, необходимые для вычисления расчетных величин, представлены принципиальные и эквивалентные схемы замещения, заготовлены таблицы, соответственно числу опытов в работе.

Кроме этого, должно быть оставлено свободное место для построения векторных диаграмм.

2. Измерительная часть

Необходимые измерения параметров исследуемой цепи однофазного тока с последовательным соединением электроприемников при резонансе напряжений проводятся с помощью принципиальной схемы (рис. 3.24). Данная схема соответствует панели модернизированног стенда ЭВ-4 [4] с аналогичной мнемосхемой и цифровыми измерительными приборами (см. фото на рис. 3.26).

Для более заметного вида резонансных кривых в последовательной цепи электроприемников резистор R отсутствует (на принципиальной схеме рис. 3.23 он зашунтирован).

Этой схеме соответствует схема замещения с последовательно соединенными катушкой индуктивности и батареей конденсаторов, показанная на рис. 3.25.

3.24 Принципиальная схема цепи с последовательно соединенными
катушкой индуктивности и батареей конденсаторов
для исследования резонанса напряжений

3.25 Схема замещения цепи с последовательно соединенными
катушкой индуктивности и батареей конденсаторов
для исследования резонанса напряжений

1. Перед подачей питания к исследуемой цепи на панели стенда с мнемосхемой и цифровыми измерительными приборами (рис. 3.26) перевести все выключатели (S1 ÷ S6, S’1 ÷ S’6), расположенные на этой панели, в нижнее положение (состояние – «откл»).

Рис. 3.26. Паналь стенда с цифровыми измерительными приборами и
мнемосхемой для проведения лабораторой работы 2б «Резонанс напряжений
в однофазной цепи с активно-реактивными элементами»

2. На панели стенда из последовательной цепи R,L,C-элементов исключить резистор R, зашунтировав его с помощью электромонтажного провода (красный провод-шунт на принципиальной схеме рис. 3.24) вставив его концы в гнезда по бокам вольтметра VR.

3. Установить начальную общую емкость конденсаторов С = 40 мкФ нажатием соответствующих черных кнопок выключателей рядом с подключаемыми конденсаторами на панели №4 стенда с мнемосхемой батареи конденсаторов (см. рис. 3.28).

4. Подключить лабораторный автотрансформатор (ЛАТР), установленный на горизонтальной панели блока питания (рис. 3.27) к сетевому напряжению (

220 В), нажав черные кнопки «вкл» выключателей. При этом загораются две сигнальные лампы «сеть». После этого нужнообязательноповернуть ручку регулятора ЛАТРАа против часовой стрелки до упора, тем самым, снизив напряжение на его выходе до нуля.

Рис. 3.27. Панель блока питания лабораторного стенда

Рис. 3.28. Панель №4 стенда с мнемосхемами батареи конденсаторов
и катушки индуктивности

5. Подать регулируемое напряжение от ЛАТРа ко входу исследуемой цепи и подключить цифровые измерительные приборы, установив на панели стенда с мнемосхемой кнопки всех выключателей (S1 ÷ S6, S’1 ÷ S’6) в положение «вкл». При этом должны засветиться зеленые цифры на электроизмерительных приборах.

6. Плавным поворотом по часовой стрелке ручки регулятора ЛАТРа (рис. 3.27) установить напряжение U на входе цепи порядка 20 ÷ 25 В, контролируя его цифровым вольтметром V (прибор ЩП02М, установленный слева на панели стенда – рис. 4.26). Следует поддерживать установленное напряжение постоянным во всех опытах с помощью ЛАТРа.

7. В процессе исследования цепи с последовательно соединенными катушкой индуктивности и батареей конденсаторов провести 9 опытов с различной емкостью батареи конденсаторов (величины емкостей для каждого опыта указаны в табл. 3.5) нажатием соответствующих кнопок выключателей на панели №4 стенда (рис. 3.28), постепенно увеличивая емкость с 40 мкФ до 200 мкФ. Перед подключением дополнительных конденсаторов в каждом опыте нужно обязательно отключить исследуемую цепь от источника питания (выхода ЛАТРа), переведя выключатели (S1, S’1) в нижнее положение «откл», а перед проведением замеров вновь подключить к напряжению питания цепь с помощью тех же выключателей.

8. Во всех опытах измерить входное напряжение U, потребляемую активную мощность Р и протекающий по цепи ток I, соответственно цифровыми измерительными приборами: вольтметром V, ваттметром W и амперметром А (см. принципиальную схему на рис. 3.24 и панель стенда на рис. 3.26).

9. Напряжение на батарее конденсаторов UС и напряжение на катушке индуктивности UК с параметрами RK, LK измерить цифровыми вольтметрами, соответственно VC и VK, установленными на панели стенда (см. рис. 3.26).

10. Полученные результаты измерений каждого опыта занести в таблицу 3.5.

11. В конце измерительной части данной работы нужно отключить исследуемую цепь от источника питания и сам блок питания от силового щитка с помощью выключателей S1 и S1 ‘ на панели с мнемосхемой (рис. 3.26) и красной кнопки «выкл» выключателя на панели блока питания (рис. 3.27). Сообщить преподавателю об окончании измерений и приступить к вычислениям параметров цепи.

Источник

Угол сдвига фаз когда резонанс токов

§ 59. Понятие о резонансе напряжений

В цепи переменного тока с активным, индуктивным и емкостным сопротивлениями, соединенными последовательно (рис. 62, а), может возникнуть резонанс напряжений.

При резонансе напряжения на зажимах индуктивного и емкостного сопротивлений могут стать значительно больше, чем напряжение на зажимах цепи.
Резонанс напряжений наступает в том случае, если индуктивное сопротивление XL и емкостное сопротивление Xc равны между собой, т. е.

Читайте также:  Взаимодействие двух параллельных проводников с постоянным током объясняется тем

Допустим, что подбором индуктивиости и емкости или изменением частоты создано условие, при котором XL = Xc Когда цепь не настроена в резонанс, то ее полное сопротивление

а в рассматриваемой цепи при резонансе (когда XL = Xc) ее полное сопротивление

Таким образом, полное сопротивление цепи при резонансе оказывается равным активному сопротивлению.
Уменьшение полного сопротивления цепи приводит к тому, что сила тока в ней возрастает. Напряжение генератора переменного тока, включенного в цепь, расходуется на активном сопротивлении

Напряжение на индуктивности определяется, согласно закону Ома, произведением силы тока на величину индуктивного сопротивления. Так как в цепи увеличилась сила тока, то напряжение UL = I XL возросло.
Напряжение на емкости также определяется произведением тока на величину емкостного сопротивления. Поэтому напряжение на емкости Uc = I Xc.
В связи с тем, что в последовательно соединенных сопротивлениях протекает одинаковый ток и при резонансе индуктивное сопротивление XL равно емкостному сопротивлению Хс, напряжение на индуктивности и напряжение на емкости равны:

Если одновременно увеличить оба реактивных сопротивления ХL и Хc, не нарушая при этом условия резонанса ХL = Хc, то соответственно возрастут оба частичных напряжения UL и Xc, а сила тока в цепи при этом не изменится. Таким путем можно получить UL и Uc во много раз большие, чем напряжение U на зажимах цепи.
Построим векторную диаграмму (рис. 62, б) для рассматриваемой цепи при резонансе напряжения. Отложим по горизонтали в выбранном масштабе вектор тока . В активном сопротивлении ток и напряжение совпадают по фазе. Поэтому вектор напряжения отложим по вектору тока. Так как напряжение на индуктивности опережает ток на 90°, то вектор отложим вверх под углом 90°.
Напряжение на емкости отстает от тока на 90°, поэтому вектор , равный вектору , отложим вниз под углом 90° к вектору тока. На векторной диаграмме видно, что напряжение на индуктивности и напряжение на емкости равны и сдвинуты по фазе друг относительно друга на 180° и взаимно компенсируются.
Угол сдвига фаз между током и напряжением при резонансе равен нулю. Это значит, что ток и напряжение совпадают по фазе (как в цепи с активным сопротивлением).

Пример. В цепь переменного тока включены последовательно активное сопротивление r = 5 ом, индуктивность L = 0,005 гн и емкость 63,5 мкф. Генератор, включенный в цепь, вырабатывает переменное напряжение U = 2,5 в с резонансной частотой f = 285 гц. Определить индуктивное и емкостное сопротивления, полное сопротивление цепи, ток, протекающий в цепи, напряжение на емкости и на индуктивности.
Решение . Индуктивное сопротивление

XL = 2πf L = 2 · 3,14 · 285 · 0,005 = 8,9 ом,

Индуктивное сопротивление равно емкостному сопротивлению и, следовательно, в цепи наступает резонанс напряжения.
Полное сопротивление цепи при резонансе

Сила тока в цепи

Напряжение на индуктивности

UL = I XL = 0,38 · 8,9 = 7,4 в

Напряжение на емкости

Uc = I Xc = 0,38 · 8,9 = 7,4 в

Как видно из приведенного примера, напряжения на индуктивности и емкости равны и превышают напряжение генератора.

Источник

В состоянии резонанса угол сдвига фаз

.

В линейной электрической цепи режим резонанса можно получить путем изменения частоты f питающего напряжения u(t) или значения параметров элементов L и С;а в разветвлённой цепи, еще и сопротивления R. В данной работе исследуют контур с последовательным соедине­нием элементов R, L и С (рис. 6.1).

Рис. 6.1. Принципиальная схема цепи

На частоте резонанса эквивалентное реактивное сопротивление

,

; .

имеет размерность сопротивления и носит название характеристического (волнового) сопротивления контура.

Резонансные свойства контура на частоте резонанса характеризует добротность

.

При резонансе напряжение на входе контура .Добротность показывает, во сколько раз напряжения на реактивных элементах отличается от напряжения U. Если , то напряжение на реактивных элементах превышает напряжение на входе контура U, поэтому такой резонанс называют резонансом напряжений.

Ток при резонансе достигает наибольшего значения

.

называются частотными характеристикамицепи (контура). Пример частотных характеристик приведен на рис. 6.2.

Рис. 6.2. Частотные характеристики: 1 — XL(f); 2 — XС(f); 3 — Х(f) = XL(f)-XС(f).

Зависимость называется фазочастотной харак­теристикой(ФЧХ)цепи (контура).

Зависимости от частоты амплитудных или действующих значений тока I(f) и напряжений UR(f), UL(f), UC(f) называются амплитудно-частными характеристи­ками(АЧХ). Пример АЧХ приведен на рис. 6.3.

Рис. 6.3. Амплитудно-частотная характеристика.

Диапазон частот, при которых выполняется отношение

,

называется полосой пропускания. Записанное выше отношение выполняется точно на частотах f1 и f2, где |Х(f)| = R. На частоте f1 меньшей f угол сдви­га фаз , на частоте f2 большей f угол сдви­га фаз . Частоты f1 и f2 на­зываются нижней и верхнейграничной частотой полосы пропускания.

Полоса пропускания характеризует избирательные частотные свойства контура

.

Вы­полнение условий и позволяют экспериментально определить граничные частоты, поэтому полосу пропускания можно опреде­лить по фазочастотной характеристике. Значения граничных частот определяются выражением

.

Содержание и порядок выполнения работы

Схема исследуемой электрической цепи представлена на рис. 6.4. Источником синусои­дального напряжения является модуль ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР. В работе используют измерительные приборы из блоков ИЗМЕРИТЕЛЬ ФАЗЫ и МОДУЛЬ МУЛЬТИМЕТРОВ.

Пассивные элементы электрической схемы выбирают из блока МОДУЛЬ РЕАКТИВНЫХ ЭЛЕМЕНТОВ. Активное сопротивление RK катушки измеряют мультиметром. Рекомендуемые значения индуктивности катушки и емкости конденсатора представлены в табл. 6.1.

Вариант
L, мГн
C, мкФ 6,8 6,8 4,7 4,7 3,3

Рис. 6.4. Функциональная схема цепи

· Установить заданные преподавателем значения индуктивности L катуш­ки и емкости С конденсатора. Измерить мультиметром активное сопротив­ление RK катушки. Для измерения активного сопротивления RK катушки нужно установить в МОДУЛЕ РЕАКТИВНЫХ ЭЛЕМЕНТОВ выбранное значение индуктивности, переключить мультиметр в режим измерения сопротивления (W) и подключить его провода к катушке. Записать эти значения в протокол измерений. После измерения сопротивления переключить мультиметр в режим измерения переменного напряжения.

· Собрать электрическую цепь по функциональной схеме, приведенной на рис. 1П. Тумблер SA2 модуля ИЗМЕРИТЕЛЬ ФАЗЫ установить в положе ние I2. Для измерения действующих значений напряжений Uк и Uс вклю­чить мультиметры PP(в режиме измерения переменного напряжения).

· Проверить собранную электрическую цепь в присутствии преподавателя. До проверки преподавателем включать цепь категорически ЗАПРЕЩАЕТСЯ.

· Выполнить предварительные расчеты, указанные в протоколе измерений.

· Включить автоматический выключатель QF блока МОДУЛЬ ПИТАНИЯ и тумблер Сеть модуля ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР. Переключатель Форма установить в положение

· Регулятором Амплитуда установить величину действующего значения на­пряжения U= 5. 7 В. Напряжение U поддерживать в работе неизменным. Регулятором Частота установить на вы­ходе модуля ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР частоту f (при определении частоты генератора показания частотомера не нужно умножать на множитель диапазона). Убедиться, что угол (при этом можно подстроить частоту).

Читайте также:  Чему равен ток в параллельном колебательном контуре

· Измерить на частоте f действующие значения тока i; напряжений и, ик, ис; активную мощность Р и угол . Измеренные значения зане­сти в табл. 1П.

· Уменьшая частоту, определить частоту f1 нижнюю граничную частоту полосы пропускания. На этой частоте .

· Измерить на частоте f1 действующее значение тока i; напряжений и, ик, ис;активную мощность Р и угол . Измеренные значения занести в табл. 1П.

· Увеличивая частоту, определить частоту f2 — верхнюю граничную частоту полосы пропускания. На этой частоте .

· Измерить на частоте f2 действующее значение тока i; напряжений и, ик, ис;активную мощность Р и угол . Измеренные значения занести в табл. 1П.

· Изменяя частоту, заполнить остальные строки в табл. 1П.

· Выполнить предварительные расчеты, указанные в протоколе измерений.

· Протокол измерений утвердить у преподавателя.

· Выключить тумблер Сеть модуля ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР и автоматический выключатель QF модуля питания. Разобрать цепь, прибрать рабочее место.

Источник

Резонанс переменного электрического тока

Знание физики и теории этой науки напрямую связано с ведением домашнего хозяйства, ремонтом, строительство и машиностроением. Предлагаем рассмотреть, что такое резонанс токов и напряжений в последовательном контуре RLC, какое основное условие его образования, а также расчет.

Что такое резонанс?

Определение явления по ТОЭ: электрический резонанс происходит в электрической цепи при определенной резонансной частоте, когда некоторые части сопротивлений или проводимостей элементов схемы компенсируют друг друга. В некоторых схемах это происходит, когда импеданс между входом и выходом схемы почти равен нулю, и функция передачи сигнала близка к единице. При этом очень важна добротность данного контура.

Соединение двух ветвей при резонансе

Соединение двух ветвей при резонансе

Признаки резонанса:

  1. Составляющие реактивных ветвей тока равны между собой IPC = IPL, противофаза образовывается только при равенстве чистой активной энергии на входе;
  2. Ток в отдельных ветках, превышает весь ток определенной цепи, при этом ветви совпадают по фазе.

Иными словами, резонанс в цепи переменного тока подразумевает специальную частоту, и определяется значениями сопротивления, емкости и индуктивности. Существует два типа резонанса токов:

  1. Последовательный;
  2. Параллельный.

Для последовательного резонанса условие является простым и характеризуется минимальным сопротивлением и нулевой фазе, он используется в реактивных схемах, также его применяет разветвленная цепь. Параллельный резонанс или понятие RLC-контура происходит, когда индуктивные и емкостные данные равны по величине, но компенсируют друг друга, так как они находятся под углом 180 градусов друг от друга. Это соединение должно быть постоянно равным указанной величине. Он получил более широкое практическое применение. Резкий минимум импеданса, который ему свойствен, является полезным для многих электрических бытовых приборов. Резкость минимума зависит от величины сопротивления.

Схема RLC (или контур) является электрической схемой, которая состоит из резистора, катушки индуктивности, и конденсатора, соединенных последовательно или параллельно. Параллельный колебательный контур RLC получил свое название из-за аббревиатуры физических величин, представляющих собой соответственно сопротивление, индуктивность и емкость. Схема образует гармонический осциллятор для тока. Любое колебание индуцированного в цепи тока, затухает с течением времени, если движение направленных частиц, прекращается источником. Этот эффект резистора называется затуханием. Наличие сопротивления также уменьшает пиковую резонансную частоту. Некоторые сопротивление являются неизбежными в реальных схемах, даже если резистор не включен в схему.

Применение

Практически вся силовая электротехника использует именно такой колебательный контур, скажем, силовой трансформатор. Также схема необходима для настройки работы телевизора, емкостного генератора, сварочного аппарата, радиоприемника, её применяет технология «согласование» антенн телевещания, где нужно выбрать узкий диапазон частот некоторых используемых волн. Схема RLC может быть использована в качестве полосового, режекторного фильтра, для датчиков для распределения нижних или верхних частот.

Резонанс даже использует эстетическая медицина (микротоковая терапия), и биорезонансная диагностика.

Принцип резонанса токов

Мы можем сделать резонансную или колебательную схему в собственной частоте, скажем, для питания конденсатора, как демонстрирует следующая диаграмма:

схема для питания конденсатора

Схема для питания конденсатора

Переключатель будет отвечать за направление колебаний.

переключатель резонансной схемы

Схема: переключатель резонансной схемы

Конденсатор сохраняет весь ток в тот момент, когда время = 0. Колебания в цепи измеряются при помощи амперметров.

ток в резонансной схеме равен нулю

Схема: ток в резонансной схеме равен нулю

Направленные частицы перемещаются в правую сторону. Катушка индуктивности принимает ток из конденсатора.

Когда полярность схемы приобретает первоначальный вид, ток снова возвращается в теплообменный аппарат.

Теперь направленная энергия снова переходит в конденсатор, и круг повторяется опять.

В реальных схемах смешанной цепи всегда есть некоторое сопротивление, которое заставляет амплитуду направленных частиц расти меньше с каждым кругом. После нескольких смен полярности пластин, ток снижается до 0. Данный процесс называется синусоидальным затухающим волновым сигналом. Как быстро происходит этот процесс, зависит от сопротивления в цепи. Но при этом сопротивление не изменяет частоту синусоидальной волны. Если сопротивление достаточно высокой, ток не будет колебаться вообще.

Обозначение переменного тока означает, что выходя из блока питания, энергия колеблется с определенной частотой. Увеличение сопротивления способствует к снижению максимального размера текущей амплитуды, но это не приводит к изменению частоты резонанса (резонансной). Зато может образоваться вихретоковый процесс. После его возникновения в сетях возможны перебои.

Расчет резонансного контура

Нужно отметить, что это явление требует весьма тщательного расчета, особенно, если используется параллельное соединение. Для того чтобы в технике не возникали помехи, нужно использовать различные формулы. Они же Вам пригодятся для решения любой задачи по физике из соответствующего раздела.

Очень важно знать, значение мощности в цепи. Средняя мощность, рассеиваемая в резонансном контуре, может быть выражена в терминах среднеквадратичного напряжения и тока следующим образом:

R ср= I 2 конт * R = (V 2 конт / Z 2 ) * R.

При этом, помните, что коэффициент мощности при резонансе равен cos φ = 1

Сама же формула резонанса имеет следующий вид:

Нулевой импеданс в резонансе определяется при помощи такой формулы:

Резонансная частота колебаний может быть аппроксимирована следующим образом:

Как правило, схема не будет колебаться, если сопротивление (R) не является достаточно низким, чтобы удовлетворять следующим требованиям:

Для получения точных данных, нужно стараться не округлять полученные значения вследствие расчетов. Многие физики рекомендуют использовать метод, под названием векторная диаграмма активных токов. При правильном расчете и настройке приборов, у Вас получится хорошая экономия переменного тока.

Источник