Меню

Участок цепи содержащий емкость переменного тока



§53. Емкость в цепи переменного тока

Ток и напряжение. В цепи постоянного тока емкость (идеальный конденсатор) имеет сопротивление бесконечно большое, так как после окончания процесса заряда такой конденсатор не пропускает электрический ток. Однако при подключении емкости к источнику переменного тока (рис. 191,а) происходит непрерывный процесс его заряда и разряда, при этом через емкость проходит переменный ток.

Ток i при включении в цепь переменного тока емкости определяется количеством электричества q, проходящим по этой цепи в единицу времени. Следовательно,

где ?q — изменение количества электричества (заряда q) за время ?t.

Количество электричества q, накопленное в конденсаторе при изменении напряжения и, также непрерывно изменяется. Поэтому, учитывая формулу (69), будем иметь:

где ?u — изменение напряжения и за время ?t.

Из рис. 191,б видно, что скорость изменения напряжения ?u/?t будет наибольшей в моменты времени, когда угол ?t равен 0; 180 и 360°. Следовательно, в эти моменты времени ток i имеет максимальное значение. В моменты же времени, когда угол ?t равен 90° и 270°, скорость изменения напряжения ?u/?t = 0 и поэтому i = 0.

В течение первой четверти периода происходит заряд емкости и в цепи течет ток заряда, который считаем положительным. При этом по мере заряда емкости и увеличения разности потенциалов на электродах ток i уменьшается. При ?t = 90° емкость полностью заряжается, разность потенциалов на электродах становится равной напряжению и источника и ток i = 0.

Во второй четверти периода емкость начнет разряжаться и ток i изменяет свое направление (становится отрицательным). При

Рис. 191. Схема включения в цепь переменного тока емкости (а), кривые тока i напряжения u (б) и векторная диаграмма (в)

?t =180°, когда u = 0, ток i разряда достигает максимального значения. В этот момент изменяется полярность напряжения и источника и начинается процесс перезаряда емкости при противоположном (отрицательном) направлении тока i. При со/ = 270° заряд прекращается, ток i становится равным нулю и начинается разряд при первоначальном (положительном) направлении тока.

Таким образом, емкость в течение одного периода изменения напряжения и дважды заряжается и дважды разряжается. Следовательно, в цепи (см. рис. 191, а) непрерывно протекает переменный ток i. Из рис. 191,б видно, что при включении в цепь переменного тока емкости ток i опережает по фазе напряжение и на угол 90° или же что напряжение и отстает по фазе от тока i на угол 90° (рис. 191,в).

Емкостное сопротивление. Сопротивление, которое оказывает емкость переменному току, называют емкостным. Оно обозначается Xс и измеряется в омах. Физически емкостное сопротивление обусловлено действием э. д. с. ес, возникающей в конденсаторе С. Эта э. д. с. направлена против приложенного напряжения u, так как заряженный конденсатор можно рассматривать как источник с некоторой э. д. с. ес, действующей между его пластинами. Поэтому э. д. с. ес препятствует изменению тока под действием напряжения u, т. е. оказывает прохождению переменного тока определенное сопротивление.

Из формулы (70) следует, что чем больше емкость С и скорость изменения напряжения ?u/?t, т. е. частота его изменения f (значение ?), тем больше ток i в цепи с емкостью и тем меньше емкостное сопротивление:

Закон Ома для цепи с емкостью:

I = U / Xс = U / ( 1 /(?C) )

Электрическая мощность. Рассмотрим, как изменяется электрическая мощность в цепи переменного тока с емкостью. Ее можно получить графическим путем, перемножая ординаты кривых тока и напряжения при различных углах ?t. Кривая мгновенной мощности (см. рис. 179,б) представляет собой синусоиду, которая изменяется с двойной частотой 2? по сравнению с частотой изменения тока i и напряжения u. Следовательно, в этой цепи тоже имеет место непрерывный колебательный процесс обмена энергией между источником и емкостью. В первую и третью четверти периода мощность положительна, т. е. конденсатор получает энергию W от источника и накапливает ее в своем электрическом поле. Во вторую и четвертую четверть периода конденсатор отдает накопленную энергию источнику (мощность отрицательна); при этом протекание тока по цепи поддерживается э. д. с. ес. В целом за период в емкостное сопротивление не поступает электрическая энергия (среднее значение мощности за период равно нулю). Поэтому емкостное сопротивление, так же как и индуктивное, относят к группе реактивных сопротивлений.

Для характеристики процесса обмена энергией между источником и емкостью введено понятие реактивной мощности емкости:

где Uс — напряжение, приложенное к конденсатору (действующее значение) .

Читайте также:  Магнитное действие электрического тока приборы

Эту мощность можно выразить также в виде

Следует отметить, что в реальных конденсаторах имеют место потери мощности, вследствие чего они потребляют от источника некоторую электрическую энергию. Потери мощности вызваны тем, что в диэлектрике, разделяющем пластины конденсатора, под действием переменного электрического поля возникают токи смещения, нагревающие диэлектрик. Чем больше напряжение и частота его изменения, тем больше потери мощности в конденсаторах от токов смещения. Однако эти потери имеют значение только в конденсаторах, применяемых в высокочастотных установках. При стандартной частоте 50 Гц потери в конденсаторах настолько малы, что их обычно не учитывают.

Источник

Цепь переменного тока с ёмкостью

Поскольку после того, как конденсатор зарядился полностью, он не пропускает через себя электрический ток, и поэтому идеальный конденсатор (ёмкость), установленный в цепи постоянного тока, обладает бесконечно большим сопротивлением.

Электрическая цепь переменного тока с емкостью

Цепь переменного тока с ёмкостью

Если же произвести подключение конденсатора к источнику переменного тока, то процесс его заряда и разряда будет осуществляться непрерывно. Это означает, что через ёмкость будет проходить переменный электрический ток.

Ток i при условии включения в цепь переменного тока некоторой ёмкости будет определяется количеством электричества q , протекающего по этой цепи в единицу времени. Из этого следует, что:

где Δq – это изменение заряда q (то есть количества электричества) в течение времени Δt .

Что касается заряда q , который накоплен при изменениях напряжения u в конденсаторе, то он также подвержен непрерывному изменению, которое выражается формулой:

где Δu – это изменение напряжения u в течение промежутка времени Δt .

Та скорость, с которой изменяется напряжение (она выражается отношением Δu / Δt ) будет иметь свои наибольшие значения тогда, когда угол ωt равняется 360° , 180° и 0° . Из этого следует, что значение тока i принимает свои наибольшие величины именно в эти моменты времени. Если же угол ωt равняется 270° и 90° , то i = 0 , поскольку скорость изменения напряжения Δu / Δt = 0 .

Почему ток отстает от напряжения по фазе

Ток и напряжение в цепи переменного тока с ёмкостью

Ток заряда, который принято считать положительным, в цепи течет тогда, когда происходит заряд конденсатора, то есть на протяжение первой четверти периода. По мере того, как разница потенциалов на электродах ёмкости растет вследствие накопления ею электрического заряда, значение тока i падает. Когда ωt = 90° , наступает полный заряд емкости, значение i = 0 , а разность потенциалов между электродами конденсатора обретает то же самое значение, что и напряжение источника тока.

Значение тока i становится отрицательным тогда, когда он меняет свое направление. Это происходит тогда, когда ёмкость начинает разряжаться, то есть во второй четверти периода. Тогда, когда u = 0 а ωt = 180° , значение тока i становится максимальным. В этот же самый момент ток i начинает течь в обратном направлении (его принято считать отрицательным), начинается процесс перезарядки емкости, а полярность напряжения u источника также меняется на противоположную. Когда ωt = 270° значение тока i становится равным нулю, и поэтому процесс заряда прекращается. После чего начинается разряд при первоначальном (то есть положительном) направлении тока.

Получается, что ёмкость и заряжается, и разряжается два раза на протяжении одного периода изменения напряжения. Из этого следует, что переменный ток i протекает в цепи непрерывно. Когда ёмкость включается в цепь переменного тока, то ток i опережает напряжение u по фазе на угол, равный 90° . Можно также сказать, что напряжение u отстает по фазе от тока i на угол, равный 90° .

Емкостное сопротивление

Сопротивление, которое проявляет ёмкость к переменному току, носит название емкостного. Единицей измерения этой величины является Ом, а обозначается оно Хс. Физическая природа емкостного сопротивления заключается в том, что оно обусловлено возникающей в конденсаторе ЭДС ес . Направление этой электродвижущей силы противоположно приложенному напряжению u , поскольку заряженная ёмкость рассматривается в качестве источника, у которого между пластинами действует некоторая ЭДС ес . Именно она препятствует тому, чтобы под действием напряжения u происходило изменение тока, то есть оказывает определенное сопротивление его прохождению.

Источник

Цепь с емкостью

Рассмотрим цепь переменного тока, в которой имеется участок, содержащий конденсатор емкостью (рис. 7.7); индуктивностью и сопротивлением можно пренебречь. Наличие в цепи конденсатора исключает протекание по ней постоянного тока. В этом случае разность потенциалов на обкладках конденсатора полностью компенсирует электродвижущую силу. Однако переменный ток в такой цепи может существовать, так как заряд на обкладках изменяется с течением времени. Падение напряжения на конденсаторе . Если , то заряд на пластинах конденсатора будет равен . В этой формуле означает постоянный заряд конденсатора, не связанный с колебаниями тока. Будем считать его равным нулю. Таким образом, напряжение на пластинах конденсатора будет равно:

Читайте также:  Генераторы постоянного тока принцип работы классификация

где – амплитуда колебаний напряжения.

Из сравнения с законом Ома видно, что величина играет роль сопротивления, ее принято называть реактивным емкостным сопротивлением. Как и омическое сопротивление, емкостное сопротивление в системе единиц СИ выражается в омах. Обратите внимание, что формула устанавливает связь между максимальными значениями силы тока и напряжения. Однако ее нельзя рассматривать как связь между мгновенными значениями силы тока и напряжения, как в случае закона Ома для постоянного тока, так как между напряжением и силой тока существует разность фаз, и их максимальные значения достигаются неодновременно.

Формулу легко проверить на опыте. Если составить цепь, содержащую конденсатор переменной емкости, лампочку накаливания и источник переменного тока, то можно убедиться в том, что, чем больше емкость конденсатора, тем ярче накал лампочки, то есть тем больше сила тока в цепи. Емкостное сопротивление зависит также от частоты. Поэтому при очень высоких частотах даже малые емкости могут представлять совсем небольшое сопротивление для переменного тока. Для постоянного тока емкость представляет бесконечно большое сопротивление, поэтому постоянный ток в такой цепи существует только в первую четверть периода, когда идет зарядка конденсатора. Далее ток прекращается, цепь оказывается разомкнутой для постоянного тока. Переменный ток в такой цепи существует, и при высоких частотах малые емкости представляют небольшие сопротивления.

График изменения тока и напряжения на конденсаторе представлен на рис. 7.8. Напряжение на конденсаторе, так же как и ток, меняется по гармоническому закону, однако колебания напряжения отстают по фазе от колебаний тока на . Физический смысл этого эффекта объясняется просто. Когда напряжение начинает расти, заряд на обкладках конденсатора равен нулю, поэтому заряд беспрепятственно течет к обкладкам, и сила тока велика. Когда напряжение приближается к максимальному значению, заряд, уже накопившийся на обкладках конденсатора, препятствует дальнейшему притоку заряда, и сила тока в цепи падает до нуля. Далее, когда напряжение падает, накопившийся на обкладках заряд начинает уходить с пластин, и сила тока возрастает, но ток течет в противоположном направлении. То есть напряжение на конденсаторе в какой-то момент времени определяется величиной заряда на обкладках конденсатора, который привнесен током, протекающим в более ранней стадии колебаний. Поэтому колебания тока опережают напряжение, возникающее на конденсаторе.

На векторной диаграмме (рис. 7.9) вектор колебаний напряжения повернут относительно оси токов на угол в отрицательном направлении.

2.6. Цепь переменного тока,
содержащая активное сопротивление,
индуктивность и емкость

Рассмотрим цепь, состоящую из последовательно соединенных активного сопротивления , катушки индуктивности , конденсатора и источника переменного напряжения U (рис. 7.10). Найдем силу тока , который установится в цепи при напряжении, изменяющемся по закону .

В случае постоянного тока полное сопротивление при последовательном соединении равно сумме сопротивлений всех элементов цепи. Это обусловлено тем, что полная разность потенциалов при последовательном соединении элементов цепи равна сумме падений напряжения на отдельных элементах. В случае переменного тока ситуация более сложная. Ток во всех элементах цепи имеет одно и тоже значение в один и тот же момент времени и одинаковую фазу. Напряжение же на конденсаторе опережает ток по фазе на и, следовательно, опережает на напряжение на сопротивлении, соединенном последовательно с конденсатором. В то же время напряжение на катушке индуктивности отстает по фазе от тока на и, следовательно, отстает по фазе на от напряжения на конденсаторе. Поэтому полное напряжение на катушке индуктивности и конденсаторе равно разности напряжений на них и опережает напряжение на сопротивлении по фазе на . Полная разность потенциалов во всей цепи равна сумме этих двух синусоидально изменяющихся напряжений: результирующего напряжения на катушке индуктивности и конденсаторе и напряжения на активном сопротивлении. Такое напряжение тоже меняется по закону синуса, а его амплитуда равна модулю векторной суммы амплитуд напряжений на всех элементах цепи.

Построим векторную диаграмму, пользуясь результатами, полученными в предыдущих параграфах (рис. 7.11). Это позволит нам определить амплитуду силы тока и сдвиг фаз между током и напряжением. Для квазистационарных токов сила тока одинакова на всех участках цепи. Отложим вдоль оси токов вектор падения напряжения на активном сопротивлении , перпендикулярно к нему векторы, описывающие напряжение на индуктивности и емкости . Они направлены в противоположные стороны. Результирующий вектор, модуль которого равен , повернут на угол относительно вектора напряжения на активном сопротивлении. Угол равен сдвигу фаз между током и напряжением в цепи. Из треугольника ABD находим:

Читайте также:  Практическая работа 28 генератор постоянного тока

Соотношение для амплитуд силы тока и напряжения полностью эквивалентно закону Ома для постоянных токов. Величина , зависящая от частоты тока, играет роль сопротивления и называется полным сопротивлением цепи или импедансом. Разность фаз между током и напряжением изменяется от — до в зависимости от соотношения между импедансами различных участков цепи и частотой.

Из векторной диаграммы (рис. 7.11) видно, что фаза напряжений на сопротивлении может как опережать фазу внешнего напряжения, так и отставать в пределах от — до . Фаза напряжения на индуктивности всегда опережает фазу внешнего напряжения на угол от 0 до , а на емкости всегда отстает на угол от 0 до — . Векторная диаграмма на рис 7.11 построена для случая, когда . В этом случае напряжение внешнего источника опережает по фазе ток, текущий в цепи, на угол .

Источник

Емкость

Все проводники с электрическим зарядом создают электрическое поле. Характеристикой этого поля является разность потенциалов (напряжение). Электрическую емкость определяют отношением заряда проводника к напряжению

С учетом соотношения

получаем формулу связи тока с напряжением

Для удобства ее интегрируют и получают

uC = 1 / C · ∫ i dt.

Это соотношение является аналогом закона Ома для емкости.

Конструктивно емкость выполняется в виде двух проводников разделенных слоем диэлектрика. Форма проводников может быть плоской, трубчатой, шарообразной и др.

Единицей измерения емкости является фарада:

1Ф = 1Кл / 1В = 1Кулон / 1Вольт.

Оказалось, что фарада является большой единицей, например, емкость земного шара равна ≈ 0,7 Ф. Поэтому чаще всего используют дробные значения

1 пФ = 10 –12 Ф, (пФ – пикофарада); 1 нФ = 10 –9 Ф, (нФ – нанофарада); 1 мкФ = 10 –6 Ф, (мкФ – микрофарада).

Условным обозначением емкости является символ

2.4. Основные свойства простейших цепей переменного тока

Простейшие цепи – цепи, содержащие один элемент.

1. Участок цепи, содержащий активное сопротивление (рис. 2.6).

Рис. 2.6

Зададимся изменением тока в резисторе по синусоидальному закону

Воспользуемся законом Ома для мгновенных значений тока и напряжения

Формальная запись синусоидального напряжения имеет вид

Соотношения (2.13) и (2.14) будут равны если будут выполнены условия равенства амплитуд и фаз

Соотношение (2.15) может быть записано для действующих значений

Соотношение (2.16) показывает, что фазы напряжения и тока в резисторе совпадают. Графически это представлено на временной диаграмме (рис. 2.7) и на комплексной плоскости (рис. 2.8).

Рис. 2.7 и 2.8

2. Участок цепи, содержащий идеальную индуктивность (рис 2.9)

Рис. 2.9

Зададим изменение тока в индуктивности по синусоидальному закону

Используем уравнение связи между током и напряжением в индуктивности

Заменим cos на sin и получим

Формальная запись синусоидального напряжения имеет вид

Соотношения (2.18) и (2.19) будут равны если выполняется условие равенства амплитуд и фаз

Уравнение (2.20) можно переписать для действующих значений

Уравнение (2.21) показывает, что фаза тока в индуктивности отстает от фазы напряжения на 90°. Величину XL = ωL в уравнении (2.20) называют индуктивным сопротивлением. Единицей его измерения является Ом. Графически электрические процессы в индуктивности представлены на рис. 2.10, 2.11.

3. Участок цепи, содержащий ёмкость (рис. 2.12)

Рис. 2.12

Зададим изменение тока в емкости по синусоидальному закону

Используем уравнением связи между током и напряжением в емкости

uC = 1 / C · ∫ i dt,

Заменим –cos на sin

Формальная запись синусоидального напряжения имеет вид

Соотношения (2.23) и (2.24) будут равны если выполняется условие равенства амплитуд и фаз

Уравнение (2.25) можно переписать для действующих значений

Уравнение (2.26) показывает, что фаза напряжения в емкости отстает от фазы тока на 90°. Величину XC = 1 / (ωC) в уравнении (2.25) называют емкостным сопротивлением цепи и измеряют его в Омах. Графически электрические процессы в емкости представлены на рис. 2.13, 2.14.

Рис. 2.13 и 2.14

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Источник