Меню

Тяговый ток в рельсовой цепи переменного тока



Рельсовые цепи на участках с электротягой переменного тока

Приборы рельсовой цепи на участках с электротягой переменного тока 50 Гц должны быть защищены от воздействия тягового тока и его гармонических составляющих, кратных 50 Гц. Номинальное напряжение в контактной сети относительно рельсов и земли 25 кВ, а максимальный тяговый ток в рельсах достигает 300 А. На этих участках раньше применяли рельсовые цепи переменного тока час,-тотой 75 Гц, а в настоящее время проектируют и строят рельсовые цепи переменного тока частотой 25 Гц, обладающие более высокими эксплуатационными характеристиками. Рельсовые цепи при электротяге переменного тока кодируются на частоте 25 Гц.

Перегонные кодовые рельсовые цепи частотой 25 Гц (рис. 3.16). Питание рельсовой цепи осуществляется от преобразователя частоты типа ПЧ 50/25-100 с выходной мощностью 100 Вт, преобразующего частоту промышленной сети 50 Гц в сигнал частотой 25 Гц. Рельсовую цепь регулируют подбором напряжения на выходе преобразователя, а кодирование осуществляется только с питающего конца контактом реле Т. Полосовой фильтр типа ФП-25 защищает импульсное путевое реле И от тягового тока. Он настроен на сигнальную частоту 25 Гц и имеет большое затухание на частоте тягового тока и его гармоник. На питающем и релейном концах рельсовой цепи расположены дроссель-трансформаторы типа ДТ-150 с малым коэффициентом трансформации п= 3. Для согласования аппаратуры с рельсовой линией устанавливают изолирующие трансформаторы ИТр типа ПРТ-А. Трансформаторы ИТр вместе с предохранителями многократного действия АВМ и разрядниками Р типа РВН-250 защищают аппаратуру и обслуживающий персонал от перенапряжений, которые могут возникать при значительной асимметрии тягового тока, например при обрыве рельсовой нити.

Исключение ложного возбуждения сигнальных реле Ж и 3, включенных на выходе дешифраторной ячейки ДШ, при работе импульсного реле от источника питания смежной рельсовой цепи в случае замыкания изолирующих стыков осуществляется так же, как и в кодовых рельсовых цепях 50 Гц, схемно-временным способом. Предельная длина рельсовой цеРи 2600 м.

Станционные фазочувствительные двухниточные рельсовые цепи 25 Гц (рис. 3.17). Эта схема является основной для неразветвленных и разветвленных рельсовых цепей. Данная схема некодируемая. Однако наложение кодирования возможно с питающего и релейного концов. Схема подключения устройств кодирования аналогична схеме (см. рис. 3.14) при условии, что кодирование осуществляется на рабочей частоте рельсовой цепи 25 Гц. Рельсовую цепь регулируют изменением напряжения на вторичной обмотке путевого трансформатора. Контроль замыкания изолирующих стыков фазовый. Защитный фильтр типа ЗБ-ДСШ, подключенный параллельно путевой обмотке реле, представляет собой последовательный контур ЬфСф. Контур настроен на частоту основной помехи 50 Гц (частота тягового тока) и щунтирует на этой частоте путевое реле. Этот фильтр защищает путевое реле от тягового тока. Предельная длина этой рельсовой цепи 1200 м.

Фазочувствительные рельсовые цепи на участках с электротягой переменного тока имеют ряд особенностей, связанных с их питанием частотой 25 Гц, которые определяются необходимостью защиты путевого реле от срабатывания при попадании тягового тока на путевые и местные элементы путевого реле. Если бы путевые и местные элементы реле получали питание от одного преобразователя, то помехи тягового тока могли поступать в путевую обмотку, соединенную с рельсами и одновременно обратной трансформацией из рельсов через путевой трансформатор и общий выход преобразователя в цепь местного элемента, создавая тяговый момент сектора путевого реле. Такие обходные цепи устраняют разделением источников питания рельсовых цепей и местных элементов. Для питания этих рельсовых цепей используют два преобразователя частоты — путевой ПП и местный ПМ, мощность которых по 300 В- А. Путевой преобразователь питает рельсовые цепи, а местный преобразователь — местные элементы путевых реле. При этом полностью исключается возможность попадания тягового тока в цепь местных элементов. Для обеспечения нормальной работы соотношение фаз в путевом и местном преобразователях устанавливается специальной схемой. Схему питания, использующую электрическое разделение источников питания рельсовых цепей и местных элементов путевых реле, называют двухфазной.

Автоматика, телемеханика и связь на железнодорожном транспорте

  • Введение
  • Структура систем
  • Классификация и характеристики элементов
  • Датчики
  • Электрические реле и трансмиттеры
  • Логические операции и элементы
  • Цифровые устройства
  • Колебательные контуры и фильтры
  • Усилители и генераторы
  • Модуляторы, демодуляторы и преобразователи частоты
  • Ограничители уровня и устройства автоматической регулировки усиления
  • Информационные основы связи
  • Общая классификация систем телемеханики, понятия и определения
  • Качественные признаки импульсов тока
  • Коды в системах телемеханики и связи
  • Способы разделения сигналов и их элементов
  • Общие принципы телеуправления и телесигнализации
  • Устройства телеизмерения
  • Назначение и принцип действия
  • Классификация рельсовых цепей
  • Основные элементы рельсовых линий
  • Параметры рельсовой цепи
  • Режимы работы и основы расчета рельсовых цепей
  • Рельсовые цепи на участках с автономной тягой
  • Рельсовые цепи на участках с электротягой постоянного тока
  • Рельсовые цепи на участках с электротягой переменного тока
  • Особые виды рельсовых цепей
  • Техническое обслуживание рельсовых цепей
  • Сигнализация на железнодорожном транспорте
  • Изоляция путей и расстановка светофоров на станциях
  • Принципы построения систем автоблокировки
  • Электропитание устройств автоматической блокировки
  • Автоблокировка постоянного тока
  • Числовая кодовая автоблокировка переменного тока
  • Надежность устройств автоблокировки
  • Полуавтоматическая блокировка
  • Автоматическая локомотивная сигнализация числового кода
  • Совершенствование локомотивной сигнализации и автоуправление тормозами поезда
  • Система диспетчерского контроля
  • Устройства технической диагностики и автоконтроля
  • Прибор типа ПОНАБ
  • Виды ограждающих устройств и требования к ним
  • Схемы управления переездной сигнализацией
  • Особенности въездной и выездной сигнализации
  • Назначение и классификация систем электрической централизации
  • Напольные устройства электрической централизации
  • Схемы управления стрелочными электроприводами
  • Электрическая централизация малых станций
  • Электрическая централизация крупных станций
  • Обслуживание и ремонт устройств электрической централизации
  • Перспективы развития систем централизации
  • Классификация и принципы построения кодовых систем централизации
  • Станционная кодовая централизация
  • Частотная диспетчерская централизация
  • Циклические системы централизации
  • Аппаратура управления диспетчерской централизации
  • Структура систем автоматизации горочных процессов
  • Напольные устройства горочной автоматики
  • Радиолокационные измерители скорости
  • Горочная автоматическая централизация и программно-задающие устройства
  • Автоматическое задание скорости роспуска составов и телеуправление горочным локомотивом
  • Автоматическое регулирование скорости скатывания отцепов
  • Общие положения
  • Устройства автоблокировки
  • Диспетчерская централизация
  • Электрическая централизация
  • Автоматизация и механизация сортировочных горок
  • Назначение и классификация
  • Воздушные линии
  • Кабельные линии
  • Защита линий от внешних влияний
  • Методологические положения по определению экономической эффективности связи
  • Натуральные и качественные показатели эффективности цепей связи
  • Принцип телефонной передачи и ее качественные показатели
  • Понятие о затухании и дальность непосредственного телефонирования
  • Устройство электроакустических преобразователей
  • Принцип двусторонней телефонной передачи
  • Противоместные схемы телефонных аппаратов
  • Классификация и основные приборы телефонных аппаратов
  • Схемы телефонных аппаратов
  • Классификация телефонных станций
  • Телефонные коммутаторы и коммутационные приборы
  • Классификация систем АТС и коммутационных устройств
  • Принцип построения структурных схем электромеханических АТС
  • Принципы построения координатных, квазиэлектронных и электронных систем АТС
  • Назначение и виды
  • Системы избирательного вызова
  • Организация групповой связи по диспетчерскому принципу
  • Организация групповой связи по постанционному принципу
  • Назначения и принцип действия дорожно-распорядительной связи и связи совещаний
  • Виды и аппаратура станционной технологической связи
  • Принципы организации многоканальной связи
  • Одно- и двусторонние каналы
  • Построение многоканальных систем передачи
  • Системы многоканальной связи
  • Системы эксплуатации многоканальной связи и автоматическая многоканальная телефонная связь
  • Линейно-аппаратные залы и электропитание устройств связи
  • Показатели эффективности многоканальной связи
  • Принципы организации и аппаратура телеграфной связи
  • Факсимильная связь
  • Принципы передачи данных
  • Аппаратура абонентских пунктов АСУЖТ
  • Телеобработка данных и сети связи ЭВМ
  • Эффективность функционирования АСУЖТ
  • Общие сведения
  • Антенны и распространение радиоволн
  • Технико-эксплуатационные требования и основные параметры радиостанций технологической радиосвязи
  • Особенности приемно-передающей аппаратуры поездной радиосвязи
  • Общие сведения
  • Индуктивная связь на железнодорожных станциях
  • Громкоговорящая связь
  • Технико-экономическая эффективность станционной радиосвязи
  • Назначение, принцип построения и основные параметры
  • Технико-экономическая эффективность
  • Перспективы развития технологической радиосвязи
  • Принцип организации радиорелейных линий
  • Принципы временного разделения каналов
  • Технико-экономические показатели радиорелейной связи
  • Особенности цифровых систем передачи и технико-экономическое сравнение систем с частотным и временным разделениями каналов
  • Линии связи
  • Черно-белое телевидение
  • Цветное телевидение
  • Области применения
  • Автоматическая справочная установка АСУ-3 и указатели отправления пассажирских поездов
  • Визинформ
  • Основные показатели эффективности применения средств связи
  • Организация и планирование хозяйства сигнализации и связи
  • Список литературы
Читайте также:  Сила тока через заряд площадь

Электродинамический тормоз электровозов ЧС2 Т и ЧС200

Рассмотрены устройство и работа основного электронного оборудования, применяемого в электродинамическом (реостатном) тормозе системы «Шкода». Применительно к электродинамическому тормозу электровозов ЧС2 Т и его модификации на скоростном электровозе ЧС200

Источник

Рельсовые цепи – назначение, классификация, основные элементы

Рельсовой цепью называетсяэлектрическая цепь, проводниками которой служат рельсовые нити пути. Рельсовые цепи являются основным элементом всех устройств железнодорожной автоматики и телемеханики: автоблокировки, автоматической локомотивной сигнализации, электрической централизации стрелок и сигналов, диспетчерского контроля движения поездов, автоматической переездной сигнализации и ряда других систем

Назначение: рельсовые цепи служат для контроля свободного или занятого состояния участка пути на перегонах и станциях, контроля целостности рельсовых линий, передачи кодовых сигналов с путевых устройств на локомотив и между путевыми устройствами.

Классификация РЦ:

1. По принципу действия:

нормально замкнутые;

нормально разомкнутые.

Под нормальным состоянием рельсовой цепи подразумевается такое состояние, когда рельсовая цепь свободна от подвижного состава.

В нормально замкнутой рельсовой цепи путевое реле и источник питания включены на разных ее концах. Поэтому при свободном состоянии рельсовой цепи путевое реле находится под током, контролируя свободность рельсовой цепи и исправность всех ее элементов, а при занятии рельсовой цепи подвижным составом реле отпускает якорь, чем фиксируется ее занятость.

В нормально разомкнутой рельсовой цепи путевое реле нормально не возбуждено, т.к. источник питания и само путевое реле размешаются на одном конце рельсовой цепи. Прохождение тока и возбуждение путевого реле происходит только при нахождении на рельсовой цепи поезда. При свободном состоянии в нормально разомкнутой рельсовой цепи исправность элементов не контролируется, поэтому такие рельсовые цепи применяются лишь на сортировочных горках и в схемах фиксации проследования поезда в системах полуавтоматической блокировки.

Т.к. в нормально замкнутой рельсовой цепи при свободном ее состоянии имеется контроль исправности всех ее элементов, то такие рельсовые цепи являются основным видом рельсовых цепей в устройствах автоматики и телемеханики, и дальнейшая классификация рельсовых цепей будет относиться к нормально замкнутым рельсовым цепям.

2. По роду питающего тока:

постоянного тока;

переменного тока.

Рельсовые цепи постоянного тока применяются только на участках с автономной тягой.

Рельсовые цепи переменного тока получили наибольшее распространенно. Они применяются как на участках с электрической тягой, так и с автономной. Рельсовые цепи переменного тока различаются между собой частотой подаваемого в рельсы сигнального тока.

При электротяге постоянного тока в качестве сигнального тока в рельсовых цепях переменного тока используется ток частотой 50 Гц. На участках с электротягой переменного тока применяются рельсовые цепи с частотой сигнального тока 25 или 75 Гц.

3. По способу подачи сигнального тока в рельсы различают РЦ с:

непрерывным питанием;

импульсным питанием;

кодовым питанием.

В РЦ с непрерывным питанием при свободной РЦ сигнальный ток непрерывно поступает в рельсы, и ПР находится в возбужденном состоянии. В РЦ с импульсным питанием при свободной РЦ сигнальный ток поступает в рельсы периодически равномерными импульсами и путевое реле работает в импульсном режиме. В рельсовых цепях с кодовым питанием при свободной РЦ сигнальный ток поступает в рельсы в виде кодового сигнала, содержащего один, два или три импульса различной продолжительности, и путевое реле работает в кодовом режиме в такт принимаемым кодам.

4. По способу пропуска обратного тягового тока в обход изолирующих стыков различают:

двухниточные;

однониточные.

В двухниточных рельсовых цепях обратный тяговый ток протекает по обеим рельсовым нитям. Для этого по обе стороны изолирующего стыка между рельсовыми нитями включаются два дроссель — трансформатора. Их средние точки соединяют между собой перемычкой, обеспечивая пропуск обратного тягового тока в обход изолирующих стыков. Такие двухниточные рельсовые цепи обеспечивают работу автоматической локомотивной сигнализации и меньше подвержены влиянию тягового тока. Поэтому они применяются на кодируемых путях станций и на перегонах.

B однониточных рельсовых цепях тяговый ток пропускается по одной рельсовой нити пути. Для пропуска тягового тока между нитями, относящимися к смежным рельсовым цепям, устанавливаются косые тяговые соединители К. Однониточные рельсовые цепи наиболее подвержены влиянию тягового тока, что снижает надежность их работы. Такие рельсовые цепи применяют на станциях па неответственных путях при длине рельсовой цепи до 500 м.

Основные элементы:

— источник питания – трансформатор и аккумуляторная батарея;

— стыковые соединители – стальные (автономная тяга) и медные (электрифицированные участки); штепсельные и приварные;

— изолирующие стыки для электрического разделения смежных рельсовых цепей;

— путевое реле, установленное в релейном шкафу, и регулируемый резистор;

— кабельные стойки, через которые путевое реле и источники питания подключаются к рельсовым нитям.

Источник

Тяговый ток в рельсовой цепи переменного тока

Практически во всех системах железнодорожной автоматики и телемеханики используются рельсовые цепи, так как они являются наиболее простыми датчиками информации о занятости или свободности участка пути. Основные функции, которые выполняют рельсовые цепи:

— автоматически контролируют свободное или занятое состояние участков пути;

— исключают перевод стрелок под составом;

— контролируют целость рельсовых нитей;

Читайте также:  Силовой тиристор в цепи постоянного тока

— обеспечивают передачу кодовых сигналов от одной сигнальной установки к другой и с пути на локомотив.

Принцип работы рельсовых цепей заключается в следующем: рельсовые звенья являются хорошими проводниками электрического тока, поэтому если к одному концу рельсовой линии подключить источник питания, который будет посылать электрический сигнал, а с другой стороны подключить приемник этого сигнала, то при свободном состоянии контролируемого участка по рельсам будет протекать электрических ток. Принцип работы РЦ поясняет рис. 11.6 .

Рис. 11.6. Принцип работы РЦ: а – РЦ свободна; б – РЦ занята

Путевой приемник срабатывает от полученного сигнала и выдает информацию о свободности участка, если же на контролируемом участке находится подвижная единица, то ток на путевой приемник не попадает, так как он проходит через колесные пары, и путевой приемник выдает информацию о занятости участка пути.

Основные элементы рельсовой цепи представлены на рис. 11.7, а именно:

– рельсовая линия, которая состоит из рельсовых нитей (1), стыковых соединителей (2) для электрического соединения отдельных рельсовых звеньев и изолирующих стыков (3), обеспечивающих электрическое разделение смежных рельсовых цепей;

– аппаратура питающего конца, для питания рельсовой цепи;

– аппаратура релейного конца, для определения состояния рельсовой цепи (занята / свободна) путевым приёмником.

Рис. 11.7. Основные элементы рельсовой цепи

В качестве путевого приемника чаще всего используется электромагнитное реле, свойства реле замыкать фронтовые контакты при наличии на его обмотках напряжения срабатывания и тыловые контакты при снижении напряжения до значения отпадания якоря используются для контроля состояния участков пути и целости рельсов. При свободном состоянии контролируемого участка замыкается цепь между общим и фронтовым контактами и выдается информацию о свободности, если замыкается цепь между общим и тыловым контактами – о занятости контролируемого участка пути.

В настоящее время на железных дорогах существует большое разнообразие условий работы и возможностей использования рельсовых цепей в системах железнодорожной автоматики и телемеханики. В результате на сегодняшний день применяется большое количество их различных видов. Условно рельсовые цепи можно разделить на наиболее характерные группы, которые отличаются следующим: принципом действия, родом сигнального тока, режимом питания, типом путевого приемника, способом канализации тягового тока, местом применения, элементной базой.

1. По принципу действия рельсовые цепи разделяются на нормально замкнутые и нормально разомкнутые.

1.1. Нормально замкнутые. При свободном состоянии контролируемого участка пути, путевое реле находится под током и все элементы обтекаются сигнальным током, т.е. осуществляется контроль их исправного состояния (ранее рассмотренные рельсовые цепи).

1.2. Нормально разомкнутые. Принцип работы нормально разомкнутых РЦ поясняет рис. 11.8.

При свободном состоянии участка пути путевой приемник обесточен и при этом выдает информацию о свободности. Это достигается следующим образом: при свободности контролируемого участка пути питающий трансформатор (ПТ) работает в режиме холостого хода и на путевом приемнике (ПП) напряжение не достаточно для срабатывания; при вступлении подвижной единицы на контролируемый участок, трансформатор начинает работать в режиме короткого замыкания, ток в первичной обмотке возрастает и напряжение на сопротивлении R также возрастает, в результате путевое реле срабатывает. Недостатком такой рельсовой цепи является отсутствие контроля целости рельсовых нитей и возможности перевода стрелки под составом.

Рис. 11.8. Принцип работы нормально разомкнутых РЦ

2. По роду сигнального тока рельсовые цепи делятся на постоянного и переменного тока.

2.1. Рельсовые цепи постоянного тока (имеют ограниченное применение и в настоящее время больше не проектируются). Применяются на участках с автономной тягой, где отсутствуют дополнительные источники питания.

2.2. Рельсовые цепи переменного тока применяются как на электрифицированных участках (постоянного и переменного тока), так и на участках с автономной тягой. Существуют различные рельсовые цепи переменного тока, в зависимости от частоты используемого сигнального тока:

– работающие на частотах 25, 50 или 75 Гц, наибольшее распространение получили РЦ с частотой сигнального тока 25 Гц, РЦ частотой
50 Гц применяются только на участках с автономной тягой;

– рельсовые цепи тональной частоты, работающие на частотах 420–780 Гц и 4,5–5,5 кГц.

3. По режиму питания рельсовые цепи разделяются с непрерывным, импульсным и кодовым питанием.

3.1. В РЦ с непрерывным питанием сигнальный ток подается в рельсовую линию постоянно без перерывов.

3.2. В РЦ с импульсным и кодовым питанием источник питания подключается к рельсовой линии не постоянно, а периодически. Путевой приёмник срабатывает от каждого импульса, чувствительность таких рельсовых цепей к шунту и излому рельса выше, чем у РЦ с непрерывным питанием. Кроме того, основным достоинством данных РЦ является защита от опасных ситуаций, т.е. путевой приёмник не может выдать информацию о свободности рельсовой цепи от воздействия посторонних источников питания.

4. По типу путевого приемника рельсовые цепи разделяют:

4.1. РЦ с одноэлементными путевыми приемниками.

4.2. РЦ с двухэлементными путевыми приемниками (фазочувствительные).

4.3. РЦ с электронными путевыми приемниками;

4.4. РЦ с микропроцессорными путевыми приемниками.

5. По способу пропуска обратного тягового тока различают однониточные и двухниточные рельсовые цепи. Для того, чтобы понять как обратный тяговый ток попадает в рельсовую линию приведен ниже приведен рисунок (рис. 11.9).

Рис. 11.9. Схема электроснабжения

Тяговый ток (Iт) от тяговой (ТП) подстанции протекает по контактному проводу (КП) и попадает через токоприёмник (Т) на электровоз в тяговый двигатель (ТД), через колесные пары обратный тяговый ток (Iо) попадает в рельсовые нити, по которым от возвращается обратно на тяговую подстанцию. Для электрического разделения смежных рельсовых цепей вся рельсовая линия разделена изолирующими стыками, которые препятствую протеканию тока. Для пропуска обратного тягового тока необходимо создать определённые условия.

5.1. Однониточные рельсовые цепи обеспечивают протекание тягового тока по одной рельсовой нити рельсовой линии (рис. 11.10).

Рис. 11.10. Схема протекания тягового тока в однониточных рельсовых цепях

5.2. Двухниточные рельсовые цепи обеспечивают протекание тягового тока по двум рельсовым нитям рельсовой линии, при этом обеспечиваются лучшие условия для работы рельсовых цепей (рис. 11.11).

Рис. 11.11. Принцип протекание тягового тока через дроссель-трансформатор

Дроссель-трансформатор имеет две обмотки: основную обмотку с большим сечением проводов, подключаемую к рельсовым нитям, и дополнительную для подключения источников питания или путевых приемников. Тяговые полутоки протекают в обход изолирующих стыков через основные полуобмотки дроссель-трансформаторов и междудроссельную перемычку.

Тяговые полутоки в каждой рельсовой нити протекают в одном направлении. Дойдя до следующего дроссель-тансформатора они, проходя через обе половины основной обмотки, стекаются к средней точке и по междудроссельной перемычке суммарный ток попадает к средней точке дроссель-трансформатора. Далее ток разветвляется по обоим половинам основной обмотки и снова в виде полутоков протекает по рельсовым нитям до изолирующих стыков, которые обтекает с помощью следующей пары дроссель-трансформатоов.

Читайте также:  Среднее значение тока в трехфазной сети

Рис. 11.12. – Разветвленная цепь

6. По месту применения рельсовые цепи разделяются на неразветвленные и разветвлённые.

6.1. Неразветвленные РЦ (ранее рассмотренные рельсовые цепи).
В таких цепях один источник питания, один путевой приемник, на рельсовой линии нет ответвлений, т.е. отсутствуют стрелочные переводы.

6.2. Разветвленные ­­– применяются на станциях для контроля свободного состояния участков пути, стрелочных секций и наиболее эффективного использования путевого развития при поездной и маневровой работе. Рельсовая цепь называется разветвлённой, если на контролируемом участке находится хотя бы один стрелочный перевод (рис. 11.12).

7. В зависимости от применяемой элементной базы рельсовые цепи разделяются на:

7.1) РЦ с электромагнитным путевым приемником;

Источник

Рельсовая цепь

Рельсовая цепь представляет собой электрическую цепь, в которой имеется источник питания и нагрузка (путевое реле), а проводниками электрического тока служат рельсовые нити железнодорожного пути.

Содержание

Устройство и принцип действия

Рельсовые цепи служат для контроля свободного или занятого состояния участка пути на перегонах и станциях, контроля целостности рельсовых линий, передачи кодовых сигналов с путевых устройств на локомотив и между путевыми устройствами.

Параметры рельсовых цепей

При передаче сигнального тока от источника питания к путевому реле, часть энергии теряется за счёт падения напряжения на сопротивлении рельсовых нитей и утечек тока через сопротивление изоляции. Сопротивление изоляции рельсовой цепи зависит от типа балласта и шпал, их загрязнения, температуры и влажности окружающей среды, зазора между балластом и подошвами рельса и практически не изменяется при изменении частоты сигнального тока от 0 до 2000 Гц. Хорошими изоляционными свойствами обладают щебень и гравий, худшими — песок. Железобетонные шпалы имеют меньшее сопротивление по сравнению с деревянными, поэтому подошвы рельсов изолируются от них резиновыми прокладками. Установлена норма минимального удельного сопротивления изоляции для всех видов балласта — 1 Ом·км. В зимнее время сопротивление изоляции может достигать 100 Ом·км.

Удельное сопротивление рельсовой цепи зависит от частоты сигнального тока и увеличивается от 0,5 Ом/км при частоте 25 Гц до 7,9 Ом/км при частоте 780 Гц. Для стабилизации сопротивления рельсовых нитей, состоящих из звеньев, скреплённых накладками, на токопроводящих стыках устанавливаются стыковые соединители.

Виды рельсовых цепей

По принципу действия рельсовые цепи разделяются на нормально-замкнутые и нормально-разомкнутые. В нормально-замкнутых рельсовых цепях, при свободном состоянии контролируемого участка, путевое реле находится под током, контролируя свободность участка и исправность всех элементов. В нормально-разомкнутых рельсовых цепях, при свободном состоянии контролируемого участка, путевое реле находится в обесточенном состоянии. Преимуществами нормально-разомкнутых рельсовых цепей являются более высокое быстродействие при фиксации занятости контролируемого участка пути (так как реле быстрее притягивает якорь, чем отпускает) и меньший расход кабеля (поскольку питающий и релейный конец рельсовой цепи совмещены). Однако в нормально-разомкнутых рельсовых цепях не контролируется исправность элементов и целостность рельсовых нитей, поэтому они применяются только на сортировочных горках.

Существуют три основных режима работы нормально-замкнутых рельсовых цепей:

  • нормальный — рельсовая цепь свободна от подвижного состава;
  • шунтовой — хотя бы одна колёсная пара подвижного состава находится на рельсовой цепи;
  • контрольный — нарушена целостность рельсовой цепи.

В нормальном режиме сигнальный ток протекает по рельсовым нитям от источника к путевому реле, фронтовые контакты которого замыкаются, чем фиксируют свободность контролируемого участка. В шунтовом режиме рельсовые нити замыкаются между собой через малое сопротивление колёсных пар, резко уменьшается сила тока, протекающего через путевое реле, которое размыкает фронтовые контакты и замыкает тыловые, чем фиксирует занятость контролируемого участка. В контрольном режиме ток через путевое реле уменьшается (но не до нуля, из-за распространения тока через балласт в обход места разрыва), в результате чего фиксируется занятость контролируемого участка.

Для питания рельсовых цепей может использоваться постоянный или переменный сигнальный ток. Рельсовые цепи постоянного тока применяются на участках с автономной тягой, переменного — на участках, как с автономной, так и с электрической тягой.

Режим питания рельсовых цепей может быть:

  • непрерывный — используется в рельсовых цепях, контролирующих станционные пути и стрелочные переводы; рельсовые цепи могут дополняться аппаратурой кодирования (при этом кодирование рельсовой цепи включается при определении её занятости);
  • импульсный — применяется для питания рельсовых цепей постоянным током;
  • кодовый — применяется в системах кодовой автоблокировки на перегонах.

В рельсовых цепях используются одноэлементные, двухэлементные, электронные и микропроцессорные путевые реле. Двухэлементные (фазочувствительные) реле имеют путевую обмотку, включенную в рельсовую цепь и местную обмотку. Срабатывание реле происходит при одинаковой частоте тока в путевой и местной обмотке и сдвиге фаз между ними на определённый угол. Достоинством фазочувствительных реле является надёжная защита от влияния тягового тока и других помех.

Для контроля занятости стрелочных переводов используются разветвлённые рельсовые цепи, которые могут иметь два или три путевых реле.

Разделение смежных рельсовых цепей

Для разделения смежных рельсовых цепей на границах контролируемых участков устанавливаются изолирующие стыки. При повреждении (сходе) изолирующих стыков должно быть исключено влияние источника питания одной рельсовой цепи на путевое реле смежной цепи, путевые реле обеих цепей должны фиксировать ложную занятость. Для этого в рельсовых цепях с непрерывным питанием при использовании постоянного тока чередуется полярность источников питания смежных цепей, при использовании переменного тока — чередуются фазы. Контроль схода стыка в кодовых рельсовых цепях осуществляется схемным путём.

Тональные рельсовые цепи на перегонах работают без изолирующих стыков. Взаимные влияния исключаются применением на смежных участках сигналов с различными несущими частотами и частотами модуляции.

Канализация обратного тягового тока

Обратный тяговый ток может пропускаться по одной нити рельсовой цепи (однониточные цепи) или по двум рельсовым нитям (двухниточные цепи). В двухниточных рельсовых цепях для пропуска тока в обход изолирующего стыка используются дроссель-трансформаторы. Возникающая, вследствие неравенства сопротивления нитей или сопротивления изоляции, асимметрия тягового тока оказывает неблагоприятное воздействие на работу АЛСН и не должна превышать 15 А. Однониточные рельсовые цепи проще двухниточных, так как в них отсутствуют дроссель-трансформаторы, но из-за неравномерности распределения тягового тока невозможна работа АЛСН, поэтому однониточные рельсовые цепи используются только на некодируемых станционных путях.

См. также

Литература

Системы железнодорожной автоматики и телемеханики: Учеб. для вузов/ Ю. А. Кравцов, В. Л. Нестеров, Г. Ф. Лекута и др.; под ред. Ю. А. Кравцова. М.: Транспорт, 1996. 400с.

Источник