Цепь переменного тока с активным сопротивлением векторная диаграмма цепи

Цепь переменного тока с емкостью и активным сопротивлением. Векторные диаграммы. Фазовые соответствия между токами и напряжениями

В реальных цепях переменного тока с ёмкостью всегда имеется активное сопротивление-сопротивление проводов, активные потери в конденсаторе и т.д.. Поэтому реальную цепь с ёмкостью следует рассматривать состоящей из последовательно соединённых активного сопротивления R и конденсатора C.

Через конденсатор и резистор протекает один и тот же ток I = Iо∙sinωt,

поэтому в качестве основного выберем вектор тока и будем строить вектор напряжения, приложенного к этой цепи.

Напряжение, приложенное к цепи, равно век-ой сумме падений напряжений на конденсаторе и на резисторе: U = Uc + (*векторно)

Напряжение на резисторе будет совпадать по фазе с током:

= ∙sinωt , а напряжение на конденсаторе будет отставать по фазе от тока на угол π / 2:

Uc = Uоc∙sin(ωt — π/2 )

Построим векторы I, и Uc и, воспользовавшись формулой, найдём вектор U.

Из векторной диаграммы следует, что в рассматриваемой цепи ток I опережает по фазе приложенное напряжение U, но не на π/2, как в случае чистой ёмкости, а на угол φ. Этот угол может изменяться от 0 до π/2 и при заданной ёмкости С зависит от значения активного сопротивления: с увеличением R угол φ уменьшается.

Модуль вектора U равен:

U = = I = I∙Z ,где

Z = называется полным сопротивлением цепи.

Сдвиг по фазе между током и напряжением:

tgφ = Uc/ = (1/ωC)/R = 1/(ω∙R∙C)

16. Последовательная цепь переменного тока. Резонанс напряжений. Рассмотрим цепь переменного тока, содержащую индуктивность, ёмкость и резистор, соединённые последовательно.

Рис.4.24. Последовательная цепь переменного тока.

Через все эти элементы протекает один и тот же ток, поэтому в качестве основного выберем вектор тока, и будем строить вектор напряжения, приложенного к этой цепи.

Мы знаем, что напряжение на резисторе совпадает по фазе с током, напряжение на катушке опережает ток по фазе на π⁄2, а напряжение на ёмкости отстаёт от тока по фазе на π⁄2. Запишем эти напряжения в следующем виде:

Построим векторную диаграмму и найдём вектор U.

Рис.4.25. Векторная диаграмма для последовательной цепи переменного тока.

Из этой диаграммы находим модуль вектора приложенного к цепи напряжения и сдвиг фаз φ между током и напряжением:

U = = I·Z, где

Z = , называется полным сопротивлением цепи.

Из векторной диаграммы tgφ = (UL — Uc)/UR = .

Разность фаз между током и напряжением определяется соотношением векторов UL, Uc и UR. При UL — Uc > 0 угол φ положительный и нагрузка имеет индуктивный характер. При ULменьше Uc угол отрицательный и нагрузка имеет ёмкостной характер. См. рис.4.26, а при UL = Uc нагрузка имеет активный характер.

Рис. 4.26. Векторная диаграмма последовательной цепи:

а — нагрузка имеет ёмкостной характер; б — нагрузка имеет активный характер.

Разделив стороны треугольника напряжений на значение тока в цепи, получим треугольник сопротивлений (рис. 4.27), в котором R — активное сопротивление, Z — полное сопротивление, а X = XL — Xc — реактивное сопротивление.

Рис.4.27. Треугольник сопротивлений.

Кроме того, R = Z∙cosφ; X = Z∙sinφ.

Когда напряжения на индуктивности и ёмкости, взаимно сдвинутые по фазе на 180 градусов, равны по величине, то они полностью компенсируют друг друга (рис.4.26, б).

Напряжение, приложенное к цепи, равно напряжению на активном сопротивлении, а ток в цепи совпадает по фазе с напряжением. Этот случай называется резонансом напряжений.

Читайте также:  Сила тока при старте двигателя 1

Условие резонанса напряжений:

ωо — угловая частота резонанса. Ток в цепи равен:

I = U / = U/R

Ток в цепи при этом достигает максимального значения, φ = 0, а cosφ = 1. Резонанс напряжений характеризуется обменом энергии между магнитным полем катушки и электрическим полем конденсатора. Увеличение магнитного поля катушки индуктивности происходит за счёт уменьшения энергии электрического поля в конденсаторе и наоборот. При резонансе напряжений напряжения на реактивных сопротивлениях XL и Хс могут заметно превышать приложенное к цепи напряжение.

U / UL = I∙Z / I∙XL = Z / XL или U∙L = U∙(XL / R), т.е. напряжение на индуктивности будет больше приложенного напряжения в XL/R раз. Это означает, что на отдельных участках цепи могут возникать опасные напряжения.

Вернёмся к формуле (4.31).

ωо = = , но ω = 2πf, значит 2πfо = , тогда

fо = , где

fо — частота при резонансе напряжений в герцах;

Источник

Цепь переменного тока с активным сопротивлением векторная диаграмма цепи

§ 56. Цепь переменного тока с активным и индуктивным сопротивлениями

Любая проволочная катушка, включенная в цепь переменного тока, обладает активным сопротивлением, зависящим от материала, длины и сечения проволоки и индуктивным сопротивлением, которое зависит от индуктивности катушки и частоты переменного тока, протекающего по ней (XL = ωL = 2πf L). Такую катушку можно рассматривать как приемник энергии, в котором активное и индуктивное сопротивления соединены последовательно.
Рассмотрим цепь переменного тока, в которую включена катушка индуктивности (рис. 59, а) с активным r и индуктивным сопротивлением XL. Падение напряжения на активном сопротивлении

Падение напряжения на индуктивном сопротивлении

Построим векторную диаграмму тока и напряжения (рис. 59, б) для рассматриваемой цепи.

Отложим по горизонтали вектор тока 1 в выбранном масштабе. Известно, что ток и напряжение в цепи с активным сопротивлением совпадают по фазе, поэтому вектор падения напряжения на активном сопротивлении откладываем по вектору тока.
В цепи с индуктивностью ток отстает от напряжения на угол φ = 90°. Поэтому вектор падения напряжения на индуктивном сопротивлении откладываем на диаграмме вверх под углом 90° к вектору тока.
Для определения общего напряжения, приложенного к цепи, сложим векторы Суммой этих векторов будет диагональ параллелограмма — вектор Треугольник АОБ, стороны которого выражают соответственно напряжения Ua , UL и общее напряжение U, называется треугольником напряжений. На основании теоремы Пифагора — в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов — следует, что общее напряжение на зажимах цепи

Пример. Падение напряжения на активном сопротивлении Ua = 15 в. Напряжение на индуктивном сопротивлении UL = 26 в. Вычислить общее напряжение, приложенное к цепи.
Решение . Общее напряжение на зажимах цепи переменного тока с последовательно соединенными активным и индуктивным сопротивлениями

Чтобы определить полное сопротивление цепи переменного тока с активным и индуктивным сопротивлениями, следует разделить векторы Ua =I r и UL = IXL, на число I, выражающее силу тока в цепи, и построить треугольник А′О′Б′ (рис. 59, в), стороны которого меньше сторон треугольника напряжений в I раз. Образованный треугольник называется треугольником сопротивлений. Его сторонами являются сопротивления r и ХL и полное сопротивление цепи Z.
Пользуясь теоремой Пифагора, можно написать, что

отсюда полное сопротивление цепи

Пример. Активное сопротивление катушки r = 7 ом, а ее индуктивное сопротивление ХL = 24 ом. Вычислить полное сопротивление катушки.
Решение . Полное сопротивление катушки переменному току

Сила тока в цепи с активным и индуктивным сопротивлениями определяется по закону Ома:

На векторной диаграмме видно, что в цепи переменного тока с активным и индуктивным сопротивлениями ток и напряжение не совпадают по фазе.
Ток отстает от напряжения на угол φ.
Угол сдвига между током и напряжением можно определить, если известен косинус этого угла.
Из треугольника напряжений косинус угла сдвига фаз

Читайте также:  Правило левой руки для проводника с током задания

Теперь можно, пользуясь таблицей тригонометрических функций, определить угол φ.

Пример. Падение напряжения на активном сопротивлении катушки Ua = 30 в. Общее напряжение на ее зажимах Uв = 60 в. Определить угол сдвига фаз между током и напряжением в цепи.
Решение. На основании данных найдем

По таблице тригонометрических функций угол сдвига фаз при cos φ = 0,5 составляет 60°.
По треугольнику сопротивлений можно также определить угол сдвига фаз между током и напряжением:

Пример. Активное сопротивление катушки составляет 5 ом, а ее полное сопротивление Z = 30 ом. Определить угол сдвига фаз.
Решение .

Источник

Цепь переменного тока с активным сопротивлением и индуктивностью

date image2015-04-01
views image7956

facebook icon vkontakte icon twitter icon odnoklasniki icon

Рис.2.21 изображает неразветвлённую цепь с активным сопротивлением R и индуктивностью L.

Рис.2.21. Цепь переменного тока с активным сопротивлением и индуктивностью

Пусть мгновенный ток в цепи изменяется по закону . Тогда мгновенное напряжение на активном сопротивлении , так как на этом участке напряжение и ток совпадают по фазе. Напряжение на катушке индуктивности , поскольку на индуктивности напряжение опережает по фазе ток на угол .

Построим для действующих значений напряжения и тока векторную диаграмму для рассматриваемой цепи (рис. 2.22).

Векторы и образуют треугольник напряжений. Выведем закон Ома для этой цепи. Из треугольника напряжений имеем . Но , а , где — индуктивное сопротивление, следовательно:

Рис.2.22. Векторная диаграмма действующих значений тока и напряжения цепи переменного тока с активным сопротивлением и индуктивностью

Введем обозначение , где Z — полное сопротивление цепи. Тогда выражение закона Ома примет вид:

Полное сопротивление Z можно определить из треугольника сопротивлений (рис. 2.23).

Рис.2.23. Треугольник сопротивлений цепи переменного тока с активным сопротивлением и индуктивностью

Сдвиг фаз между током и напряжением определяется из треугольника сопротивлений:

Поскольку вектор сдвинут по фазе относительно вектора на угол против часовой стрелки, этот угол имеет положительное значение.

Если , то мгновенная мощность . Для действующих значений произведение , откуда . Выражение . Исходя из этого,

Таким образом, мгновенная мощность переменного тока может быть представлена в виде постоянной величины и, изменяющейся около неё с двойной частотой, величины (рис. 2.24).

Введем понятие средней или активной мощности:

Активная мощность характеризует расход энергии на активном сопротивлении.

Реактивная мощность характеризует обмен энергий между индуктивной катушкой и источником:

Полная мощность оценивает предельную мощность нагрузки:

Рис.2.24. Зависимости мгновенных значений напряжения, тока и мощности цепи переменного тока с активным сопротивлением и индуктивностью

Совокупность всех мощностей можно определить из треугольника мощностей (рис. 2.25).

Рис.2.25. Треугольник мощностей

Так: Обозначим коэффициент мощности в виде соотношения .

Коэффициент мощности cosφ изменяется от 0 до 1. По его величине судят, какую часть полной мощности составляет активная мощность. На практике стремятся к увеличению cosφ.

Источник

Цепь переменного тока с активным сопротивлением

Когда в электрическую цепь переменного тока подключается активное сопротивление R , то под воздействием разницы потенциалов источника в цепи начинает течь ток I . В тех случаях, когда изменение напряжения происходит по синусоидальному закону, который выражается, как u = Um sin ωt , то изменение тока i также идет по синусоиде:

Цепь переменного тока с активным сопротивлением

Так что получается, что изменение напряжения и тока происходят по одинаковым законам. При этом через нулевое значение они проходят одновременно и своих максимальных значений также достигают одновременно. Из этого следует, что когда в электрическую цепь переменного тока подключается активное сопротивление R , то напряжение и ток совпадают по фазе.

Кривые ток напряжения мощности

Мощность, ток, напряжение

Если взять равенство Im = Um / R и каждую из его частей разделить на √2 , то в итоге получится ни что иное, как закон Ома, применимый для той цепи, которая рассматривается: I = U / R .

Читайте также:  Амплитудное значение плотности тока смещения в вакууме

Таким образом, получается, что это основополагающий закон для той цепи, которая имеет в своем составе только активное сопротивление, с точки зрения математики имеет такую же форму, что и для цепи тока постоянного.

Электрическая мощность

Такой показатель, как электрическая мощность P для цепи, имеющей в своем составе активное сопротивление, равняется произведению мгновенного значения напряжения U на мгновенное значение силы тока i в любой момент времени. Из этого следует, что в цепях переменного тока, в отличие от цепей тока постоянного, мгновенная мощность P – величина непостоянная, а ее изменение происходит по кривой. Для того чтобы получить ее графическое представление, необходимо ординаты кривых напряжения U и силы тока i перемножить при разных углах ωt . Мощность изменяется по отношению к изменению тока с двойной частотой ωt . Это означает, что половине периода изменения напряжения и тока соответствует один период изменения мощности. Следует заметить, что абсолютно все значения, которые может принимать мощность, являются положительными величинами. С точки зрения физики это означает, что от источника к приемнику передается энергия. Своих максимальных значений мощность достигает тогда, когда ωt = 270° и ωt = 90° .

В практическом отношении о той энергии W , которую создает электрический ток, принято судить по средней мощности, выражаемой формулой Рср = Р , а не по мощности максимальной. Ее можно определить, перемножив на время протекания тока среднее значение мощности W = Pt .

Относительно линии АБ , соответствующей среднему значению мощности P , кривая мгновенной мощности симметрична. По этой причине

Если использовать закон Ома, то можно выразить активную мощность в следующем виде:

P = I2R или P = U2 / R .

Специалисты в области электротехники ту среднюю мощность, которую потребляет активное сопротивление, чаще всего именуют или просто мощностью, или активной мощностью, а для ее обозначения используется буква P .

Поверхностный эффект

Необходимо особо отметить такую особенность проводников, включенных в сеть переменного тока: их активное сопротивление во всех случаях оказывается больше, чем если бы они были включены в сеть тока постоянного. Причина этого состоит в том, что переменный ток не протекает равномерно распределяясь по всему поперечному сечению проводника, как ведёт себя постоянный ток, а выводится на его поверхность. Таким образом, получается, что при включении проводника в цепь переменного тока его полезное сечение оказывается значительно меньшим, чем при включении в цепь тока постоянного. Именно поэтому его сопротивление возрастает. В физике и электротехнике это явление называется поверхностным эффектом.

То, что переменный ток распределяется по сечению проводника неравномерно, объясняется действием электродвижущей силы самоиндукции. Она индуцируется в проводнике тем магнитным полем, которое создается током, проходящим по нему. Необходимо заметить, что действие этого магнитного поля распространяется не только на окружающее проводник пространство, но и на внутреннюю его часть. По этой простой причине те слои проводника, которые располагаются ближе к его центру, находятся под воздействием большего магнитного потока, чем те слои, что располагаются ближе к его поверхности. Соответственно, электродвижущая сила самоиндукции, которая возникает во внутренних слоях, существенно больше, чем та, что образуется в слоях внешних.

Электродвижущая сила самоиндукции является существенным препятствием для изменения тока, и поэтому он будет следовать преимущественно по поверхностным слоям проводника. Необходимо также отметить, что сопротивление активных проводников в цепях переменного тока существенно зависит от частоты: чем она больше, тем выше ЭДС самоиндукции, и поэтому ток в большей степени подвергается вытеснению на поверхность.

Источник

Поделиться с друзьями
Блог электрика
Adblock
detector