Меню

Транзисторный усилитель тока схема



Что внутри L293?! Часть первая

Усилитель тока

Практически все схемы обработки сигналов или схемы управления работают на относительно малых токах. Через детали таких схем, через транзисторы или микросхемы, обычно протекают токи всего лишь в несколько миллиампер. Выходные сигналы таких схем так же слабы. Такого тока недостаточно для работы какого либо исполнительного устройства или мощнной нагрузки: мотора, лампочки, обмотки реле. На рис. 1 приведена схема, которую можно собрать, что бы проверить это на практике.


Рис. 1. Ток 10 мА слишком мал для работы.

В этом случае источник сигнала заменён резистором. Сопротивление резистора выбрано таким, что бы проходящий через него и через нагрузку ток был в пределах нескольких миллиампер. Приблизительно такой же ток обеспечивают и обычные логические микросхемы, операционные усилители или микроконтроллеры.
Для того, что бы усилить небольшой ток до нужной величины применяют усилитель тока.

Усилитель тока — устройство для повышения значения силы тока в цепи за счёт энергии постороннего источника.

Схему усилителя тока можно собрать на двух транзисторах одинаковой структуры n-p-n (рис. 2). Для достижения максимального усиления тока транзисторы соединены специальным образом. Такое соединение транзисторов образует составной транзистор, или транзистор Дарлингтона (по имени изобреталетя Sidney Darlington).


Рис. 2. Усилитель тока по схеме Дарлингтона.

Транзистор Т2 полностью откроется при токе от источника сигнала около 1 мА, а через его коллектор может проходить ток до 1000 мА. Получается, схема на двух транзисторах усиливает ток в 1000 раз!
Тут нагрузка подключена одним выводом к плюсу источника питания, а вторым — к выходу усилителя. Другая важная оссобенность этой схемы в том, что открытие транзистора происходит от источника положительной полярности. То есть, что бы усилитель «прижал» нагрузку к минусу, нужно подать «плюс».

Но иногда один вывод нагрузки обязательно должен быть подключён к минусу питания, тогда второй вывод нужно «тянуть» к плюсу. В таком случае можно применить немного другую схему усилителя, рис. 3.


Рис. 3. Усилитель тока по схеме Шиклаи.

Этот усилитель так же собран на составном транзисторе, но с применением транзисторов разной проводимости. Такое соединение транзисторов называют транзисторной парой Шиклаи (по имени изобреталетя George Clifford Sziklai). Но в противовес транзистору Дарлингтона открытие транзистора Шиклаи тут происходит сигналом отрицательной полярности. То есть, что бы усилитель «тянул» нагрузку к плюсу, нужно подать «минус».

Диод в схемах на рис. 2 и рис. 3 предназначен для подавления противо-ЭДС, появляющейся при подключении нагрузки индуктивного харрактера. Такую же функцию выполняют эти диоды и во всех схемах далее.


Рис. 4. Двухтактный усилитель тока.

Если совместить схему на рис. 2 со схемой на рис. 3, то получится более универсальный усилитель тока — рис. 4. Такой усилитель может не только «давить» подключённую нагрузку к минусу, но и «тянуть» её к плюсу, поэтому про такой усилитель говорят «усилитель с push-pull-выходом» (от английского «push» — давить и «pull» — тянуть). Применяется и другое его название — двухтактный усилитель.
В двухтактном усилителе в один момент времени может быть открыт только один из выходных транзисторов, верхний или нижний. Причём, что бы открыть нижний транзистор, на вход схемы нужно подать сигнал величиной около двух вольт, а что бы открыть верхний транзистор — нужен сигнал величиной менее одного вольта. Такая «избирательность» уровней входного напряжения очень удобна, так как подобные усилители используются обычно в ключевом режиме. То есть в режиме, когда имеется только два состояния, в данном случае выход усилителя может быть либо притянут к плюсу («вверх») либо прижат к минусу («вниз»).
Для схемы на рис.4 действует правило: если на вход подать малое напряжение — то выход будет тянуться к плюсу, если на входе большое напряжение — то выход давится к минусу. То есть напряжение на выходе схемы будет «обратное» входному. Такая функция не всегда удобна и для исправления положения можно применить ещё один транзистор, который бы «переворачивал» полярность сигнала на противоположную.


Рис. 5. Усилитель тока с фотодатчиком.

Усилитель по схеме рис. 5 будет усиливать сигнал без «инверсии»: при подаче на вход напряжения высокого уровня, выход усилителя будет «тянуться наверх»; при подаче низкого уровня — выход «тянется» вниз. То есть выходной сигнал как будто «повторяет» сигнал на входе, а так как это схема усилителя — то маленький ток сигнала будет усилен тысячу раз!

В качестве источника сигнала для такого усилителя может выступать обычный фотосенсор на основе фототранзистора или фотодиода (показан на рис. 5). Именно этот фотосенсор хорошо знаком из серии «Шаг за шагом» в схемах простейших роботов. Соединив этот фотосенсор с усилителем, а к усилителю подключив моторчик — получим универсальную схему, реагирующую на свет! Лишь подключая второй контакт моторчика к плюсу или к минусу питания, можно решать, будет ли он вращаться при освещении или затемнении фотодатчика.
На первый взгляд эта схема слишком сложна и избыточна для такой простой другой функции как фотореле. Но вместе с тем схема максимально универсальна, и этим окупается её сложность. Так поступают, например, при изготовлении микросхем и сложных устройств: какой либо блок можно использовать по-разному, не переделывая его.

Вне зависимости от сложности и вида самого усилителя, в стуктурных схемах усилители принято обозначать пиктограммой треугольника (рис. 6-а), «острие» треугольника всегда указывает в направление выхода. Так же применяется и обозначение треугольника в квадрате (рис. 6-б).


Рис. 6. Условное обозначение усилителя.

Рис. 7. Структурная схема L293D.

Если имеется ввиду именно усилитель с двухтактным выходом, можно добавить обозначение выходных транзисторов (рис. 6-в). Если усилитель имеет какие либо управляющие выводы, то к условному обозначению подводят линии соединений, которые могут быть подписаны (рис. 6-г).

Такие обозначения можно встретить в структурных схемах различных микросхем-усилителей или микросхем, содержащих усилители. Например, структурная схема хорошо известной микросхемы L293D, приведена на рис. 7. В этой структурной схеме легко можно различить четыре усилителя (помечены жёлтым цветом). То есть всю микросхему L293(D) можно рассматривать просто как четыре усилителя тока, помещённых в общий корпус.

Кроме входных и выходных выводов каждого усилителя тока и ножек для подачи питания, микросхема L293(D) имеет ещё несколько выводов. Назначение этих ножек, а так же варианты подключения нагрузки к этой микросхеме и её управлением можно узнать во второй части статьи «Что внутри L293?! Часть вторая. От усилителя тока к драйверу L293.».

Смелых и Удачных Экспериментов.

Дополнения и файлы:

Источник

ВРемонт.su — ремонт фото видео аппаратуры, бытовой техники, обзор и анализ рынка сферы услуг

Home Радиотехника Усилитель напряжения на биполярном транзисторе

Усилитель напряжения на биполярном транзисторе

Простые схемы усилителей напряжения на биполярном транзисторе

Рис. 1. Использование транзистора в усилителе напряжения: (а) простейшая схема, (б) схема со смешением.

Сигналами в электронных схемах обычно являются постоянные или переменные напряжения. Такие устройства, как например микрофон, создают переменное напряжение, которое должно быть усилено прежде, чем им можно будет воспользоваться. Некоторые источники сигналов, такие как фототранзистор и некоторые детекторы, могут быть источниками тока, который, как правило, еще до усиления преобразуется в напряжение.

Поэтому наиболее важны усилители напряжения и, несмотря на то, что биполярный транзистор работает как устройство, усиливающее ток, основное применение он находит в усилителях напряжения. Рассмотрим основные принципы работы усилителя напряжения на биполярном транзисторе.

Резистор нагрузки

На рис. 1.(a) показан очень простой усилитель напряжения; выходное напряжение Vout возникает на выходе в результате протекания коллекторного тока по резистору нагрузки RL. Этот пример иллюстрирует одно из наиболее важных применений резисторов в электронных цепях: преобразование тока в напряжение. Входное напряжение Vin, приложенное к переходу база-эмиттер, приводит к увеличению тока базы, зависящего от сопротивления перехода база-эмиттер. Ток базы вызывает намного больший ток коллектора Ic, создающий падение напряжения IcRL на резисторе RL. Эта разность потенциалов пропорциональна Vin, но намного больше по величине.

Важной деталью таких схем является земляная шина, называемая также землей, «нулем вольт» (0 В) или общей шиной и обозначаемая символом, показанным на рисунке. Земляная шина является общей для входного сигнала, выходного сигнала и источника постоянного напряжения, и обычно является точкой, относительно которой отсчитываются все напряжения в схеме.

Рабочая точка и смещение транзистора в схеме усилителя напряжения

Схема, приведенная на рис. 1.(a), как можно догадаться, является сильно упрощенной схемой усилителя напряжения. Она будет давать отклик только на положительное входное напряжение и, кроме того, только на напряжение, большее чем 0,5 В; последнее значение является той э.д.с., которая необходима для смещения перехода база-эмиттер в прямом направлении. Ясно, что если схема предназначена для усиления малых сигналов без искажения, переход база-эмиттер должен быть смещен в прямом направлении даже в отсутствие сигнала. Обычно напряжение переменного сигнала принимает как положительное, так и отрицательное значение, так что выходное напряжение на коллекторе должно иметь возможность двигаться вверх к напряжению источника питания (при отрицательном входном напряжении) и вниз к потенциалу земляной шины (при положительном входном напряжении). Из этого следует, что при равном нулю входном сигнале (это состояние обычно называется режимом покоя) в транзисторе должен протекать такой ток коллектора, чтобы напряжение на коллекторе находилось посредине между землей и напряжением источника питания, готовое изменяться в любом направлении в соответствии с полярностью входного сигнала.

На рис. 1.(б) показана схема, в которой достигается требуемый результат. Маломощный кремниевый транзистор, такой как ВС 107, будет очень хорошо работать с коллекторным током в режиме покоя 1 мА. В этом случае при правильном выборе рабочей (начальной) точки требуется, чтобы напряжение на коллекторе находилось посредине между 0 В и +9 В, то есть на резисторе RL должно падать 4,5 В. Таким образом, согласно закону Ома, RL = 4,5 В / 1 мА = 4500 Ом. Ближайшее номинальное значение RL равно 4,7 кОм. Для рассматриваемой схемы имеем:

где Vcc — напряжение питания.

Если мы примем для транзистора ВС 107 коэффициент усиления постоянного тока hFE равным 200, то для тока коллектора 1 мА требуется ток базы IB = 1/200 мА = 5 мкА. Сопротивление базового резистора RB, задающего ток базы, снова находится согласно закону Ома:

Напряжением база-эмиттер VBE (приблизительно равным 0,6 В) здесь пренебрегаем по сравнению с намного большим напряжением питания Vcc.

Разделительные конденсаторы С1 и С2 используются для изоляции внешних цепей от постоянных напряжений, имеющихся на базе и коллекторе в режиме покоя. Свойство конденсатора не пропускать постоянное напряжение и в то же время пропускать переменное очень ценно в электронике; оно является результатом стремления конденсатора сохранять свой заряд и поэтому разность потенциалов на его обкладках остается постоянной. Следовательно, увеличение потенциала на одной обкладке вызывает соответствующее увеличение потенциала на другой. Поданный на одну из обкладок, переменный сигнал изменяет ее потенциал много раз в секунду и, таким образом, передается с одной обкладки на другую. В то же время постоянное напряжение дает возможность конденсатору накопить заряд, соответствующий новой разности потенциалов на его обкладках, и поэтому оно не передается. Время, необходимое для установления новой разности потенциалов, зависит от постоянной времени цепи, которая должна быть больше периода передаваемого переменного напряжения самой низкой частоты. Более подробно этот вопрос обсуждается в главе 8. В рассматриваемом простом усилителе напряжения постоянные времени цепей с разделительными конденсаторами емкостью 10 мкФ обеспечивают передачу переменного напряжения без ослабления вплоть до 10 Гц.

Знак плюс на рисунке у одной из обкладок конденсатора является указанием, как подключать электролитические конденсаторы, у которых изолирующий диэлектрический слой представляет собой чрезвычайно тонкую пленку окиси алюминия, полученную электролитическим осаждением. Такие конденсаторы имеют большие емкости при малых размерах и низкой цене, но должны включаться в схему с учетом полярности, за исключением конденсаторов специального типа — неполярных конденсаторов.

Стабилизация рабочей точки транзистора

Серьезный недостаток схемы на рис. 1.(б) состоит в том, что напряжение коллектора в режиме покоя целиком зависит от величины hFE транзистора, в то время как численные значения этого параметра имеют большой разброс у различных экземпляров транзисторов одного типа. Например, при типичном значении hFE для транзистора ВС 107, равном 200, изготовители указывают, что оно может изменяться в пределах от 90 до 450. Изменение hFE сдвигает рабочую точку по постоянному току. Например, если коэффициент hFE равен 100 вместо 200, то при этом потечет ток коллектора, равный 0,5 мА, а не 1 мА, и падение напряжения на RL составит только 2,35 В вместо 4,7 В. Увеличение напряжения на коллекторе в режиме покоя означает, что выходное напряжение в схеме может изменяться в сторону увеличения только на 2 В, а не на 4 В (возможно изменение выходного напряжения в сторону уменьшения до 6 В, но от этого мало пользы, когда положительные приращения ограничены).

Последствия использования транзистора с hFE = 400 еще более серьезны. В этом случае ток коллектора удвоится до 2 мА. Простое вычисление показывает, что все 9 В питания будут падать на резисторе RL. Говорят, что транзистор находится в насыщении. Практически между коллектором и эмиттером остается небольшое напряжение порядка 0,2 В. Любое дальнейшее увеличение тока базы почти ни к чему не приводит; действительно, падение напряжения на RL не может превышать Vcc Поскольку при насыщении транзистора потенциал коллектора фактически равен потенциалу земли, схема теперь не пригодна для линейного усиления: невозможны изменения выходного напряжения в сторону уменьшения.

Возвращаясь к линейному усилителю на рис. 1.(б), можно сказать, что необходимо некоторое усовершенствование схемы, чтобы повысить ее устойчивость к изменениям hFE. Даже если бы у нас была возможность отбирать транзисторы с hFE = 200, а это очень дорого при массовом выпуске схем, hFE увеличивается с ростом температуры, так что схема все равно не была бы надежной. На рис. 2. показано очень простое, но эффективное улучшение. Вместо того, чтобы подключать резистор RB непосредственно к Vcc, мы, уменьшив сопротивление вдвое, подключим его к коллектору (VCE≈Vcc/2). Теперь, благодаря этому, ток базы в режиме покоя зависит от коллекторного напряжения в режиме покоя. Даже при увеличении hFE транзистор не может попасть в насыщение: если коллекторное напряжение падает, то также падает ток базы, «придерживая» коллекторный ток. И наоборот, если hFE уменьшается, коллекторное напряжение в режиме покоя возрастает, увеличивая ток IB.

Ток базы определяется теперь соотношением

Объединяя эти равенства, получим

Если RL и RB имеют значения, указанные на рис. 2, и hFE = 100, то VCE≈6 В; если hFE = 400, то VCE≈3 В. Хотя здесь все еще положение рабочей точки меняется, это не существенно, пока для получения больших сигналов не требуется иметь возможно большие пределы изменения выходного напряжения. Схема, приведенная на рис. 2., будет работать при изменении параметров транзисторов в очень широком диапазоне и является полезным усилителем напряжения общего назначения. Принцип построения схемы с автокомпенсацией изменений hFE является просто примером отрицательной обратной связи, которая представляет собой одно из самых важных понятий в электронике.

Усилитель напряжения на транзисторе со стабилизацией рабочей точки

Усилитель напряжения со стабилизацией рабочей точки

Рис. 2. Усилитель напряжения со стабилизацией рабочей точки.

Для некоторых применений даже относительно небольшие изменения положения рабочей точки, имеющиеся в схеме на рис. 2, недопустимы. Если режим по постоянному току должен практически не зависеть от hFE можно использовать схему стабилизированного усилителя, показанную на рис. 3. Первым характерным признаком этой схемы является наличие резистора R3 в цепи эмиттера, а это означает, что потенциал эмиттера больше не равняется потенциалу земли, а немного выше его и равен IER3 где IE — ток эмиттера. Второе отличие состоит в том, что вместо единственного резистора для задания базового тока определенной величины применен делитель напряжения R1 R2 фиксирующий потенциал базы относительно земли. Ток делителя напряжения на порядок выше тока базы, так что последний слабо влияет на потенциал базы. Так как переход база — эмиттер смещен в прямом направлении, на нем падает небольшое напряжение (у кремниевого транзистора приблизительно 0,6 В), так что потенциал эмиттера ниже потенциала базы на 0,6 В.

Итак, если VB — потенциал базы относительно земли, а VE — потенциал эмиттера относительно земли, то

Стабилизированный усилитель с эмиттерным резистором

Рис. 3. Стабилизированный усилитель с эмиттерным резистором.

Следовательно, ток эмиттера IE определяется выбором величин VB и R3. При сопротивлениях резисторов R1 и R2, указанных на рис. 3., потенциал базы зафиксирован на уровне 1,6 В; поэтому потенциал эмиттера равен приблизительно 1,0 В, обеспечивая требуемый ток эмиттера 1 мА при сопротивлении эмиттерного резистора 1 кОм.

Источник

5. УСИЛИТЕЛИ ПОСТОЯННОГО ТОКА

Усилителями постоянного тока (УПТ) называются устройства, предназначенные для усиления медленно изменяющихся сигналов вплоть до нулевой частоты. На рисунке 5.1 приведена АЧХ УПТ.

Рисунок 5.1. АЧХ УПТ

Для осуществления передачи сигналов частот, близких к нулю, в УПТ используется непосредственная (гальваническая) связь между каскадами. Однако такая связь приводит к необходимости решения специфических задач:

◆ согласование потенциальных уровней в соседних каскадах;

◆ уменьшения дрейфа (нестабильности) выходного уровня напряжения или тока.

5.2. Способы построения УПТ

Основная проблема, с которой сталкиваются разработчики УПТ, является дрейф нуля. Дрейфом нуля (нулевого уровня) называется самопроизвольное отклонение напряжения или тока на выходе УПТ от начального значения. Поскольку дрейф нуля наблюдается и при отсутствии сигнала на входе на входе УПТ, то его невозможно отличить от истинного сигнала.

К физическим причинам, вызывающим дрейф нуля в УПТ, относятся:

◆ нестабильность источников питания;

◆ временная нестабильность («старение») параметров транзисторов и резисторов;

◆ температурная нестабильность параметров транзисторов и резисторов;

◆ помехи и наводки.

Наибольшую нестабильность вносит температурный фактор. Положение усугубляется наличием гальванической связи между каскадами, хорошо передающей медленные изменения сигнала, что приводит к эффекту каскадирования температурных нестабильностей каскадов от входа к выходу.

Поскольку температурные изменения параметров усилительных элементов имеют закономерный характер (см. подразделы 2.2 и 2.10), то они могут быть в некоторой степени скомпенсированы теми же методами, что и в усилителях гармонических сигналов.

Абсолютным дрейфом нуля ΔUвых называется максимальное самопроизвольное отклонение выходного напряжения УПТ при замкнутом входе за определенный промежуток времени. Качество УПТ оценивают по напряжению дрейфа нуля, приведенного к входу усилителя:

Приведенный к входу дрейф нуля эквивалентен ложному входному сигналу, он ограничивает минимальный входной сигнал, т.е. определяет чувствительность УПТ.

С целью снижения дрейфа нуля в УПТ используются:

◆ преобразование постоянного тока в переменный, его усиление и последующее детектирование;

◆ построение УПТ по балансной схеме.

УПТ прямого усиления, по сути, являются обычными многокаскадными усилителями с непосредственной связью. В качестве УПТ может использоваться усилитель, схема которого приведена на рисунке 3.4.

В этом усилителе резисторы Rэ1, Rэ2 и Rэ3, помимо создания местных и общих цепей ООС, обеспечивают необходимое напряжение смещения в своих каскадах. В многокаскадном УПТ можно обеспечить требуемый режим транзисторов по постоянному току путем последовательного повышения потенциалов эмиттеров от входа к выходу, что обусловлено непосредственной межкаскадной связью «коллектор-эмиттер», потенциалы коллекторов тоже возрастают от входа к выходу. Возможно обеспечение режима каскадов УПТ путем уменьшения Rк от входа к выходу, однако в том и другом случае следствием будет уменьшение коэффициента усиления УПТ.

В многокаскадных УПТ прямого усиления может происходить частичная компенсация дрейфа нуля. Так, положительное приращение тока коллектора первого транзистора вызовет отрицательное приращение тока базы и, следовательно, тока коллектора второго транзистора. На практике полная компенсация дрейфа нуля не достижима даже для одной температурной точки, тем не менее, в УПТ с четным числом каскадов наблюдается его снижение.

В связи с тем, что данный УПТ имеет однополярное питание, на его входе и выходе присутствует некоторый постоянный потенциал, что не позволяет подключать низкоомные источник сигнала и нагрузку непосредственно между ними и общим проводом. В этом случае используется мостовая схема с включением RГ и Rн в диагонали входного и выходного мостов (рисунок 5.2).

Рисунок 5.2. Мостовая схема включения источника сигнала и нагрузки в УПТ

Для расчета частотных и временных характеристик УПТ с прямым усилением можно использовать материалы подразделов 2.5 и 3.3, а также подраздела 2.9 в случае построения УПТ на ПТ.

Для целей согласования потенциалов используют транзисторы различной проводимости, для лучшей температурной компенсации применяют диоды и стабилитроны. Применение двухполярного источника питания позволяет непосредственно подключать источник сигнала и нагрузку к УПТ, т.к. в этом случае обеспечены нулевые потенциалы на его входе и выходе. Указанные меры реализованы в схеме УПТ, приведенной на рисунке 5.3.

Рисунок 5.3. Двухкаскадный УПТ

УПТ с прямым усилением на основе непосредственной связи между каскадами и глубокими ООС позволяют получить K≤40 дБ при Uвх порядка десятков милливольт. В таких УПТ возникает проблема устранения паразитной ОС по цепям питания, ибо не представляется возможным применение обычных фильтров.

УПТ прямого усиления имеют большой температурный дрейф (eдр составляет единицы милливольт на градус). Кроме температурного дрейфа в таких УПТ существенное влияние оказывают временной дрейф, нестабильность источников питания и низкочастотные шумы.

Отмеченные недостатки в значительной мере преодолеваются в УПТ с преобразованием (модуляцией) сигнала. На рисунке 5.4 приведена структурная схема УПТ с преобразованием постоянного тока в переменный и даны эпюры напряжений, поясняющие принцип его работы.

Входной сигнал постоянного напряжения Uвх преобразуется в пропорциональный ему сигнал переменного напряжения с помощью модулятора М, потом усиливается обычным усилителем гармонических сигналов У, а затем демодулятором ДМ преобразуется в сигнал постоянного напряжения Uн. Поскольку в усилителях переменного тока дрейф нуля не передается от каскада к каскаду (из-за наличия разделительных емкостей между каскадами), то в данном УПТ реализуется минимальный дрейф нуля.

Рисунок 5.4. Структурная схема УПТ с преобразованием сигналов

В качестве модулятора можно использовать управляемые ключевые схемы, выполненные обычно на ПТ. Простейшим демодулятором является обычный двухполупериодный выпрямитель с фильтром на выходе. Следует заметить, что существует большое многообразие схемных решений как модуляторов, так и демодуляторов, рассмотрение которых не позволяет ограниченный объем данного пособия.

В качестве недостатков УПТ с преобразованием сигнала следует отнести проблему реализации модуляторов малого уровня входного сигнала и повышенную сложность схемы.

Достичь существенного улучшения электрических, эксплуатационных и массогабаритных показателей УПТ можно за счет их построения на основе балансных схем.

5.3. Дифференциальные усилители

В настоящее время наибольшее распространение получили УПТ на основе дифференциальных (параллельно-балансных или разностных) каскадов. Такие усилители просто реализуются в виде монолитных ИМС и широко выпускаются промышленностью (КТ118УД, КР198УТ1 и др.). На рисунке 5.5 приведена принципиальная схема простейшего варианта дифференциального усилителя (ДУ) на БТ.

Рисунок 5.5. Схема ДУ

Любой ДУ выполняется по принципу сбалансированного моста, два плеча которого образованы резисторами Rк1 и Rк2, а два других — транзисторами VT1 и VT2. Сопротивление нагрузки Rн включено в диагональ моста. Резисторы цепи ПООСТ RОС1 и RОС2 обычно невелики или вообще отсутствуют, поэтому можно считать, что резистор Rэ подключен к эмиттерам транзисторов.

Двухполярное питание позволяет обойтись на входах (выходах) ДУ без мостовых схем за счет снижения потенциалов баз (коллекторов) до потенциала общей шины.

Рассмотрим работу ДУ для основного рабочего режима — дифференциального. За счет действия Uвх1 транзистор VT1 приоткрывается, и его ток эмиттера получает приращение ΔIэ1, а за счет действия Uвх2 транзистор VT2 призакрывается, и ток его эмиттера получает отрицательное приращение –ΔIэ2. Следовательно, результирующее приращение тока в цепи резистора Rэ при идеально симметричных плечах близко к нулю и, следовательно, ООС для дифференциального сигнала отсутствует.

При анализе ДУ выделяют два плеча, представляющие собой каскады с ОЭ, в общую цепь эмиттеров транзисторов которых включен общий резистор Rэ, которым и задается их общий ток. В связи с этим представляется возможным при расчете частотных и временных характеристик ДУ пользоваться соотношениями подразделов 2.5 и 2.12 с учетом замечаний, приведенных в подразделе 4.4. Например, коэффициент усиления дифференциального сигнала KU диф будет равен в случае симметрии плеч (см. подраздел 4.4) KU диф=2·KU пл=K, т.е. дифференциальный коэффициент усиления равен коэффициенту усиления каскада с ОЭ.

ДУ отличает малый дрейф нуля, большой коэффициент усиления дифференциального (противофазного) сигнала KU диф и большой коэффициент подавления синфазных помех, т.е. малый коэффициент передачи синфазного сигнала KU сф.

Для обеспечения качественного выполнения этих функций необходимо выполнить два основных требования. Первое из них состоит в обеспечении симметрии обоих плеч ДУ. Приблизиться к выполнению этого требования позволила микроэлектроника, поскольку только в монолитной ИМС близко расположенные элементы действительно имеют почти одинаковые параметры с одинаковой реакцией на воздействие температуры, старения и т.п.

Второе требование состоит в обеспечении глубокой ООС для синфазного сигнала. В качестве синфазного сигнала для ДУ выступают помехи, наводки, поступающие на входы в фазе. Поскольку Rэ создает глубокую ПООСТ для обоих плеч ДУ, то для синфазного сигнала будет наблюдаться значительное уменьшение коэффициентов передачи каскадов с ОЭ, образующих эти плечи.

Коэффициент усиления каждого плеча для синфазного сигнала можно представить как KОС каскада с ОЭ при глубокой ООС. Согласно подраздела 3.2 имеем:

Теперь можно записать для KU сф всего ДУ:

Для оценки подавления синфазного сигнала вводят коэффициент ослабления синфазного сигнала (КОСС), равный отношению модулей коэффициентов передач дифференциального и синфазного сигналов.

Из сказанного следует, что увеличение КОСС возможно путем уменьшения разброса номиналов резисторов в цепях коллекторов (в монолитных ИМС — не более 3%) и путем увеличения Rэ. Однако увеличение Rэ требует увеличения напряжения источника питания (что неизбежно приведет к увеличению рассеиваемой тепловой мощности в ДУ), и не всегда возможно из-за технологических трудностей реализации резисторов больших номиналов в монолитных ИМС.

Решить эту проблему позволяет использование электронного эквивалента резистора большого номинала, которым является источник стабильного тока (ИСТ), варианты схем которого приведены на рисунке 5.6.

Рисунок 5.6. ИСТ на БТ и ПТ

ИСТ подключается вместо Rэ (см. рисунок 5.5), а заданный ток и термостабильность обеспечивают элементы R1, R2, Rэ и VD1 (рисунок 5.6а), и R1 (рисунок 5.6б). Для реальных условий ИСТ представляет собой эквивалент сопротивления для изменяющегося сигнала номиналом до единиц мегом, а в режиме покоя — порядка единиц килоом, что делает ДУ экономичным по питанию.

Использование ИСТ позволяет реализовать ДУ в виде экономичной ИМС, с КОСС порядка 100 дБ.

При использовании ПТ характер построения ДУ не меняется, следует только учитывать особенности питания и термостабилизации ПТ.

5.4. Схемы включения ДУ

Можно выделить четыре схемы включения ДУ: симметричный вход и выход, несимметричный вход и симметричный выход, симметричный вход и несимметричный выход, несимметричный вход и выход.

Схема включения ДУ симметричный вход и выход приведена на рисунке 5.7 и в особых комментариях не нуждается, такая схема включения применяется при каскадировании ДУ.

Рисунок 5.7. Схема включения ДУ «симметричный вход и выход»

Схема включения ДУ несимметричный вход и симметричный выход рассматривалась ранее (см. рисунок 4.9).

Схема включения ДУ симметричный вход и несимметричный выход приведена на рисунке 5.8.

Рисунок 5.8. Схема включения ДУ «симметричный вход — несимметричный выход»

Такая схема включения ДУ применяется в случае необходимости перехода от симметричного источника сигнала (либо симметричного тракта передачи) к несимметричной нагрузке (несимметричному тракту передачи). Нетрудно показать, что дифференциальный коэффициент усиления при таком включении будет равен половине KU диф при симметричной нагрузке. Вместо резисторов Rк в ДУ часто используют транзисторы, выполняющие функции динамических нагрузок. В рассматриваемом варианте включения ДУ целесообразно использовать в качестве динамической нагрузки так называемое токовое зеркало, образованное транзисторами VT3 и VT4 (рисунок 5.9).

Рисунок 5.9. Схема ДУ с токовым зеркалом

При подаче на базу транзистора VT1 положительной полуволны гармонического сигнала Uвх1, в цепи транзистора VT3 (включенного по схеме диода) возникает приращение тока ΔIк1. За счет этого тока возникает приращение напряжения между базой и эмиттером VT3, которое является приращением входного напряжения для транзистора VT4. Таким образом, в цепи коллектор-эмиттер VT4 возникает приращение тока, практически равное ΔIк1, поскольку в ДУ плечи симметричны. В рассматриваемый момент времени на базу транзистора VT2 подается отрицательная полуволна входного гармонического сигнала Uвх2. Следовательно, в цепи его коллектора появилось отрицательное приращение тока ΔIк2. При этом приращение тока нагрузки ДУ равно ΔIк1Iк2, т.е. ДУ с отражателем тока обеспечивает большее усиление дифференциального сигнала. Необходимо также отметить, что для рассматриваемого варианта ДУ в режиме покоя ток нагрузки равен нулю.

При несимметричном входе и выходе работа ДУ в принципе не отличается от случая несимметричный вход — симметричный выход. В зависимости от того, с какого плеча снимается выходной сигнал, возможно получение синфазного или противофазного выходного сигнала, как это получается в фазоинверсном каскаде на основе ДУ (см. подраздел 4.4).

5.5. Точностные параметры ДУ

К точностным параметрам ДУ относятся паразитные напряжения и токи, имеющие место в режиме покоя, но оказывающие влияние на качество усиления рабочего сигнала.

В реальном ДУ за счет асимметрии плеч на выходе устройства всегда присутствует паразитное напряжение между выходами. Для сведения его к нулю на вход (плеча) необходимо подать компенсирующий сигнал — напряжение смещения нуля Uсм, представляющее собой кажущийся входной дифференциальный сигнал.

Напряжение Uсм порождается, в основном, разбросом величин обратных токов эмиттерных переходов Iэбо1 и Iэбо2 (U’см), и разбросом номиналов резисторов Rк1 и Rк2 (см). Для этих напряжений можно записать:

Зависимость Uсм от температуры представляется еще одним точностным параметром — температурной чувствительностью. Температурная чувствительность dUсм/dT имеет размерность мкВ/град и определяется как разность ТКН эмиттерных переходов транзисторов плеч и уменьшается пропорционально уменьшению Uсм.

Следующим точностным параметром ДУ является ток смещения ΔIвх, представляющий собой разбаланс (разность) входных токов (токов баз транзисторов). Протекая через сопротивление источника сигнала Rг, ток смещения создает на нем падение напряжения, действие которого равносильно ложному дифференциальному сигналу. Ток смещения можно представить как

Средний входной ток Iвх ср также является точностным параметром ДУ. Его можно представить как

Протекая через Rг, ток Iвх срсоздает на нем падение напряжения, действующее как синфазный входной сигнал. Хотя и ослабленное в KUсф раз, оно все же вызовет на выходе ДУ разбаланс потенциалов.

Температурные зависимости тока смещения и среднего входного тока можно учесть через температурную зависимость H21Э. Отметим, что обычно Iвх срIвх.

В ДУ на ПТ основным точностным параметром является Uсм, которое обычно больше, чем в ДУ на БТ.

В настоящее время ДУ представляют собой основной базовый каскад аналоговых ИМС, в частности, ДУ является входным каскадом любого операционного усилителя.

Источник

Как работает усилитель на транзисторе

Разбор схемы

Это моно-усилитель мощности звуковой частоты.

Транзистор VT1 является главным элементом в схеме усилителя. Поэтому схема называется транзисторный УНЧ (усилитель низкой частоты).

В данном случае используется n-p-n транзистор. Он включен по схеме с общим эмиттером (ОЭ). Эта схема позволяет выжить максимум из транзистора. Она усиливает и напряжение, и ток одновременно. Итого максимальная мощность.

Данная схема имеет один каскад усиления.

Что такое каскад

Каскад – это по сути этап усиления, который не зависит от другого. Бывают и двухкаскадные усилители. То есть, например, в схеме есть два транзистора. Один работает как предусилитель, и передает усиленный сигнал на вход второго. Поэтому схема называется двухкаскадной. Они не зависят друг от друга, но первый каскад передает сигнал на второй, что позволяет увеличить мощность сигнала.

Как питаемся схема

От качества питания зависит и качество усиления. С какими бы выдающимися характеристиками не был транзистор, если питание плохо отфильтровано или недостаточное, то усиление будет советующего качества.

На клеммы Х3 и Х4 подключается питание 6 В.

Эта схема может питаться и от аккумулятора. Однако, несмотря на то, что аккумулятор – это источник с минимальным шумом, у аккумулятора тоже есть свое сопротивление.

И чтобы оно не мешало и не влияло на работу усилителя, нужен сглаживающий и накопительный конденсатор.

Электролитический конденсатор С3 накапливает энергию источника питания, что позволяет улучшить качество усиления. Чем выше емкость – тем лучше. Естественно, у такого правила есть ограничения. Если поставить слишком большую емкость, то будет большая нагрузка на источник питания.

Во время проектирования схемы все эти параметры рассчитываются. Здесь в схеме у конденсатора С3 емкость 47 микрофарад – этого достаточно для нашего транзистора, поскольку у него не большая мощность, которую он может выдать. Можно поставить и большую емкость, например, 1000 микрофарад. Главное не нежно ставить конденсатор с меньшим пределом по напряжению. Если поставить конденсатор менее 6 В (питание схемы), то конденсатор начнет нагреваться и даже может взорваться.

Вход усилителя

Вход усилителя – это клеммы Х1 и Х2.

Х2 это минус входа, а Х1 – плюс. Так как схема на один канал, то УНЧ называется моно.

Можно подключить как левый канал, так и правый и оба сразу.

Фильтрация входного сигнала

Электролитический конденсатор С1 позволяет отделить постоянную составляющую входящего сигнала от переменной.

По-простому, он пропускает только переменный сигналю. Если сигнала нет, или вход усилителя замкнут, то без этого конденсатора транзистор может перейти в режим насыщения (максимальное усиление), и на выходе появится неприятный хрип.

Емкость конденсатора подобрана под частоту звукового сигнала. Звук начинается от 20 Гц и до 16 кГц.

Рабочая точка и смещение базы

Для того, чтобы транзистор не искажал входной сигнал, нужно его для начала чуть-чуть приоткрыть.

Это можно сделать при помощи делителя напряжения из двух резисторов R1 и R2. Этот делитель напряжения позволяет приоткрыть транзистор VT1 для того, чтобы входной сигнал не тратил свою электрическую энергию на его открытие.

Как определяется класс усилителя

Класс усилителя определяется его рабочей точкой. Рабочая точка выбирается с помощью вольтамперной характеристики транзистора. Чем выше напряжение подается на вход транзистора, тем больше ток, тем выше рабочая точка.

Например, точка по центру это А класс.


А класс самый качественный из усилителей. Он усиливает как положительные, так и отрицательные полуволны входного сигнала. В то же время, у этого класса есть существенный недостаток. Это ограничение мощности и снижение энергоэффективности. Дело в том, что пока на вход УНЧ не поступает входной сигнал, он работает все время, пока он включен.

Получается, что при это расходуется лишняя электроэнергия. Поэтому, еще рабочая точка называется точкой покоя, когда усилитель не усиливает входной сигнал.

Также от рабочей точки зависит и чувствительность усилителя.

Еще есть B класс, AB и D. Они отличаются друг от друга по эффективности усиления и наличию искажений. Все зависит от используемой схемы.

Например. D класс вообще не открывает транзистор, однако с точки зрения энергоэффективности – это самый лучший выбор. Транзистор в покое не потребляет ничего, он включается только при подаче входного сигнала. И при этом если на вход подается аналоговый звуковой сигнал, то он искажается. Такой класс не подойдет для схемы, которую разбираем в этой статье.

А режим АВ применяется в схемах, где есть несколько транзисторов, которые работают на свои полуволны. Есть схемы, где один транзистор усиливает только положительные полуволны, а второй только отрицательные. Такие усилители называются двухтактными.

Стабилизация работы схемы

Когда полупроводник нагревается, его сопротивление уменьшается. Транзистор сделан из полупроводника, и соответственно его p-n переходы тоже.

При работе схемы УНЧ ток течет через транзистор, и он нагревается. Обычно вся мощность рассеивается на коллекторе. И тем не менее, характеристики транзистора резко меняются, поскольку сопротивление его p-n переходом резко снижается по мере повышения температуры.

Чтобы стабилизировать работу транзистора, нужно сбалансировать его сопротивление другим источником. Это можно сделать при помощи дополнительного сопротивления.

Когда сопротивление транзистора VT1 уменьшается, резистор R3 забирает часть напряжения на себя и не позволяет увеличить ток в цепи.

Благодаря этому транзистор:

  • не закрывается;
  • не переходит в режим насыщения;
  • не искажает сигнал;
  • и не перегревается.

Это называется термостабилизация работы усилителя.

А чтобы в нормальном режиме работы, когда VT1 не нагревается, резистор R3 не уменьшал мощность схемы, в цепь включен шунтирующий электролитический конденсатор C2. Через него переменная составляющая входного сигнала проходит без потерь.

Выход усилителя

На выход к усилителю можно подключить как другой усилитель, который усилит сигнал еще больше, так и динамическую головку.
Динамическая головка — это обычный динамик. Он воспроизведёт звук с выхода транзистора VT1.

Однако и тут есть много нюансов.

Если сопротивление выхода транзистора намного больше, чем у динамической головки, то он не сможет передать всю мощность. Как минимум большая часть напряжения останется на его контактах.

Для данной схемы нужен динамик с сопротивлением около 1 кОм.

Если поставить меньше, например, на 4 Ома, то и половина мощности не воспроизведется, а коллектор VT1 начнет еще сильнее нагреваться.

Согласование сопротивлений входа, выхода и нагрузки усилителя рассчитывается на этапе проектирования схемы. Поэтому не следует их нарушать.

Как протекает ток по схеме

В начальный момент времени, при подключении питания, электролитический конденсатор С3 заряжается, и начинят питать коллектор и эмиттер транзистора VT1. А также ток проходит через делитель напряжения.

Делитель напряжения R1, R2 смещает базу VT1. Начинает течь ток смещения база-эмиттер (Б-Э), тем самым устанавливается рабочая точка УНЧ.

Когда входной сигнал поступает на клемму Х1, он проходит С1 и через делитель поступает на базу VT1 и частично уходит через эмиттер.

Входной сигнал притягивается коллектором VT1 и тем самым усиливается.

Та часть переменного сигнала, которая перешла на эмиттер транзистора, усиливается эмиттерными током. Он свободно проходит через С2, который в паре с R3 стабилизирует режим работы усилителя от перегрева и искажений.

В итоге входной сигнал усиленный коллекторно-эмиттерным (К-Э) током VT1 поступает на выход, то есть на динамическую головку BF1.

От чего зависит мощность схемы

У этой схемы есть ограничения. Можно поменять VT1 КТ315 на более мощный, у которого коэффициент усиления будет выше, но этот лимит усиления не бесконечный.

В первую очередь, все зависит от используемого транзистора. Если поменять его на более мощный, то и усиление будет выше. Но следует помнить, что чем мощнее транзистор, тем мощнее нужен входной сигнал. К тому же, придется сделать перерасчет всех компонентов. И подключать предусилитель, собирать схему блока питания, а это уже будет совсем другая схема.

У транзисторов есть ряд параметров, которые влияют на схему. Это коэффициент усиления по току (h21э), напряжению, мощности. А также важный параметр — это рассеиваемая мощность на коллекторе. С повышением мощности потребуется радиатор для отвода тепла.

Как собрать схему

Схему можно собрать на текстолите или на макетной плате. Перейдите по ссылке на эту статью, в ней подробнее описывается процесс сборки и проверки схемы.

Используйте качественные детали и хороший припой. Она рабочая. Это вообще классическая схема включения биполярного транзистора с общим эмиттером.

Также на сайте есть и другие схемы усилителей, которые не сложны в сборке и не дорогие по стоимости деталей.

Как проверить работу схемы

Достаточно прикоснуться до входа УНЧ отверткой, и на выходе послышаться треск. Это переменная наводка, которая усилится схемой.

Источник

Читайте также:  Как снизить пусковым током