Меню

Трансформаторы тока в жилых домах



Что такое трансформатор тока, его конструкция и принцип работы

Для нормального функционирования устройств обеспечивающих релейную защиту высоковольтных ЛЭП, требуется контролировать параметры электрической линии. Снимать показания с высоковольтных проводов напрямую – опасно и не эффективно. Режим работы обычного трансформатора не позволяет контролировать изменение тока. Решает эту проблему трансформатор тока, у которого показатели вторичной цепи изменяются пропорционально величине тока первичной обмотки.

Конструкция и принцип действия

Внешний вид типичного трансформатора тока представлен на рисунке 1. Характерным признаком этих моделей является наличие у них диэлектрического корпуса. Формы корпусов могут быть разными – от прямоугольных до цилиндрических. В некоторых конструкциях отсутствуют проходные шины в центре корпуса. Вместо них проделано отверстие для обхвата провода, который выполняет функции первичной обмотки.

Трансформатор тока

Рис. 1. Трансформатор тока

Материалы диэлектриков выбирают в зависимости от величины напряжений, для которых предназначено устройство и от условий его эксплуатации. Для обслуживания промышленных энергетических систем изготавливают мощные ТТ с керамическими корпусами цилиндрической формы (см. рис. 2).

Промышленный керамический трансформатор тока

Рис. 2. Промышленный керамический трансформатор тока

Особенностью трансформатора является обязательное наличие нагрузочного элемента (сопротивления) во вторичной обмотке (см. рис. 3). Резистор необходим для того, чтобы не допускать работы в режиме без вторичных нагрузок. Функционирование трансформатор тока с ненагруженными вторичными обмотками недопустимо из-за сильного нагревания (вплоть до разрушения) магнитопровода.

Принципиальная схема трансформатора тока

Рис. 3. Принципиальная схема трансформатора тока

В отличие от трансформаторов напряжения, ТТ оснащены только одним витком первичной обмотки (см. рис. 4). Этим витком часто является шина, проходящая сквозь кольцо сердечника с намотанными на него вторичными обмотками (см. рис. 5).

Схематическое изображение ТТ Рис. 4. Схематическое изображение ТТ Устройство ТТ Рис. 5. Устройство ТТ

Иногда в роли первичной обмотки выступает проводник электрической цепи. Для этого конструкция сердечника позволяет применить шарнирное соединение частей трансформатора для обхвата провода (см. рис. 6).

ТТ с разъемным корпусом

Рис. 6. ТТ с разъемным корпусом

Сердечники трансформаторов выполняются способом шихтования кремнистой стали. В моделях высокого класса точности сердечники изготовляют из материалов на основе нанокристаллических сплавов.

Принцип действия.

Основная задача токовых трансформаторов понизить (повысить) значение тока до приемлемой величины. Принцип действия основан на свойствах трансформации переменного электрического тока. Возникающий переменный магнитный поток улавливается магнитопроводом, перпендикулярным направлению первичного тока. Этот поток создается переменным током первичной катушки и наводит ЭДС во вторичной обмотке. После подключения нагрузки начинает протекать электрический ток по вторичной цепи.

Зависимости между обмотками и токами выражены формулой: k = W2 / W1 = I1 / I2 .

Поскольку ток во вторичной катушке обратно пропорционален количеству витков в ней, то путем увеличения (уменьшения) коэффициента трансформации, зависящего от соотношения числа витков в обмотках, можно добиться нужного значения выходного тока.

На практике, чаще всего, эту величину устанавливают подбором количества витков во вторичной обмотке, делая первичную обмотку одновитковой.

Линейная зависимость выходного тока (при номинальной мощности) позволяет определять параметры величин в первичной цепи. Численно эта величина во вторичной катушке равна произведению реального значения тока на номинальный коэффициент трансформации.

В идеале I1 = kI2 = I2W2/W1. С учетом того, что W1 = 1 (один виток) I1 = I2W2 = kI2. Эти несложные вычисления можно заложить в программу электронного измерителя.

Принцип действия трансформатора тока

Рис. 7. Принцип действия трансформатора тока

На рисунке 7 не показан нагрузочный резистор. При измерениях необходимо учитывать и его влияние. Все допустимые погрешности в измерениях отображает класс точности ТТ.

Классификация

Семейство трансформаторов тока классифицируют по нескольким признакам.

Пример наружного использования ТТ

  1. По назначению:
    • защитные;
    • линейки измерительных трансформаторов тока;
    • промежуточные (используются для выравнивания токов в системах дифференциальных защит);
    • лабораторные.
  2. По способу монтажа:
    • наружные (см. рис. 8), применяются в ОРУ;
    • внутренние (размещаются в ЗРУ);
    • встраиваемые;
    • накладные (часто совмещаются с проходными изоляторами);
    • переносные.

Рис. 8. Пример наружного использования ТТ

  • Классификация по типу первичной обмотки:
    • многовитковые, к которым принадлежат катушечные конструкции, и трансформаторы, с обмотками в виде петель;
    • одновитковые;
    • шинные.
  • По величине номинальных напряжений:
    • До 1 кВ;
    • Свыше 1 кВ.

Трансформаторы тока можно классифицировать и по другим признакам, например, по типу изоляции или по количеству ступеней трансформации.

Расшифровка маркировки

Каждому типу трансформаторов присваиваются буквенно-цифровые символы, по которым можно определить его основные параметры:

  • Т — трансформатор тока;
  • П — буква указывающая на то, что перед нами проходной трансформатор. Отсутствие буквы П указывает, что устройство принадлежит к классу опорных ТТ;
  • В — указывает на то, что трансформатор встроен в конструкцию масляного выключателя или в механизм другого устройства;
  • ВТ — встроенный в конструкцию силового трансформатора;
  • Л— со смоляной (литой) изоляцией;
  • ФЗ — устройство в фарфоровом корпусе. Звеньевой тип первичной обмотки;
  • Ф — с надежной фарфоровой изоляцией;
  • Ш — шинный;
  • О — одновитковый;
  • М — малогабаритный;
  • К — катушечный;
  • 3 — применяется для защиты от последствий замыкания на землю;
  • У — усиленный;
  • Н — для наружного монтажа;
  • Р — с сердечником, предназначенным для релейной защиты;
  • Д — со вторичной катушкой, предназначенной для питания электричеством дифференциальных устройств защиты;
  • М — маслонаполненный. Применяется для наружной установки.
  1. Номинальное напряжение (в кВ) указывается после буквенных символов (первая цифра).
  2. Числами через дробь обозначаются классы точности сердечников. Некоторые производители вместо цифр проставляют буквы Р или Д.
  3. следующие две цифры «через дробь» указывают на параметры первичного и вторичного токов;
  4. после позиции дробных символов — код варианта конструкционного исполнения;
  5. буквы, расположенные после кода конструкционного варианта, обозначают тип климатического исполнения;
  6. цифра на последней позиции — категория размещения.

Схемы подключения

Первичные катушки трансформаторов тока включаются в цепь последовательно. Вторичные катушки предназначены для подключения измерительных приборов или используются системами релейной защиты.

Во вторичную цепь включаются выводы измерительных приборов и устройства релейной защиты. С целью обеспечения безопасности, сердечник магнитопровода и один из зажимов вторичной катушки должны заземляться.

При подключении трехфазных счетчиков, в сетях с изолированной нейтралью обмотки трансформатора соединяются по схеме «Неполная звезда». При наличии нулевого провода применяется схема полной звезды.

Выводы трансформаторов маркируются. Для первичной обмотки применяются обозначения Л1 и Л2, а для вторичной – И1 и И2. При подключении измерительных приборов следует соблюдать полярность обмоток.

Схема «неполная звезда» применяется для двухфазного соединения.

В дифференциальных защитах, используемых в силовых трансформаторах, обмотки включаются треугольником.

Основные схемы подключения:

Основные схемы подключения

  • В сетях с глухозаземленной нейтралью ТТ подключается к каждой фазе. Соединение обмоток трансформатора – полная звезда.
  • Подключение по схеме неполной звезды. Применяется в сетях с изолированными нулевыми точками.
  • Схема восьмерки. Симметрично распределяет нагрузки при трехфазном КЗ.
  • Соединение ТТ в фильтр токов нулевой последовательности. Применяется для защиты номинальной нагрузки от коротких замыканиях на землю.

Технические параметры

Очень важной характеристикой трансформатора тока является класс точности. Этот параметр характеризует погрешность измерения, то есть показывает, на сколько номинальный (идеальный) коэффициент трансформации отличается от реального.

Коэффициент трансформации

Так как в реальном коэффициенте трансформации присутствует синфазная и квадратурная составляющая, то значения коэффициента всегда отличаются от номинального. Разницу (погрешность) необходимо учитывать при измерениях. На результаты измерений влияют также угловые погрешности.

У всех ТТ погрешность отрицательна, так как у них всегда присутствуют потери от намагничивания и нагревания токовых катушек. С целью устранения отрицательного знака погрешности, для смещения параметров трансформации в положительную сторону, применяют витковую коррекцию. Поэтому в откорректированных устройствах привычная формула для вычислений не работает. Поэтому коэффициенты трансформации в таких аппаратах производители определяют опытным путем и указывают их в техпаспорте.

Читайте также:  Как можно получить синусоидальный электрический ток

Класс точности

Токовые погрешности искажают точность измерения электрического тока. Поэтому для измерительных трансформаторов высокие требования к классу точности:

  • 0,1;
  • 0,5;
  • 1;
  • 3;
  • 10P.

Трансформатор может находиться в пределах заявленного класса точности, только если сопротивление максимальной нагрузки не превышает номинального, а ток в первичной цепи не выходит за пределы 0,05 – 1,2 величины номинального тока трансформатора.

О назначении

Основная сфера применения трансформаторов – защита измерительного и другого оборудования от разрушительного действия предельно высоких токов. ТТ применяются для подключения электрического счетчика, изоляции реле от воздействия мощных токовых нагрузок.

Видео по теме

Источник

Правильный выбор трансформатора тока по ГОСТу

Задача данной статьи дать начальные знания о том, как выбрать трансформатор тока для цепей учета или релейной защиты, а также родить вопросы, самостоятельное решение которых увеличит ваш инженерный навык.

В ходе подбора ТТ я буду ссылаться на два документа. ГОСТ-7746-2015 поможет в выборе стандартных значений токов, мощностей, напряжений, которые можно принимать для выбора ТТ. Данный ГОСТ действует на все электромеханические трансформаторы тока напряжением от 0,66кВ до 750кВ. Не распространяется стандарт на ТТ нулевой последовательности, лабораторные, суммирующие, блокирующие и насыщающие.

Кроме ГОСТа пригодится и ПУЭ, где обозначены требования к трансформаторам тока в цепях учета, даны рекомендации по выбору.

Выбор номинальных параметров трансформаторов тока

До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения. Общими, в любом случае, будут номинальные параметры. Разниться будут некоторые критерии выбора, о которых ниже.

1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.

Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.

Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу. Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. После 6000 идет 8000. Однако, некоторое электрооборудование не допускает работу с перегрузкой. И для него величина тока будет равна номинальному току.

Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.

2.1 Проверка первичного тока на термическую стойкость производится по формуле:

Формула проверки первичного тока ТТ на термическую устойчивость

Данная проверка показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.

iуд — ударный ток короткого замыкания

kу — ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях — 1,3.

2.2 Проверка первичного тока на электродинамическую стойкость:

Формула проверки первичного тока ТТ на динамическую устойчивость

В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.

Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку.

выбор первичного тока трансформатора тока по термической и электродинамической устойчивости

3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.

Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).

Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.

Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода. Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт — полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.

Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ

Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф — однофазное, двухфазное, трехфазное).

формулы определения сопротивления по низкой стороне ТТ при различных схемах подключения

zр — сопротивление реле

rпер — переходное сопротивление контактов

rпр — сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди — 57, алюминия — 34,5.

Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета — проверка на соблюдение ПУЭ и ГОСТа.

Выбор ТТ для релейной защиты

Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ (токовая или полная) не должна превышать 10%. Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит. Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:

значения погрешностей ТТ для цепей РЗА по ГОСТ-7746-2015

Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить — а для этого необходимо уметь измерить значение вне рабочего диапазона.

Выбор трансформаторов тока для цепей учета

К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений. Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго. Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.

Читайте также:  Как называют прибор с помощью которого измеряют силу тока

ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не менее 40% от максимального тока счетчика, а при минимальной — не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.

По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.

Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:

значения погрешностей ТТ для цепей учета и измерения по ГОСТ-7746-2015

Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности. Однако, если с вторичкой требования почти везде 25-100, то по первичке проверка может быть от 1% первичного тока до пяти, плюс проверка погрешностей. Поэтому тут одной таблицей сыт не будешь.

Таблица предварительного выбора трансформатора тока по мощности и току

предварительная таблица выбора ТТ по мощности

Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений — 0,4; 6,3; 10,5. И последние три столбца — это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:

  • при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
  • при 25%-ой нагрузке вторичный ток больше 5% от 5А

Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы — инженеры, электрики =)

К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят. Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей. Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.

Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.

Сохраните в закладки или поделитесь с друзьями

Источник

Трансформатор для дома

Нестабильное напряжение в электрической сети – проблема нередкая и влекущая за собой неприятные последствия от поломок электроприборов до порчи электрической проводки и возгораний. Частично решить самые разнообразные неполадки можно, установив трансформатор для дома – статистический электроаппарат, используемый для преобразования электрического тока или напряжения.

Проблемы в электрических сетях

Изначально электричество подаётся через линии электропередач от повышающих трансформаторов поставщика и может проходить до нескольких сотен километров до отдельного дома. При установке понижающего агрегата на несколько домов-потребителей нагрузки будут подразделяться между всеми подключенными домами.

Проблемы в электрических сетях

Гораздо выгоднее, хотя и дороже, установить индивидуальный трансформатор для дома – таким образом внутренняя электрическая сеть будет получать уже пониженный до 220В ток.

В случаях, когда в электрической сети наблюдается регулярная просадка напряжения, при которой приборы не в состоянии функционировать в полную силу, решить проблему можно установкой повышающего трансформатора.

Проблемы в электрических сетях

Виды и классификация

В зависимости от технических свойств и сферы применения, трансформаторы подразделяются достаточно разнообразно. Основными параметрами классификации трансформаторов являются:

  • количество фаз;
  • число обмоток;
  • класс точности – колебания максимально возможных значений погрешностей;
  • способ охлаждения;
  • тип размешения.

Если работа трансформатора направлена на регулировку электрического тока, то аппарат так и называется – трансформатор тока. В случае, когда устройство призвано регулировать напряжение, это будет трансформатор напряжения.

Виды и классификация

На направление перемен величины напряжения влияет такой показатель, как соотношение количества обмоток прибора:

  • первичной, принимающей напряжение;
  • вторичной, передающей изменённое значение напряжения электрического тока.

В случае, когда трансформатор имеет во вторичной обмотке большее число витков, чем в первичной, он относится к повышающим, при меньшем количестве – к понижающим.

Трансформатор для дома

На мощность трансформатора влияет сечение проводов обмоток, а на вес и размер – тип сердечника и материалов изготовления проводов. По исполнению трансформаторы делятся на однофазные и трёхфазные.

Самым лёгким и малогабаритным считается автотрансформатор, обеспеченный всего одной обмоткой. Также автотрансформаторы являются наиболее бюджетным вариантом и часто используются в приборах автоматического управления, а также применяются в высоковольтных электрических сетях. Единственным недостатком такого трансформатора является отсутствие гальванической развязки.

Виды и классификация

При подаче и приёме электричества на линии электропередач и обратно используются силовые трансформаторы, в электроприборах сетевые. Также существуют лабораторные, измерительные, импульсные и другие виды трансформаторов.

Трансформаторы напряжения

Трансформатором напряжения называется статический (неподвижный) электромагнитный прибор, меняющий значения переменного напряжения. По назначению такие устройства разделяют на несколько видов:

  • силовые – используются в электроснабжении как для повышения (для передачи его на дальние расстояния), так и для понижения (до рабочих значений устройств-потребителей) напряжения;
  • технологические – устройства повышенных мощностей, применяются с технологическими целями (сварочными, печными и другими);
  • маломощные – питают теле- радиоаппаратуру, бытовую технику, а также применяются в схемах различной электроники;
  • измерительные – применяются с целью расширения границ измерения приборов.

Трансформаторы напряжения

Применяются трансформаторы напряжения как для его измерения, так и для контроля параметров мощности. Эффективно питают электрические цепи автоматики, сигнализационные устройства, а также используются при защите линий электропередач.

Повышающие трансформаторы

Являются силовыми конструкциями, используемыми в электрических цепях бытовых либо производственных назначений, меняя напряжение в направлении повышения.

По характеристикам и областям использования различают следующие виды повышающих напряжение устройств:

  • автотрансформатор – однофазный прибор с одной обмоткой;
  • трансформатор тока – устройство с использованием нескольких обмоток, сердечника, оборудованный резисторами и оптическими датчиками;
  • устройство силового типа – предназначен для передачи тока между контурами посредством электромагнитной индукции;
  • антирезонансный агрегат – полностью закрытое однофазное или трёхфазное устройство;
  • заземляемые устройства – имеют специальные типы обмотки;
  • пик-трансформаторы – применяются с целью для разделения постоянного и переменного токов;
  • домашние бытовые агрегаты – передают электричество от источника тока к прибору потребителю, предотвращают помехи в работе приборов.

Повышающие трансформаторы

Трансформаторы, преобразующие напряжение из 220В в 380В, широко используются в трёхфазных сетях производственных зон. С их помощью легко решаются проблемы создания дополнительных линий электрического питания. Кроме того, данные агрегаты помогают симметрично распределять нагрузки по фазам сети в местах, где отсутствует сеть 380В.

Повышающий трансформатор для дома

Необходимость купить повышающий трансформатор для дома возникает в случае, когда напряжение в электрической сети не достигает требуемых 220 В. Однако следует помнить, что устройство обладает постоянным коэффициентом трансформации. Это значит, что при достижении в сети стабильного напряжения электричества, на выходе значение будет существенно превышать требуемое для питания электроприборов, что может привести к их поломке.

Читайте также:  Полное сопротивление двух конденсаторов в цепи переменного тока

Повышающий трансформатор для дома

Существует вариант приобретения регулируемого устройства, в котором предусмотрен ручной контроль напряжения на выходе.

Стоит знать, что установка дома промышленных трансформаторов может быть крайне опасна в связи с использованием для их охлаждения специализированных масел.

Понижающие трансформаторы

Для отдельных приборов, используемых в быту, напряжение в 220В является излишним – для их подключения рекомендуется использовать понижающие трансформаторы (220 на 15 вольт или 220 на 10 вольт).

Понижающие трансформаторы

К преимуществам использования данных мини-трансформаторов для дома можно отнести:

  • защита от поражения электрическим током и возникновения возгорания (особенно актуально в банях, ванных комнатах и прочих помещения, обладающих повышенной влажностью);
  • экономия потребления электроэнергии (низковольтные осветительные приборы потребляют в разы меньше энергии, чем обычные);
  • продление срока службы приборов.

Виды и классификация

Зарядные устройства для телефонов, ноутбуков и прочих гаджетов уже имеют встроенные трансформаторы, а вот при монтаже низковольтного освещения с использованием светодиодных и галогенных ламп, требуется самостоятельная установка устройств для понижения напряжения.

Итак, купить трансформатор для частного дома или дачи не составит трудностей, если внимательно изучить виды и предназначение различных типов устройств. Правильный выбор поможет обеспечить наличие требуемых для работы приборов мощностей без риска выхода техники из строя.

Источник

Трансформатор. Какой лучше выбрать в свой дом? на сайте Недвио

  • Недвижимость
  • Строительство
  • Ремонт
  • Участок и Сад
  • О загородной жизни
  • Вопросы-Ответы
    • Интерактивная кадастровая карта
    • О проекте Недвио
    • Реклама на Nedvio.com

avatar

Трансформаторы не часто встретишь в загородных домах. Оно и понятно, стоит такое оборудование недешево и если и ставится то для определенных целей (например защита котла или светодиодных ламп от скачков напряжения).

Что это за устройства? И стоит ли их покупать в свой дом? Об этом мы поговорим в данной статье. И начнем с самого простого типа таких устройств — однофазных трансформаторов.

Что такое однофазный трансформатор?

Однофазные трансформаторы — это устройства, предназначенные для понижения входного напряжения. Их используют, в основном, из соображений безопасности, а иногда и для конкретных технических требований (к примеру для светодиодного освещения). В быту они тоже используются довольно часто — гораздо чаще, чем вы можете себе представить, хотя, конечно, они могут выглядеть совершенно по-другому нежели традиционные трансформаторы.

Однофазный трансформатор представляет собой простую конструкцию, которая состоит из сердечника и двух обмоток. Во время прохождения электрического тока через первичную обмотку во вторичной обмотке индуцируется поток тока.

Один из наиболее часто используемых вариантов домашних трансформаторов, это так называемый колокольный трансформатор. Он имеет вторичную обмотку, выбранную таким образом, чтобы из основного напряжения сети ее можно было снизить до 3, 8, 12, а иногда и до 24 В. Это, безусловно, далеко не все параметры, поскольку в зависимости от потребностей вы можете использовать различные типы трансформаторов, которые позволяют получать самые разные напряжения.

Следует добавить, что компоненты трансформатора также включают в себя элементы безопасности: тепловые и с задержкой, соответствующие напряжению питания. Хотя их наличие не требуется для самого изменения напряжения, они очень полезны по функциональным причинам.

Состояние работы трансформатора

Чтобы полностью понять работу трансформатора, недостаточно знать его структуру. Для полной безопасности и эффективной работы этих устройств также необходимо различать несколько различных рабочих состояний трансформатора.

  • Состояние холостого хода — в этом состоянии в первичной обмотке течет ток очень низкой интенсивности. Сам трансформатор подключен к сети и потребляет электроэнергию в количестве, равном потерям энергии на сердечнике;
  • Состояние нагрузки (работа однофазного трансформатора) — ток протекает при номинальном токе через первичную обмотку, в то время как из-за замыкания цепи, подключенной к вторичной обмотке, также протекает ток на этом участке, значение которого зависит того какая мощность есть на приемнике;
  • Состояние короткого замыкания — в этом состоянии короткое замыкание во вторичной обмотке приводит к очень высокому току в обеих обмотках, что обычно быстро приводит к повреждению изоляции и защите от короткого замыкания. Такое состояние не является нормальным рабочим состоянием — оно возникает в результате скрытых дефектов или потребления приемника или самого трансформатора.

Звонковый трансформатор — параметры и применение

Звонковые трансформаторы преследуют одну цель — снизить напряжение сети до уровня, подходящего для дома или конкретного устройства. Это делается для того, чтобы колокол можно было разместить снаружи, например, на заборе, где из-за высокой влажности или возможности разбрызгивания увеличивается риск поражения электрическим током. При низких напряжениях это не опасно.

Параметры колокольных трансформаторов особо не меняются, но выбор часто сильно ограничен техническими проблемами.

  • Выходное напряжение и выходной ток. Их уровень определяется путем проверки требований к звонкам. В настоящее время относительно редко используются колокольные трансформаторы с напряжением более 8 В. 12 В — это уровень, необходимый для больших, сложных дверных звонков или домофонов. В обоих случаях это абсолютно безопасное напряжение. Многие колокольные трансформаторы имеют несколько выводов, комбинации которых позволяют получать различные выходные напряжения (например, 4, 8 или 12 В);
  • Способ монтажа. Во многих старых электропроводках все еще установлено несколько или несколько десятков трансформаторов. В техническом плане они обычно эффективны, хотя эффективность, уровень безопасности и эстетика оставляют желать лучшего. Эти трансформаторы устаналивались непосредственно на стене, но сегодня это решение практически не используют. В настоящее время застройщики предпочитают устанавливать трансформаторы для шины Т-35. Трансформатор на DIN-рейке может быть установлен без дополнительных отверстий в конструкции и является более универсальным;
  • Безопасность. В этом отношении различия невелики, поскольку стандартом является защита от перегрева и перегрузки, но в каждом случае стоит обратить внимание на предложение отдельных производителей.

Осветительный трансформатор и др.

Для светодиодов с галогенным или постоянным током требуется наличие трансформатора. Разница между этими двумя типами очевидна — светодиодный осветительный трансформатор связан с выпрямителем, галогеновый — нет.

Выбирая способы монтажа устройств, вы можете выбирать между трансформаторами для рельса или так называемые мебельные трансформаторы, закрепляемые винтами для плоских поверхностей. С точки зрения конструкции сам трансформатор не отличается от колокольных устройств — они могут быть разного размера, но принцип действия остается тем же.

Защитный трансформатор в корпусе этого устройства устанавливается в местах, где требуется более высокий класс IP, например, IP54. Конструкция такого трансформатора изнутри такая же, а снаружи имеется прочный и зачастую более стойкий к воздействию высоких температур пластиковый корпус.

Переносной защитный трансформатор — это мобильное устройство, часто с высокой мощностью (до 800 Вт), которое позволяет использовать устройство в тех местах, где нет технической возможности подключить другое защитное устройство. Из-за мощности и размеров таких устройств они достаточно тяжелые (от 2 до около 12 кг) и стоят дорого.

Была ли эта статья для вас полезной? Пожалуйста, поделитесь ею в соцсетях:

Не забудьте добавить сайт Недвио в Закладки. Рассказываем о строительстве, ремонте, загородной недвижимости интересно, с пользой и понятным языком.

Источник