Меню

Токи высокой частоты температура



Поверхностная закалка ТВЧ

Закалка сталей токами высокой частоты (ТВЧ) — это один из распространенных методов поверхностной термической обработки, который позволяет повысить твердость поверхности заготовок. Применяется для деталей из углеродистых и конструкционных сталей или чугуна. Индукционная закалка ТВЧ являет собой один из самых экономичных и технологичных способов упрочнения. Она дает возможность закалить всю поверхность детали или отдельные ее элементы или зоны, которые испытывают основную нагрузку.

При этом под закаленной твердой наружной поверхностью заготовки остаются незакаленные вязкие слои металла. Такая структура уменьшает хрупкость, повышает стойкость и надежность всего изделия, а также снижает энергозатраты на нагрев всей детали.

Закалка ТВЧ

Технология высокочастотной закалки

Поверхностная закалка ТВЧ — это процесс термообработки для повышения прочностных характеристик и твердости заготовки.

Основные этапы поверхностной закалки ТВЧ — индукционный нагрев до высокой температуры, выдержка при ней, затем быстрое охлаждение. Нагревание при закалке ТВЧ производят с помощью специальной индукционной установки. Охлаждение осуществляют в ванне с охлаждающей жидкостью (водой, маслом или эмульсией) либо разбрызгиванием ее на деталь из специальных душирующих установок.

Выбор температуры

Для правильного прохождения процесса закалки очень важен правильный подбор температуры, которая зависит от используемого материала.

Стали по содержанию углерода подразделяются на доэвтектоидные — меньше 0,8% и заэвтектоидные — больше 0,8%. Сталь с углеродом меньше 0,4% не закаливают из-за получаемой низкой твердости. Доэвтектоидные стали нагревают немного выше температуры фазового превращения перлита и феррита в аустенит. Это происходит в интервале 800—850°С. Затем заготовку быстро охлаждают. При резком остывании аустенит превращается в мартенсит, который обладает высокой твердостью и прочностью. Малое время выдержки позволяет получить мелкозернистый аустенит и мелкоигольчатый мартенсит, зерна не успевают вырасти и остаются маленькими. Такая структура стали обладает высокой твердостью и одновременно низкой хрупкостью.

Микроструктура стали

Заэвтектоидные стали нагревают чуть ниже, чем доэвтектоидные, до температуры 750—800°С, то есть производят неполную закалку. Это связано с тем, что при нагреве до этой температуры кроме образования аустенита в расплаве металла остается нерастворенным небольшое количество цементита, обладающего твердостью высшей, чем у мартенсита. После резкого охлаждения аустенит превращается в мартенсит, а цементит остается в виде мелких включений. Также в этой зоне не успевший полностью раствориться углерод образует твердые карбиды.

В переходной зоне при закалке ТВЧ температура близка к переходной, образуется аустенит с остатками феррита. Но, так как переходная зона не остывает так быстро, как поверхность, а остывает медленно, как при нормализации. При этом в этой зоне происходит улучшение структуры, она становится мелкозернистой и равномерной.

Перегревание поверхности заготовки способствует росту кристаллов аустенита, что губительно сказывается на хрупкости. Недогрев не дает полностью феррито-перритной структуре перейти в аустенит, и могут образоваться незакаленные пятна.

После охлаждения на поверхности металла остаются высокие сжимающие напряжения, которые повышают эксплуатационные свойства детали. Внутренние напряжения между поверхностным слоем и серединой необходимо устранить. Это делается с помощью низкотемпературного отпуска — выдержкой при температуре около 200°С в печи. Чтобы избежать появления на поверхности микротрещин, нужно свести к минимуму время между закалкой и отпуском.

Также можно проводить так называемый самоотпуск — охлаждать деталь не полностью, а до температуры 200°С, при этом в ее сердцевине будет оставаться тепло. Дальше деталь должна остывать медленно. Так произойдет выравнивание внутренних напряжений.

Индукционная установка

Индукционная установка для термообработки ТВЧ представляет собой высокочастотный генератор и индуктор для закалки ТВЧ. Закаливаемая деталь может располагаться в индукторе или возле него. Индуктор изготовлен в виде катушки, на ней навита медная трубка. Он может иметь любую форму в зависимости от формы и размеров детали. При прохождении переменного тока через индуктор в нем появляется переменное электромагнитное поле, проходящее через деталь. Это электромагнитное поле вызывает возникновение в заготовке вихревых токов, известных как токи Фуко. Такие вихревые токи, проходя в слоях металла, нагревают его до высокой температуры.

Индукционный нагреватель ТВЧ

Индукционный нагреватель ТВЧ

Отличительной чертой индукционного нагрева с помощью ТВЧ является прохождение вихревых токов на поверхности нагреваемой детали. Так нагревается только наружный слой металла, причем, чем выше частота тока, тем меньше глубина прогрева, и, соответственно, глубина закалки ТВЧ. Это дает возможность закалить только поверхность заготовки, оставив внутренний слой мягким и вязким во избежание излишней хрупкости. Причем можно регулировать глубину закаленного слоя, изменяя параметры тока.

Повышенная частота тока позволяет сконцентрировать большое количество тепла в малой зоне, что повышает скорость нагревания до нескольких сотен градусов в секунду. Такая высокая скорость нагрева передвигает фазовый переход в зону более высокой температуры. При этом твердость возрастает на 2—4 единицы, до 58—62 HRC, чего невозможно добиться при объемной закалке.

Для правильного протекания процесса закалки ТВЧ необходимо следить за тем, чтобы сохранялся одинаковый просвет между индуктором и заготовкой на всей поверхности закаливания, необходимо исключить взаимные прикосновения. Это обеспечивается при возможности вращением заготовки в центрах, что позволяет обеспечить равномерное нагревание, и, как следствие, одинаковую структуру и твердость поверхности закаленной заготовки.

Индуктор для закалки ТВЧ имеет несколько вариантов исполнения:

  • одно- или многовитковой кольцевой — для нагрева наружной или внутренней поверхности деталей в форме тел вращения — валов, колес или отверстий в них;
  • петлевой — для нагрева рабочей плоскости изделия, например, поверхности станины или рабочей кромки инструмента;
  • фасонный — для нагрева деталей сложной или неправильной формы, например, зубьев зубчатых колес.

В зависимости от формы, размеров и глубины слоя закаливания используют такие режимы закалки ТВЧ:

  • одновременная — нагревается сразу вся поверхность заготовки или определенная зона, затем также одновременно охлаждается;
  • непрерывно-последовательная — нагревается одна зона детали, затем при смещении индуктора или детали нагревается другая зона, в то время как предыдущая охлаждается.

Одновременный нагрев ТВЧ всей поверхности требует больших затрат мощности, поэтому его выгоднее использовать для закалки мелких деталей — валки, втулки, пальцы, а также элементов детали — отверстий, шеек и т.д. После нагревания деталь полностью опускают в бак с охлаждающей жидкостью или поливают струей воды.

Непрерывно-последовательная закалка ТВЧ позволяет закалять крупногабаритные детали, например, венцы зубчатых колес, так как при этом процессе происходит нагрев малой зоны детали, для чего нужна меньшая мощность генератора ТВЧ.

Охлаждение детали

Охлаждение — второй важный этап процесса закалки, от его скорости и равномерности зависит качество и твердость всей поверхности. Охлаждение происходит в баках с охлаждающей жидкостью или разбрызгиванием. Для качественной закалки необходимо поддерживать стабильную температуру охлаждающей жидкости, не допускать ее перегрева. Отверстия в спрейере должны быть одинакового диаметра и расположены равномерно, так достигается одинаковая структура металла на поверхности.

Чтобы индуктор не перегревался в процессе работы, по медной трубке постоянно циркулирует вода. Некоторые индукторы выполняются совмещенными с системой охлаждения заготовки. В трубке индуктора прорезаны отверстия, через которые холодная вода попадает на горячую деталь и остужает ее.

Закалка токами высокой частоты

Закалка токами высокой частоты

Достоинства и недостатки

Закалка деталей с помощью ТВЧ обладает как достоинствами, так и недостатками. К достоинствам можно отнести следующее:

  • После закалки ТВЧ у детали сохраняется мягкой середина, что существенно повышает ее сопротивление пластической деформации.
  • Экономичность процесса закалки деталей ТВЧ связана с тем, что нагревается только поверхность или зона, которую необходимо закалить, а не вся деталь.
  • При серийном производстве деталей необходимо настроить процесс и далее он будет автоматически повторяться, обеспечивая необходимое качество закалки.
  • Возможность точно рассчитать и регулировать глубину закаленного слоя.
  • Непрерывно-последовательный метод закалки позволяет использовать оборудование малой мощности.
  • Малое время нагрева и выдержки при высокой температуре способствует отсутствию окисления обезуглероживания верхнего слоя и образования окалины на поверхности детали.
  • Быстрый нагрев и охлаждение не дают большого коробления и поводок, что позволяет уменьшить припуск на чистовую обработку.

Но индукционные установки экономически целесообразно применять только при серийном производстве, а для единичного производства покупка или изготовление индуктора невыгодно. Для некоторых деталей сложной формы производство индукционной установки очень сложно или невозможно получить равномерность закаленного слоя. В таких случаях применяют другие виды поверхностных закалок, например, газопламенную или объемную закалку.

Источник

Закалка стали

Отпуск и старение металла

Часто путём закалки повышается не только твёрдость металла, но и его хрупкость, поэтому необходимо выполнять ещё один этап — отпуск, при котором прочность и твёрдость несколько снижаются, но материал становится более пластичным. Делают отпуск при температуре, ниже, чем в предыдущем процессе, и охлаждают металл постепенно.

Можно проводить закалку без изменения структуры металла (полиморфного превращения). В этом случае не возникнет проблем с хрупкостью, но необходимая твёрдость не будет достигнута. А повысить её удастся путём ещё одного процесса термообработки, называемого старением. При старении происходит распад пересыщенного твёрдого раствора, в результате которого увеличивается прочность и твёрдость материала.

Читайте также:  Что будет если неизменным останется ток в обмотке

Отпуск стали — это разновидность термообработки, используемая для деталей, закалённых до критической точки, при которой происходит полиморфное изменение кристаллической решётки. Он заключается в выдерживании металла определённый промежуток времени в нагретом состоянии и медленном охлаждении на открытом воздухе. Делают отпуск, чтобы снизить внутреннее напряжение, а также исключить хрупкость металла и увеличить его пластичность.

При помощи старения достигается необходимая твёрдость закалённой стали. Старение может быть:

  • естественным, при котором самопроизвольно повышается прочность закалённого металла и снижается его пластичность. Происходит данный процесс при выдержке в естественной среде;
  • термическим. Такое старение — это процесс повышения твёрдости металла посредством выдержки при высоких температурах. По сравнению с первым видом, в данном случае может произойти перестаривание — это когда твёрдость, пределы прочности и текучести, достигая максимальной величины, начинают снижаться;
  • деформационным. Такое старение достигается при помощи пластической деформации закалённого сплава, имеющего структуру пересыщенного твёрдого раствора.

Описание метода закалки ТВЧ

Нагрев токами ВЧ основан на явлении, при котором вследствие прохождения переменного высокочастотного тока по индуктору (спиральный элемент, выполненный из медных трубок) вокруг него формируется магнитное поле, создающее в металлической детали вихревые токи, которые и вызывают нагрев закаливаемого изделия. Находясь исключительно на поверхности детали, они позволяют нагреть ее на определенную регулируемую глубину.

Закалка ТВЧ металлических поверхностей имеет отличие от стандартной полной закалки, которое заключается в повышенной температуре нагрева. Это объясняется двумя факторами. Первый из них – при высокой скорости нагрева (когда перлит переходит в аустенит) уровень температуры критических точек повышается. А второй – чем быстрее проходит переход температур, тем быстрее совершается превращение металлической поверхности, ведь оно должно произойти за минимальное время.

Стоит сказать, несмотря на то, что при использовании высокочастотной закалки вызывается нагрев больше обычного, перегрева металла не случается. Такое явление объясняется тем, что зерно в стальной детали не успевает увеличиться, благодаря минимальному времени высокочастотного нагрева. К тому же, из-за того, что уровень нагрева выше и охлаждение интенсивнее, твердость заготовки после ее закалки ТВЧ вырастает приблизительно на 2-3 HRC. А это гарантирует высочайшую прочность и надежность поверхности детали.

Вместе с тем, есть дополнительный немаловажный фактор, который обеспечивает повышение износостойкости деталей при эксплуатации. Благодаря созданию мартенситной структуры, на верхней части детали образовываются сжимающие напряжения. Действие таких напряжений проявляется в высшей мере при небольшой глубине закаленного слоя.

Применяемые для закалки ТВЧ установки, материалы и вспомогательные средства

Полностью автоматический комплекс высокочастотной закалки включает в себя закалочный станок и ТВЧ установки (крепежные системы механического типа, узлы поворота детали вокруг своей оси, движения индуктора по направлению заготовки, насосов, подающих и откачивающих жидкость или газ для охлаждения, электромагнитных клапанов переключения рабочих жидкостей или газов (вода/эмульсия/газ)).

ТВЧ станок позволяет перемещать индуктор по всей высоте заготовки, а также вращать заготовку на разных уровнях скорости, регулировать выходной ток на индукторе, а это дает возможность выбрать правильный режим процесса закалки и получить равномерно твердую поверхность заготовки.

Принципиальная схема индукционной установки ТВЧ для самостоятельной сборки была приведена в предыдущей статье.

Индукционную высокочастотную закалку можно охарактеризовать двумя основными параметрами: степенью твердости и глубиной закалки поверхности. Технические параметры выпускаемых на производстве индукционных установок определяются мощностью и частотой работы. Для создания закаленного слоя применяют индукционные нагревающие устройства мощностью 40-300 кВА при показателях частоты в 20-40 килогерц либо 40-70 килогерц. Если необходимо провести закалку слоев, которые находятся глубже, стоит применять показатели частот от 6 до 20 килогерц.

Диапазон частот выбирается, исходя из номенклатуры марок стали, а также уровня глубины закаленной поверхности изделия. Существует огромный ассортимент комплектаций индукционных установок, что помогает выбрать рациональный вариант для конкретного технологического процесса.

Технические параметры автоматических станков для закалки определяются габаритными размерами используемых деталей для закалки по высоте (от 50 до 250 сантиметров), по диаметру (от 1 до 50 сантиметров) и массе (до 0,5 т, до 1т, до 2т). Комплексы для закалки, высота которых составляет 1500 мм и больше, оснащены электронно-механической системой зажима детали с определенным усилием.

Высокочастотная закалка деталей осуществляется в двух режимах. В первом каждое устройство индивидуально подключается оператором, а во втором – происходит без его вмешательств. В качестве среды закалки обычно выбирают воду, инертные газы или полимерные составы, обладающие свойствами по теплопроводности, близкими к маслу. Среда закалки выбирается в зависимости от требуемых параметров готового изделия.

Какую сталь подвергают закалке

Термически обрабатывают только такой металл, в котором содержится не менее 0,45% углерода, а также инструментальную и легированную стали, твёрдость которых после закалки становится в несколько раз выше. Тот металл, в котором содержание углерода не превышает 0,45%, не обрабатывается термически. Ниже приведена таблица режимов термообработки для некоторых видов сталей.

Источник

Технология термообработки ТВЧ

Закалка ТВЧ

Индукционный нагрев происходит в результате размещения обрабатываемой детали вблизи проводника переменного электрического тока, который называется индуктором. При прохождении по индуктору тока высокой частоты (ТВЧ) создаётся электромагнитное поле и, если в этом поле располагается металлическое изделие, то в нем возбуждается электродвижущая сила, которая вызывает прохождение по изделию переменного тока такой же частоты, как и ток индуктора.

Закалка ТВЧ

Таким образом наводится тепловое воздействие, которое вызывает разогрев изделия. Тепловая мощность Р, выделяемая в нагреваемой детали, будет равна:

Мощность при закалке ТВЧ

где К – коэффициент, зависящий от конфигурации изделия и величины зазора, образующегося между поверхностями изделия и индуктора; Iин — сила тока; f – частота тока (Гц); r – удельное электрическое сопротивление (Ом·см); m – магнитная проницаемость (Г/Э) стали.

На процесс индукционного нагрева существенное влияние оказывает физическое явление, называемое поверхностным (скин) эффектом: ток индуцируется преимущественно в поверхностных слоях, и при высоких частотах плотность тока в сердцевине детали мала. Глубина нагреваемого слоя оценивается по формуле:

Глубина слоя после закалки ТВЧ

Повышение частоты тока позволяет концентрировать в небольшом объёме нагреваемой детали значительную мощность. Благодаря этому реализуется высокоскоростной (до 500 С/сек) нагрев.

Параметры индукционного нагрева

Индукционный нагрев характеризуется тремя параметрами: удельной мощностью, продолжительностью нагрева и частотой тока. Удельная мощность — это мощность переходящая в теплоту на 1 см2 поверхности нагреваемого металла (кВт/см2). От величины удельной мощности зависит скорость нагрева изделия: чем она больше, тем быстрее осуществляется нагрев.

Продолжительность нагрева определяет общее количество передаваемой тепловой энергии, а соответственно и достигаемую температуру. Также важно учитывать частоту тока, так как от нее зависит глубина закаленного слоя. Частота тока и глубина нагреваемого слоя находятся в противоположной зависимости (вторая формула). Чем выше частота, тем меньше нагреваемый объем металла. Выбирая величину удельной мощности, продолжительность нагрева и частоту тока, можно в широких пределах изменять конечные параметры индукционного нагрева — твердость и глубину закаленного слоя при закалке или нагреваемый объем при нагреве под штамповку.

На практике контролируемыми параметрами нагрева, являются электрические параметры генератора тока (мощность, сила тока, напряжение) и продолжительность нагрева. При помощи пирометров также может фиксироваться температура нагрева металла. Но чаще не возникает необходимости в постоянном контроле температуры, так как подбирается оптимальный режим нагрева, который обеспечивает постоянное качество закалки или нагрева ТВЧ. Оптимальный режим закалки подбирается изменением электрических параметров. Таким образом осуществляют закалку нескольких деталей. Далее детали подвергаются лабораторному анализу с фиксированием твёрдости, микроструктуры, распределения закалённого слоя по глубине и плоскости. При недогреве в структуре доэвтектоидных сталей наблюдается остаточный феррит; при перегреве возникает крупноигольчатый мартенсит. Признаки брака при нагреве ТВЧ такие же, как и при классических технологиях термообработки.

При поверхностной закалке ТВЧ нагрев проводится до более высокой температуры, чем при обычной объемной закалке. Это обусловлено двумя причинами. Во-первых, при очень большой скорости нагрева температуры критических точек, при которых происходит переход перлита в аустенит, повышаются, а во-вторых, нужно, чтобы это превращение успело завершиться за очень короткое время нагрева и выдержки.

Несмотря на то, что нагрев при высокочастотной закалке проводится до более высокой температуры, чем при обычной, перегрева металла не происходит. Так происходит из-за того, что зерно в стали попросту не успевает вырасти за очень короткий промежуток времени. При этом также стоит отметить, что по сравнению с объемной закалкой, твердость после закалки ТВЧ получается выше примерно на 2— 3 единицы HRC. Это обеспечивает более высокую износостойкость и твердость поверхности детали.

Преимущества закалки токами высокой частоты

  • высокая производительность процесса
  • легкость регулирования толщины закаленного слоя
  • минимальное коробление
  • почти полное отсутствие окалины
  • возможность полной автоматизации всего процесса
  • возможность размещения закалочной установки в потоке механической обработки.
Читайте также:  Проверка состояния изоляции электрических машин переменного тока

Наиболее часто поверхностной высокочастотной закалке подвергают детали, изготовленные из углеродистой стали с содержанием 0,4—0,5% С. Эти стали после закалки имеют поверхностную твердость HRC 55—60. При более высоком содержании углерода возникает опасность появления трещин из-за резкого охлаждения. Наряду с углеродистыми применяются также низколегированные хромистые, хромоникелевые, хромокремнистые и другие стали.

Оборудование для выполнения индукционной закалки (ТВЧ)

Индукционная закалка требует специального технологического оборудования, которое включает три основных узла: источник питания — генератор токов высокой частоты, индуктор и устройство для перемещения деталей в станке.

Генератор токов высокой частоты это электрические машины, различающиеся по физическим принципам формирования в них электрического тока.

  1. Электронные устройства, работающие по принципу электронных ламп, преобразующих постоянный ток в переменный ток повышенной частоты – ламповые генераторы.
  2. Электромашинные устройства, работающие по принципу наведения электрического тока в проводнике, перемещающихся в магнитном поле, преобразующие трехфазный ток промышленной частоты в переменный ток повышенной частоты – машинные генераторы.
  3. Полупроводниковые устройства, работающие по принципу тиристорных приборов, преобразующих постоянный ток в переменный ток повышенной частоты – тиристорные преобразователи (статические генераторы).

Генераторы всех видов различаются по частоте и мощности генерируемого тока

Виды генераторов Мощность, кВт Частота, кГц КПД

Ламповые 10 — 160 70 — 400 0,5 — 0,7

Машинные 50 — 2500 2,5 — 10 0,7 — 0,8

Тиристорные 160 — 800 1 — 4 0,90 — 0,95

Поверхностную закалку мелких деталей (иглы, контакты, наконечники пружин) осуществляют с помощью микроиндукционных генераторов. Вырабатываемая ими частота достигает 50 МГц, время нагрева под закалку составляет 0,01-0,001 с.

Способы закалки ТВЧ

По выполнению нагрева различают индукционную непрерывно-последовательную закалку и одновременную закалку.

Непрерывно-последовательная закалка применяется для длинномерных деталей постоянного сечения (валы, оси, плоские поверхности длинномерных изделий). Нагреваемая деталь перемещается в индукторе. Участок детали, находящийся в определенны момент в зоне воздействия индуктора, нагревается до закалочной температуры. На выходе из индуктора участок попадает в зону спрейерного охлаждения. Недостаток такого способа нагрева – низкая производительность процесса. Чтобы увеличить толщину закленного слоя необходимо увеличить продолжительность нагрева с помощью снижения скорости перемещения детали в индукторе. Одновременная закалка предполагает единовременный нагрев всей упрочняемой поверхности.

Эффект самоотпуска после закалки

После завершения нагрева поверхность охлаждается душем или потоком воды непосредственно в индукторе либо в отдельном охлаждающем устройстве. Такое охлаждение позволяет выполнять закалку любой конфигурации. Дозируя охлаждение и изменяя его продолжительность, можно реализовать эффект самоотпуска в стали. Данный эффект заключается в отведении тепла, накопленного при нагреве в сердцевине детали, к поверхности. Говоря другими словами, когда поверхностный слой охладился и претерпел мартенситное превращение, в подповерхностном слое еще сохраняется определенное количество тепловой энергии, температура которой может достигать температуры низкого отпуска. После прекращения охлаждения эта энергия за счет разницы температур будет отводиться на поверхность. Таким образом отпадает необходимость в дополнительных операциях отпуска стали.

Конструкция и изготовление индукторов для закалки ТВЧ

Индуктора изготавливают из медных трубок, через которые в процессе нагрева пропускается вода. Таким образом предотвращается перегрев и перегорание индукторов при работе. Изготавливаются также индукторы, совмещаемые с закалочным устройством — спрейером: на внутренней поверхности таких индукторов имеются отверстия, через которые на нагретую деталь поступает охлаждающая жидкость.

Для равномерного нагревания необходимо изготавливать индуктор таким образом, чтобы расстояние от индуктора до всех точек поверхности изделия было одинаковым. Обычно это расстояние составляет 1,5-3 мм. При закалке изделия простой формы это условие легко выполняется. Для равномерности закалки, деталь необходимо перемещать и (или) вращать в индукторе. Это достигается применением специальных устройств — центров или закалочных столов.

Разработка конструкции индуктора предполагает прежде всего определение его формы. При этом отталкиваются от формы и габаритов закаливаемого изделия и способа закалки. Кроме того, при изготовлении индукторов учитывается характер перемещения детали относительно индуктора. Также учитывается экономичность и производительность нагрева.

Охлаждение деталей может применяется в трех вариантах: водяным душированием, водяным потоком, погружением детали в закалочную среду. Душевое охлаждение может осуществляться как в индукторах-спрейерах, так и в специальных закалочных камерах. Охлаждение потоком позволяет создавать избыточное давление порядка 1 атм, что способствует более равномерному охлаждению детали. Для обеспечения интенсивного и равномерного охлаждения необходимо, чтобы вода перемещалась по охлаждаемой поверхности со скоростью 5-30 м/сек.

Источник

Токи высокой частоты температура

Под высокочастотным нагревом (нагрев токами высокой ча­стоты) понимается нагрев при бесконтактной передаче энергии в нагреваемое тело с помощью электромагнитного поля. В зависи­мости от того, какая составляющая электромагнитного поля играет основную роль, различают нагрев в магнитном поле (индукцион­ный нагрев) и электрическом поле (диэлектрический или «емкост­ный» нагрев). Системы высокочастотного нагрева имеют ряд осо­бенностей:

  1. нагрев может осуществляться только на переменном токе;
  2. понятие «высокая» или «низкая» частота является относи­тельным и определяется соотношением размеров тел и длины электромагнитной волны в их материале;
  3. в системах всегда имеется реактивная мощность (индуктив­ная или емкостная), причем ее величина обычно много больше активной;
  4. системы являются объектами с распределенными пара­метрами, что усложняет измерения в них и расчеты.

Для индукционного нагрева используются частоты от 50 Гц до 5 мГц, для диэлектрического — от сотен килогерц до тысяч мегагерц.

Индукционный нагрев успешно применяется для следующих технологических процессов:

  1. плавки металлов в открытых и вакуумных индукционных печах;
  2. индукционного нагрева заготовок под штамповку, прокатку, гибку и другие способы пластической деформации;
  3. поверхностной индукционной закалки;
  4. индукционного нагрева для термообработки (отжиг, отпуск, рекристаллизация, нормализация, закалка) сортового проката, труб, лент;
  5. сварки труб, профилей и кабельных оболочек;
  6. высокочастотной пайки и наплавки инструмента для меха­нической обработки (резцы, фрезы, протяжки и др.) и горнобурового инструмента (долота, шарошки), изоляторов и выводов кон­денсаторов, всевозможных трубчатых соединений и других изде­лий, которые трудно изготовить в виде цельных конструкций;
  7. индукционного нагрева с целью сушки или оплавления лако­вых, полиэтиленовых и других антикоррозионных, термозащит­ных и электроизоляционных покрытий лент, труб и профи­лей;
  8. индукционного нагрева труднообрабатываемых материалов перед механической обработкой резанием (слябы, слитки из тита­новых и других специальных сплавов);
  9. бестигельной зонной плавки и очистки полупроводниковых материалов-кремния, германия и др.;
  10. эпитаксиального наращивания пленок чистых металлов и полупроводников;
  11. плавки металлов во взвешенном состоянии;
  12. обогрева технологического оборудования (трубопроводы, химические реакторы, экструдеры, пресс-формы и т. д.);
  13. индукционного нагрева газов (воздух, кислород, аргон, ксенон и др.) для осуществления химических реакций и проведе­ния различных высокотемпературных технологических процессов.

Диэлектрический нагрев используется для разнообразных технологий, основными из которых являются:

  1. сушка древесины, пряжи, сыпучих материалов типа люми­нофоров и т. д.;
  2. склейка изделий из древесины (оконные переплеты, двери, щиты, мебель, музыкальные инструменты); полимерных и комби­нированных материалов;
  3. сварка изделий из полихлорвинила и других пластмасс, а также синтетических волокон и пленок;
  4. подогрев пресс-порошков перед штамповкой;
  5. подогрев с целью ускорения полимеризации при изготовле­нии изделий из стеклопластиков и реактопластов;
  6. формование изделий из пенополистирола при изготовлении тепловой изоляции холодильников, упаковочной тары, теплоизо­ляционных плит, моделей для точного литья и т. д.;
  7. сушка литейных стержней;
  8. дефростация и разогрев пищевых продуктов.

Общая и единичная мощность установок диэлектрического на­грева, используемых в промышленности, значительно меньше, чем индукционных, а их конструкция в сильной степени определяется особенностями технологического процесса. Проектирование таких установок сводится или к выбору существующих установок, вклю­чающих источник питания и технологическое устройство, или к индивидуальному проектированию специальной установки с одновременной разработкой технологического процесса.

Имеется много других весьма эффективных применений токов высокой частоты в промышленном производстве. Области и мас­штабы их использования непрерывно расширяются.

2. Поверхностный эффект, глубина проникновения тока

Индукционный нагрев осуществляется вихревыми токами, ин­дуктированными в нагреваемом предмете. Поэтому индукционным способом можно нагревать только электропроводящие материалы. Вихревые токи возникают в проводнике, если его поместить в пере­менное магнитное поле. Эти токи всегда замыкаются в нагревае­мом теле и протекают в плоскости, перпендикулярной напряжен­ности магнитного поля. Магнитное поле образуется индуктором, когда по нему пропускают переменный ток.

Применяется большое количество разнообразных конструкций и форм индукторов: Однако в большинстве случаев индукторы — это одновитковые или многовитковые катушки, изготовленные из медной трубки. Когда индуктор возбуждает магнитное поле, на­правленное по оси детали, говорят, что индукционный нагрев осуществляется в продольном магнитном поле. Если же направ­ление поля перпендикулярно оси нагреваемой детали, говорят, что индукционный нагрев осуществляется в поперечном магнит­ном поле. Плотность индуктированных в проводнике вихревых токов по сечению проводника неодинакова, она уменьшается от поверхности к центру. Это явление носит название поверхност­ного эффекта. Поверхностный эффект наблюдается при любой форме проводника.

Читайте также:  Реферат ток в электролитах

Распределение тока в детале при поверхностном эффекте

Рис. 1. Проявление поверхностного эффекта в ци­линдре при разных частотах

На рис. 1 показано распределение тока и мощности по слоям одинаковой толщины в цилиндрическом проводнике из немагнит­ной стали диаметром 50 мм, помещенном в магнитное переменное поле частотой 500 и 10 ООО Гц. Ток в индукторе принят одинако­вым при той и другой частоте.

В соответствии с распределением тока в поверхностном слое выделится наибольшая мощность. Действительно, в нашем случае при частоте 10 000 Гц 75% всей мощности, переданной в провод­ник, выделилось в первом слое. Поверхностный эффект выражен при прочих равных условиях более резко там, где частота выше.

Амплитуда плотности тока в массивном однородном теле убы­вает непрерывно по экспоненте e -x / Δ . На расстоянии Δ от поверх­ности она уменьшается в е ≈ 2,718 раз (основание натурального логарифма).

Величина Δ, называемая глубиной проникновения тока в дан­ный материал, играет очень большую роль в теории индукцион­ного нагрева. Она служит своеобразной единицей измерения, опре­деляющей линейные размеры нагреваемых тел и индуктора, и ши­роко используется в электрических и тепловых расчетах. Если минимальный линейный размер поперечного сечения тела, в ко­тором протекают вихревые токи, много больше Δ (в восемь и более раз), то частота является высокой (или тело массивным), если же он меньше Δ, то частота низкая (или тело «прозрачное» для электромагнитного поля данной частоты).

В массивном теле в пределах слоя толщиной Δ выделяется почти вся энергия (86,5%), а мощность, передаваемая в тело, мо­жет быть точно найдена, если считать, что весь индуктированный ток равномерно распределен в слое Δ. Это позволяет находить сопротивления тел при ярком поверхностном эффекте по форму­лам для постоянного тока. В общем случае Δ теряет свою физи­ческую интерпретацию и является расчетной величиной, харак­теризующей длину электромагнитной волны в материале (λ = 2лΔ) и зависящей только от его свойств и частоты тока:

Глубина проникновения тока

где ρ — электрическое сопротивление материала проводника, Ом∙см; μ — относительная магнитная проницаемость; f — частота тока, Гц.

Для ферромагнитных материалов различают глубину проник­новения в холодный металл Δx (до температуры точки Кюри) и в горячий металл — Δг или Δ2. Значения глубины проникнове­ния Δ для разных материалов и частот приведены в табл. 1.

Таблица 1. Значения глубины проникновения тока (см)

Глубина проникновения тока при индукционном нагреве

3. Формы и размеры проводника

Из рис. 1 видно, что при частоте 500 Гц мощность, выделенная в цилиндре, меньше, чем при 10000 Гц. Это свидетельствует о низ­ком к. п. д. индуктора, а при 500 Гц, что всегда наблюдается при слабо выраженном поверхностном эффекте, к. п. д. будет выше, если диаметр цилиндра увеличить. Для сравнительной оценки результатов индукционного нагрева и удобства решения уравне­ний электромагнитного поля для каждой формы проводника введен безразмерный параметр т — показатель степени поверхностного эффекта. Из всего многообразия форм проводников выделяют обычно три наиболее распространенных:

сплошной цилиндр с радиусом R2

Расчет параметров индуктора

пластина прямоугольной формы с толщиной h2

Расчет параметров индуктора

полый цилиндр с толщиной стенки τ2 (труба)

Расчет параметров индуктора

Характеристики нагрева, например распределение плотности тока, у тел одинаковой формы (подобных тел) будут те же самые, если их показатели степени поверхностного эффекта равны. На­пример, частота 50 Гц при нагреве цилиндра радиусом 280 мм ана­логична частоте 2500 Гц при нагреве цилиндров радиусом 40 мм из того же материала, так как в обоих случаях показатель т один и тот же. Таким образом, показатель степени поверхност­ного эффекта определяет относительную частоту или относитель­ный размер тела.

4. Магнитная проницаемость

Относительная магнитная проницаемость большинства мате­риалов близка к единице, лишь немного превышая ее для пара­магнетиков или не достигая для диамагнетиков. Сюда относятся все газы, большинство непроводниковых материалов и метал­лов — медь, алюминий, титан, графит, аустенитные стали и др.

Вещества, у которых относительная магнитная проницаемость значительно превышает единицу, называются ферромагнетиками. К ним относятся железо, кобальт, никель и сплавы на их основе, в том числе большинство сталей и чугунов. Для ферромагнетиков характерна зависимость μ от напряженности магнитного поля, температуры и ряда других факторов, таких, как характер термо­обработки, предварительное намагничивание и т. д.

С повышением температуры μ может несколько снижаться (в сильных полях) или возрастать (в слабых полях), а затем при определенной температуре, называемой точкой Кюри, резко падает до единицы. Для сталей точка Кюри равна 740-780° С, для никеля — 360° С, кобальта- 1140° С.

Магнитные свойства стали

Рис. 2. Усредненные магнитные свойства стали:
1 — кривая намагничивания В = f (H); 2, 3, 4 — зависимость H 2 от Н (значения H z надо умножить 10 5 ;10 6 ; 10 7 соответст­венно для каждой из этих кривых)

Зависимость μ от H слож­на и неоднозначна. Разли­чают несколько видов маг­нитной проницаемости (ус­редненная, динамическая и т. д.), однако при рас­четах индукторов обычно ис­пользуется μ, определяемая по основной кривой намагни­чивания для действующего значения напряженности ма­гнитного поля. С увеличе­нием H проницаемость быстро растет, достигает максимума при некоторой напряженно­сти H называемой критиче­ской, и затем падает, стремясь в пределе к единице. В слабых и средних полях μ различных ферромагнетиков существенно раз­личается (в десятки раз), однако в сильных полях (H >> Hкр), характерных для индукционного нагрева, кривые намагничива­ния отличаются мало. Усредненная кривая намагничивания для углеродистых сталей и зависимость H 2 √μ приведены на рис. 2. Они позволят связать напряженность поля и μ с удельной мощ­ностью, поглощаемой ферромагнетиком в переменном магнитном поле. При этом напряженность поля от поверхности в глубь центра уменьшается и μ возрастает. Если поверхностный эффект выра­жен сильно, плотность тока в ферромагнетике меняется почти по прямой, а удельная мощность равна

Расчет параметров индуктора

Расчет параметров индуктора

где Нe — действующее значение напряженности магнитного поля на поверхности среды, А/см; μе — относительная магнитная проницаемость на поверхности, ; ρ — удельное сопро­тивление, Ом∙см; Δе — глубина проникновения тока при μ= μе(табл. 2).

Отсюда Расчет параметров индуктора, где ρ взято в кВт/см 2 . Зная ρ , находим Расчет параметров индуктораи затем по кривой рис. 2 — Не и μe. В лога­рифмическом масштабе зависимости μе = f (Не), μе == f (ρ) и Δе = f ( f, ρ) близки к прямым и более удобны для использования (рис. 3).

Глубина проникновения тока при различных частотах

Рис. 3. Зависимость магнитной прони­цаемости стали μ и глубины проникно­вения тока Δ от удельной мощности ρо при различных частотах тока f (μ- сплошные линии слева вниз направо; Δ — сплошные ли­нии слева вверх на­право; Δ-штрихо­вые линии при мас­штабе справа; μ = f (Н) — штрих-пунктирная линия)

Если поверхностный эффект в ферромагнетике выражен не­ярко, необходимо специальное рассмотрение зависимости μ от ρ.

Следует отметить, что магнитная проницаемость сталей аустенитного класса, например стали XI8H10T, может отличаться от единицы (μ = 1,5÷2,0) из-за наличия остаточного феррита.

Таблица 2. Значения Δ, μе для углеродистой стали при ρ= 18-10 -6 Ом∙См

Глубина проникновения тока для углеродистой стали

5. Электрическое сопротивление

Известно, что электрическое сопротивление металлов с ростом температуры возрастает (рис. 4).

Электрическое сопротивление металлов

Рис. 4. Зависимость удельного электросопротив­ления материалов от температуры

Для ферромагнетиков наибольшее изменение происходит при температуре точки Кюри. В дальнейшем рост его замедляется. При температурах выше 1000° С сопротив­ление сталей различных марок практически становится одина­ковым. В табл. 3 указаны сопротивления материалов, наиболее часто нагреваемых индукционным методом.

Таблица 3. Удельное сопротивление металлов

Удельное сопротивление металлов

6. Теплоемкость

Значения теплоемкости можно найти в табл. 3 и 4. С повыше­нием температуры теплоемкость возрастает. Теплоемкость боль­шинства чистых металлов лежит в пределах 5,8-6,2 ккал/г °С (г∙атом- вес вещества в граммах, равный атомному весу). Сред­няя теплоемкость в диапазоне температур 50-1300° С равна 0,16 кал/г∙°С практически для всех марок сталей.

Таблица 4. Значения средней теплоемкости с (кал/г-° С) в интервале от 50° С до Т для различных сталей

Значение теплоемкости для сталей

7. Теплопроводность

С ростом температуры теплопроводность чистых металлов обычно понижается. Исключение представляют алюминий и не­которые сплавы, например нержавеющая сталь Х18Н10Т, у которых теплопроводность растет при увеличении температуры. Теплопроводность всех марок сталей сближается при темпера­туре выше 800° С. Среднее значение ее для стали (900° С) равно 0,065 кал/см∙с∙°С. Значения коэффициента теплопроводности для некоторых металлов и сплавов приведены в табл. 3.

8. Температуропроводность

Расчет параметров индуктора

Температуропроводность является расчетной величиной, ха­рактеризующей скорость распространения температуры и завися­щей от теплоемкости, теплопроводности и удельного веса материала в соответствии с формулой . Температуропроводность оказывает значительное влияние на результаты тепловых расчетов. Поэтому выбирать ее рекомендуется с учетом темпера­туры нагрева (табл. 5).

Таблица 5. Значения коэффициента температуропроводности а (см 2 /с) для различных сталей

Температуропроводность сталей для расчета параметров индуктора

Источник: «Проектирование и эксплуатация высокочастотных установок» Шамов А. Н., Бодажков В. А.

Источник

Adblock
detector