Меню

Ток заряда акб в буферном режиме



Ток заряда акб в буферном режиме

Буферный режим заряда аккумуляторов, является основным в системах альтернативной энергетики. От правильной настройки и режима использования оборудования зарядной системы зависит производительность всей системы, надёжность и срок службы оборудования.

При использовании в системах альтернативного энергоснабжения в качестве накопителей электрической энергии аккумуляторов, имеются определённые сложности. Это связано с тем, что поступление электрической энергии от ветряков солнечных батарей неравномерно. Поэтому не всегда удаётся обеспечить необходимый ток заряда для аккумуляторов, чтобы через определённое заданное время отключить зарядку. Для таких систем используют буферный режим заряда аккумуляторов, когда к аккумуляторам постоянно подключено зарядное устройство, а также в любое время могут быть подключены один или несколько потребителей электрической энергии. Буферный режим заряда обычно применяют для аварийного включения резервного питания и для сглаживания пиковых нагрузок при маломощном источнике питания. В альтернативной энергетике буферный режим заряда аккумуляторов выполняет несколько иные функции, обеспечение энергоснабжения системы при прерывистом поступлении энергии для заряда аккумуляторов и обеспечение необходимого количества энергии при неравномерном потреблении энергии потребителями.

буферный режим заряда аккумуляторов

Разберём подробнее приведённую схему и работу буферного режима зарядки, его достоинства и недостатки. Важной особенностью этого режима является то, что выходное напряжение зарядного устройства задаётся примерно на 0,05В – 0,1В больше максимального напряжения для заряженного аккумулятора, а значение этого напряжения будет зависеть от конкретного типа аккумулятора. Даже кислотные аккумуляторы разных типов могут иметь различное конечное напряжение заряда, причём оптимальное напряжение несколько меняется при изменении температуры аккумулятора. При отключенной нагрузке Rн, зарядка будет происходить следующим образом: ЭДС зарядного устройства Ез превышает ЭДС аккумулятора Еа и направлена встречно напряжению аккумулятора. Сумма падений напряжения в контуре заряда, равна алгебраической сумме ЭДС этого контура. Следовательно, ток заряда будет зависеть от разности ЭДС зарядного устройства и от общего сопротивления цепи, состоящей из внутреннего сопротивления зарядного устройства и аккумулятора.

заряд аккумулятора

Внутреннее сопротивление зарядного устройства Rз и аккумулятора Rа будем считать практически постоянным. Следовательно, величина тока зарядки будет зависеть от разности ЭДС. Внутренние сопротивления небольшие по величине, поэтому если аккумулятор разряжен, ток заряда может стать больше допустимого, для конкретного аккумулятора или зарядного устройства. Поэтому зарядные устройства выполняют по схеме с ограничением максимального тока и применяют для аккумуляторов определённого типа и ёмкости. По мере заряда аккумулятора разница ЭДС, а значит, и ток заряда будут уменьшаться. Поэтому процесс заряда аккумулятора будет замедляться независимо от того, какую мощность в это время способен выдавать источник альтернативной энергии и может продолжаться до нескольких суток.

Если установленное напряжение на зарядном устройстве завышено, то после окончания химического процесса заряда, электрическая энергия будет идти на нагрев аккумулятора и на разложение воды на водород и кислород. У обслуживаемых аккумуляторов это приведёт к быстрому уменьшению уровня электролита. Большинство необслуживаемых аккумуляторов изготавливаются с возможностью рекуперации водорода и кислорода в воду, но возможности этой системы ограничены. Если необслуживаемый аккумулятор периодически сбрасывает через клапан повышенное давление газа, то это приводит к высыханию электролита, быстрому старению и выходу аккумуляторов из строя.

Альтернативные источники энергии не всегда могут вырабатывать энергию достаточную для заряда аккумулятора. Если генератор ветряка выдаёт напряжение меньше, чем напряжение аккумуляторов, то заряд не происходит. Схема зарядного устройства должна защищать аккумулятор от разряда через зарядное устройство и генератор.

Рассмотрим режим разряда аккумулятора при отсутствии зарядного тока:

В этом режиме, согласно рисунку, выключатель SA1разомкнут, а выключатель SA2 замкнут. Ток разряда будет зависеть от ЭДС аккумулятора и суммы внутреннего и внешнего сопротивления и определяется по формуле:

Напряжение на выводах аккумулятора 1 и 2 будет равно ЭДС аккумулятора минус падение напряжения на внутреннем сопротивлении:

Ток через нагрузку и внутреннее сопротивление одинаковый. Внутреннее сопротивление аккумулятора небольшое и ток в основном зависит от величины сопротивления нагрузки. Чем меньше сопротивление нагрузки, тем больше потребляемый ток и больше величина падения на внутреннем сопротивлении и меньше напряжение на выводах аккумулятора 1 и 2.

Теперь рассмотрим режим одновременной работы зарядного устройства и нагрузки аккумулятора, когда замкнуты контакты SA1и SA2.

Если во время заряда аккумулятора, подключили нагрузку, которая потребляет небольшой по сравнению с зарядным ток, то на зарядку аккумулятора будет идти уже меньшая часть тока. При постепенном уменьшении сопротивления нагрузки и увеличении потребляемого тока, зарядный ток аккумулятора будет уменьшаться и при некотором значении прекратится. Потребляемый от зарядного устройства ток увеличится, что приведёт к некоторому падению напряжения до величины ЭДС аккумулятора. Если поступающий от зарядного устройства ток меньше или равен току, потребляемому нагрузкой, то в таком режиме потреблять энергию можно очень долго. Дальнейшее увеличение потребляемого тока приведёт к тому, что падение напряжения ещё больше увеличится и аккумулятор начнёт отдавать запасённую ранее энергию. Аккумулятор берёт на себя пиковую повышенную нагрузку. Длительная работа в таком режиме может привести к глубокому разряду аккумулятора, в результате снижается ЭДС аккумулятора. Слишком глубокий разряд аккумулятора значительно сокращает срок его службы, поэтому нагрузку лучше подключать через преобразователь или иное устройство, способное автоматически отключать нагрузку при снижении напряжения ниже допустимого уровня. Для кислотных аккумуляторов нежелательно, чтобы они долго находились в разряженном состоянии.

При использовании буферного режима заряда, необходимо следить за поступлением энергии от источника и желательно учитывать, что в то время, когда источник энергии способен выдавать большое количество энергии, но эта энергия не потребляется, то при заряженных аккумуляторах энергия не накапливается, а значит, безвозвратно теряется. При отсутствии поступления энергии от источника, например, ветряка, потребление энергии необходимо сократить или прекратить, чтобы не разрядить аккумуляторы больше допустимой нормы, а также иметь некоторый запас на случай длительных перерывов в поступлении энергии.

1″ :pagination=»pagination» :callback=»loadData» :options=»paginationOptions»>

Источник

Циклический и буферный режимы работы акб

Циклический и буферный режимы работы акб

Буферный режим

Буферный режим работы аккумуляторных батарей является самым «любимым» — батарея находится на постоянной подзарядке и очень редко получает глубокий разряд. В таком режиме аккумулятор прослужит вам максимально долго.

Читайте также:  Активное сопротивление при резонансе токов

Примером использования аккумулятора в буферном режиме может быть источник бесперебойного питания: когда присутствует сеть, аккумулятор постоянно держит заряд, а в момент, когда сеть пропадает, аккумулятор начинает отдавать накопленную энергию. В компьютерных источниках бесперебойного питания обычно используют аккумуляторы 12 В ёмкостью от 7 до 26 А-ч, это даёт возможность компьютеру проработать от аккумулятора дополнительных 10-15 минут при отключении электричества.

Сфера применения при буферном режиме:

  • накопители солнечной энергии
  • источники бесперебойного питания (ИБП)
  • системы аварийного освещения
  • лифты
  • пожарные и охранные системы
  • контрольно-кассовые аппараты
  • аварийные системы

Циклический режим

Циклический режим работы является самым «жёстким» для аккумуляторной батареи. В таком режиме её полностью разряжают, потом ставят на зарядку и снова полностью разряжают. Срок службы в таком случае будет зависеть от глубины разряда аккумулятора.

Большинство свинцово-кислотных аккумуляторов AGM-типа имеют циклический ресурс не более 300 циклов 100% разряда, но уже существуют аккумуляторы нового поколения, циклический ресурс которых составляет 600 циклов 100% разряда.

Сфера применения при циклическом режиме:

  • поломоечные машины
  • лодочные моторы
  • электромобили
  • погрузочная техника и т.д.

Источник

Как правильно заряжать свинцово-кислотный аккумулятор

Данная заметка посвящена вопросу заряда аккумуляторов. И правильному подбору зарядного устройства для стационарных необслуживаемых свинцово-кислотных аккумуляторов.

Сразу должно оговориться, что есть соответствующие ГОСТы, такие, как МЭК 60896, ГОСТ 26881-86, которыми руководствуются специалисты на предприятиях в телекоммуникационных, инженерных компаниях и где все подробно описано: как проводить заряд, какие правила эксплуатации и плановой замены аккумуляторов.

Я же расскажу самые основы для частных покупателей аккумуляторных батарей как правильно их заряжать.

1. Определение режима использования аккумуляторной батареи

Параметры заряда определяются режимом использования аккумуляторной батареи. Вы, наверное, замечали, что в документации на аккумулятор и на самом корпусе аккумулятора всегда указываются константы для двух разных режимов работы.

Буферный режим

Буферный режим (STANDBY USE) – аккумулятор находится в режиме постоянного подзаряда в составе оборудования. Примеры систем с буферным режимом работы АКБ:

  • источники бесперебойного питания (ИБП)
  • пожарные и охранные системы
  • системы аварийного освещения
  • лифты

В такое оборудование уже встроена система автоматического подзаряда с оптимально настроенными параметрами. Обычно, ток заряда составляет

10 % от емкости аккумулятора. Например, для аккумулятора ETALON FORS 1207 (12 В 7 Ач) оптимальный ток заряда 0,7 А. Аккумулятор при таком режиме никогда не доводится до состояния глубокого разряда и прослужит максимально долго — при разряде аккумулятора до разумного низкого уровня, устройство отключиться и завершит аварийное питание нагрузки. АКБ ETALON FORS 1207 в таком режиме будет работать до 5 лет.

Циклический режим

Второй режим — циклический (CYCLE USE), наиболее стрессовый для аккумуляторной батареи. Это режим работы аккумуляторов в электромобилях, электролодках, электропогрузчиках и т.д. В этом режиме аккумуляторы используются и в детских электромобилях, электромотоциклах, квадроциклах, самокатах и т.д. При работе в циклическом режиме аккумулятор разряжается, потом ставится на заряд и снова разряжается. Срок службы в таком случае будет определяться не рекомендованным сроком использования, а допустимым количеством циклов заряда-разряда аккумулятора.

Свинцово-кислотные AGM аккумуляторы ETALON FORS имеют циклический ресурс до 250 циклов при разряде 100 %, и до 1200 циклов при разряде 30 %.

Именно в этом режиме актуален вопрос своевременного заряда и правильного хранения.

2. Выбор зарядного устройства для АКБ

Существует много правил и методов заряда аккумулятора, те же ГОСТы в помощь, в том числе одноступенчатые постоянным током, двухступенчатые (сначала постоянное напряжение и затем постоянный ток), комбинированные, с дозарядом и т.д. Но если вы не увлеченный инженер и речь идет о циклическом режиме использования АКБ, лучше всего заряжать аккумуляторы современными зарядными устройствами для AGM аккумуляторов, со встроенным «умным» процессором. Такие ЗУ способны самомтоятельно подбирать опримальные токи заряда и контролируют процесс заряда.

Зарядное устройство подбираем по следующим параметрам:

  • подходит для стационарных аккумуляторов
  • диапазон заряжаемых емкостей соответствует емкости аккумулятора (оптимальный зарядный ток 10–20 % от емкости аккумулятора. Технический максимум 30 % емкости, но не больше)
  • соответствует напряжению аккумулятора (12 В или 6 В)
  • наличие в комплекте поставки коннекторов для подключения к АКБ
  • наличие встроенных индикаторов состояния заряда
  • наличие защиты от короткого замыкания, переполюсовки, перезаряда аккумулятора
  • наличие инструкции на русском языке

Примечание 1000 ВА: Подробно мы рассматривали зарядные устройства в нашей статье Как мы выбирали зарядное устройство для продаж через интернет-магазин.

3. Проверка параметров зарядного устройства

Общее правило – ток заряда и напряжение должны соответствовать указанным на корпусе аккумулятора и в техническом описании конкретной модели.

Интервал напряжений заряда в циклическом режиме всегда приводится на лицевой стороне АКБ. Для приведенного на иллюстрации аккумулятора, оно составляет 14,5–15 В. В аккумуляторах 6 В интервал напряжений этого производителя будет 7,25–7,5 В.

При выборе зарядного устройства обязательно обращайте на это внимание!

4. Периодичность заряда АКБ

Когда может возникнуть необходимость в заряде аккумулятора?

1) Перед началом использования. Введение аккумуляторов в работу должно производиться при достижении ими номинальной емкости. Приборов для определения заряда аккумулятора много, в том числе они встроены в зарядные устройства. Если аккумулятор перед началом использования разряжен, его нужно подзарядить.

Важно! Чтобы аккумулятор служил долго, его не рекомендуется разряжать более чем на 80 % номинальной емкости. Глубокий разряд, ниже 1,6 В на элемент, приводит к сульфатации и деградации пластин. Рекомендую не допускать в разряженных 12-вольтных аккумуляторах напряжения ниже 10,5 В.

2) После использования и перед хранением разряженный аккумулятор также нужно зарядить. Нельзя оставлять разряженный аккумулятор надолго, он должен храниться полностью заряженным.

3) Регулярно производить полный заряд аккумулятора в течение срока хранения, не реже 1 раза в 6 месяцев. Не забываем о естественном саморазряде 3 % в месяц! При низких или слишком высоких температурах хранения аккумулятор «садится» еще быстрее. При этом крайне желательно, чтобы за весь период хранения проводилось не более двух таких обслуживающих подзарядов.

5. Не забывайте про температурные условия заряда аккумулятора

  • Параметры напряжения в технических условиях указаны для температуры в 20–25 °C.

Если заряжать аккумулятор приходится при другой температуры, то желательно вводить поправку в зарядное напряжение: учет термокомпенсации напряжения повышает срок службы аккумулятора. В бытовых условиях учесть это правило трудно, поэтому, при вожножности, заряд АКБ переносится в помещение с комнатной температурой.

  • Не заряжайте принесенные с мороза аккумуляторы, дайте им отогреться в помещении несколько часов. Также нельзя заряжать и слишком нагретые АКБ.
  • Практически бесполезно заряжать сильно разряженный аккумулятор — меньше 5 В для 12-тивольтового аккумулятора. При напряжении в 7 В аккуулятор иногда удается «вытянуть», но, в таком случае, не стоит рассчитывать на гарантированное восстановление емкости аккумулятора. Для 6-тивольтовых аккумуляторов приведенные значения, соответственно, делим на два.
Читайте также:  По графику зависимости силы тока протекающего по катушке колебательного контура от времени ответы

Сколько времени нужно заряжать аккумулятор

Время заряда зависит от степени разряженности аккумулятора, напряжения и тока заряда.

Если погрузиться в теорию и расписать, какие параметры нужно учесть, чтобы правильно определить время заряда, то получится вполне качественная диссертация. Которая еще и вызовет ожесточенные споры среди профессионалов.

Поэтому, как было рекомендовано выше, выбирайте зарядное устройство по следующим правилам:

  1. Напряжение зарядного устройства должно попадать в интервал напряжения циклического режима, приведенного на лицевой стороне аккумулятора.
  2. Ток заряда ЗУ должен попадать в интервал от 10 до 20 % от емкости аккумулятора.
  3. Зарядное устройство должно быть автоматическим.

и можете считать, что вне зависимости от разряженности аккумулятора, за ночь он зарядится полностью. При этом, если аккумулятор разряжен не полностью, то автоматическое зарядное устройство дозарядит его и перейдет в режим компенсации саморазряда без вреда для аккумулятора.

Подведем итоги:

  • При использовании аккумулятора в буферном режиме, аккумулятор подзаряжается зарядным устройством входящим в состав оборудования.
  • При использовании аккумулятора в циклическом режиме, понадобится зарядное устройство, подходящее по параметрам, приведенным в параграфе «Сколько времени нужно заряжать аккумулятор».
  • При использовании аккумулятора в циклическом режиме, разумно не разряжать аккумулятор полностью и заряжать его как можно чаще. Это позволит увеличить срок службы аккумулятора.
  • При длительном хранении, с интервалом в 6 месяцев. И не более двух раз за время хранения без использования.

Соблюдайте эти условия, и ваш аккумулятор прослужит максимально долго!

С Вами поделился знаниями
Е. Фурсенко, директор компании ETALON.

Источник

Буферное зарядное устройство для автомобильного аккумулятора

Буферное зарядное устройства (БЗУ) представляет собой стабилизированный источник напряжения, имеющий ограничитель выходного тока. Напряжение на выходе БЗУ соответствует напряжению на заряженном аккумуляторе. Если к такому устройству подключить требующую подзарядки аккумуляторную батарею, то зарядный ток будет определяться разностью напряжений на батарее и на выходе БЗУ, а также внутренним сопротивлением аккумулятора. В процессе зарядки зарядный ток уменьшается, пока не станет равным току саморазряда аккумулятора. В таком состоянии аккумулятор может находиться неограниченно долго — в течении всего срока эксплуатации. Если к БЗУ будет подключен сильно разряженный или неисправный (содержащий короткозамкнутые пластины) аккумулятор, то зарядный ток может существенно возрасти. Чтобы он не мог превысить безопасные значения в БЗУ имеется ограничитель выходного тока.

Буферный режим зарядки свинцовых аккумуляторных батарей широко используется в источниках бесперебойного питания. Опыт эксплуатации таких источников, а также рекомендации изготовителей аккумуляторов для них, говорят о том, что буферная зарядка весьма благотворно сказывается на сроке службы свинцовых аккумуляторов.

Буферная зарядка автомобильных аккумуляторов не получила широкого распространения по нескольким причинам. Полная зарядка от БЗУ сильно разряженного аккумулятора занимает больше времени, чем обычная зарядка. Существенные изменения зарядного тока, характерные для буферной зарядки, не соответствуют рекомендациям изготовителей аккумуляторов, которые обычно предлагают заряжать аккумулятор стабильным током, численно равным одной десятой ёмкости батареи. Главным препятствием на пути изготовления и использования БЗУ является то, что данное устройство должно работать постоянно, если автомобиль, на котором установлен заряжаемый аккумулятор, находится в гараже. Это требование накладывает на схемотехнику и конструкцию БЗУ повышенные требования по надёжности, а также электро и пожаробезопасности.

Вопросы, связанные с целесообразностью использования БЗУ с автомобильными аккумуляторами и зависимостью их срока службы от режима зарядки, выходят за рамки данной статьи. Отметим только, что режим БЗУ используется во многих фирменных зарядных устройствах для автомобильных аккумуляторов. Они автоматически переходят в режим БЗУ по окончании зарядки аккумулятора стабильным током и находятся в этом режиме пока аккумулятор не будет отключен. Также, по мнению автора, производители аккумуляторов не слишком заинтересованы в продлении сроков эксплуатации их продукции. В связи с этим рекомендуемый ими режим зарядки не следует воспринимать как единственно возможный.

У автора аккумуляторная батарея 6СТ-55 Подольского аккумуляторного завода прослужила 13 лет. Автомобиль, на котором она была установлена, эксплуатировался круглый год и хранился в неотапливаемом гараже. В течении всего срока эксплуатации батарея была подключена к БЗУ, которое отключалось только на время поездок.

Внешний вид БЗУ представлен на фотографии.

На верхней панели устройства имеется кнопка выключателя сетевого питания. Справа от кнопки под завинчивающейся крышкой находится ось переменного резистора, позволяющего регулировать выходное напряжение БЗУ. Далее, справа от переменного резистора, расположен выходной разъём. На передней панели имеется закрытое оргстеклом окно, за которым находится табло измерителя выходного тока и напряжения, а также два зелёных светодиода, сигнализирующих об исправности БЗУ. Справа от окна имеется таблица, содержащая ряд значений выходного напряжения БЗУ, которые следует устанавливать в зависимости от температуры в гараже. Свойства свинцовых аккумуляторов таковы, что при повышенных температурах напряжение на выходе БЗУ следует уменьшать, а при пониженных — увеличивать. Температурный коэффициент для свинцового аккумулятора с номинальным напряжением 12 Вольт по разным источникам составляет от — 30 до -15 мВ/°С. Таблица составлена исходя из значения -20 мВ/°С.

На следующем рисунке представлена схема электрическая принципиальная БЗУ.

Автор неоднократно убеждался в том, что надёжность работы моточных изделий — электромоторов, трансформаторов, реле и т.п., эксплуатируемых в неотапливаемых помещениях, существенно снижается. Как правило причиной отказов является образование короткозамкнутых витков. Видимо это связано с повышенной влажностью и большими перепадами температуры, способствующими разрушению лаковой изоляции обмоточного провода. В данном устройстве для повышения надёжности используются два силовых трансформатора, обмотки которых включены последовательно. При таком соединении межвитковое замыкание в любом из трансформаторов не вызывает аварийной ситуации — существенного повышения токов в обмотках, перегрева и т.п. Более того — БЗУ в этом случае не теряет работоспособность — продолжает поддерживать аккумулятор в заряженном состоянии. Светодиоды HL1 и HL2 сигнализируют об исправности трансформаторов. Если один из них перестаёт светиться, то соответствующий трансформатор нуждается в ремонте или замене. Если неисправность произойдёт в обеих трансформаторах, то может увеличиться потребляемый ток. Также может произойти перегрев обмоток трансформаторов. В этом случае сработают плавкие предохранители FU2,3 или тепловые предохранители FU1, FU4.

Читайте также:  Зарядить телефон постоянным током

Стабилизацию напряжения и ограничение зарядного тока обеспечивает микросхема DA1 — LM317. Микросхемы данного типа имеют встроенную защиту от повышения выходного тока до значений свыше 2.5 А , защиту от короткого замыкания выхода, а также защиту от перегрева. Схема включения DA1 отличается от типовой только способом регулирования выходного напряжения. В данном случае выходное напряжение регулируется в диапазоне 11. 17 Вольт с помощью резистора R7. В случае потери контакта в этом резисторе ток на выходе БЗУ уменьшится до нуля, а не возрастёт до уровня срабатывания токовой защиты, как это случилось бы при обычном способе регулирования выходного напряжения (переменный резистор между 1-м выводом микросхемы и общим проводом).

При эксплуатации БЗУ может произойти отключение питающей сети. В этом случае ток разряда аккумулятора через БЗУ должен быть минимальным — существенно ниже тока саморазряда. Это обеспечивается с помощью ключа VT1 и диода VD5. При отключении сетевого питания как транзистор VT1, так и диод VD5 запираются. Ключ VT1 разрывает цепь для тока разряда через делитель R5 — R8, а диод VD5 отключает от аккумулятора электролитический конденсатор C2, имеющий значительную ёмкость и, возможно, заметный ток утечки. В результате ток разряда аккумулятора на отключенное от сети БЗУ составляет около 20 мкА. Этот ток определяется главным образом входным сопротивлением вольтметра, подключенного к выходу БЗУ.

Диод VD8 защищает БЗУ в случае ошибки с полярностью подключенного аккумулятора. В этом случае сгорит предохранитель FU5, после замены которого работоспособность устройства восстановится. Если такая ошибка исключена, то данный диод можно не устанавливать.

Вспомогательный источник питания с выходным напряжением около 8 В, собранный на элементах VD3 и С3, служит для питания цифрового измерителя тока и напряжения, подключенного к выходу ЗУ. Также он формирует сигнал, открывающий ключ VT1 при наличии напряжения в питающей сети. Если сетевое напряжение отключается, то конденсатор C3 быстро разряжается до нуля благодаря резистору R4.

В качестве цифрового измерителя тока и напряжения автор использовал широко распространённое устройство, продающееся в интернет-магазинах под названием «100V 10A Voltmeter Amperemeter LED Dual Digital Volt Amp Meter». Поскольку изготовители не всегда приводят схему подключения и цветовая маркировка выводов может отличается от той, которая приводится в описании, предлагается подключить измеритель к БЗУ в соответствии с нумерацией выводов, приведенной на следующей фотографии.

При пользовании измерителем следует учитывать его особенность. Если измеряемый ток менее 50 мА, то на цифровом табло будет нулевой отсчёт «0.00 А». По мнению автора этот недостаток в значительной мере компенсируется доступностью устройства и его невысокой ценой — около 3-х USD. В продаже имеются также более точные измерители не имеющие указанного недостатка, но их стоимость заметно выше.

Внешний вид устройства со снятой крышкой приведен на следующей фотографии.

Все элементы находятся внутри металлического корпуса . Тепловые предохранители FU1 и FU4 приклеены термостойким клеем к трансформаторам Т1 и Т2 соответственно. Плавкие предохранители FU2 и FU3 размещены в сетевой вилке. Для повышения надёжности все плавкие предохранители установлены без арматуры — впаяны в разрывы соответствующих проводов с последующей изоляцией термоусадочной трубкой. Радиатором для микросхемы DA1 и диодного моста VD4 является алюминиевая пластина. Между микросхемой и пластинной следует проложить слюду или иной изолятор, обладающий низким тепловым сопротивлением. Алюминиевая пластина в свою очередь прикручена винтами к металлическому корпусу. Для дополнительного снижения теплового сопротивления использована паста КПТ-8. Резистор R7, с помощью которого регулируется выходное напряжение, должен быть защищён от случайных воздействий. Автор использовал в качестве R7 проволочный резистор типа ПП3-40.

Отладка устройства заключается в подборе резисторов R1 и R2, чтобы обеспечить одинаковую яркость светодиодов HL1 и HL2. Подбор этих резисторов может потребоваться если параметры трансформаторов Т1 и Т2 существенно отличаются. В этом случае напряжения между ними в режиме холостого хода могут распределяться неравномерно. С ростом нагрузки напряжения на трансформаторах выравниваются.

Обязательным условием безопасной эксплуатации БЗУ является надёжное заземление его корпуса.

Для подключения БЗУ к автомобильному аккумулятору удобно использовать разъём прикуривателя, если он не отключается при извлечении ключа зажигания. В противном случае потребуется установить специальный разъём для БЗУ. Конструкция разъёма должна исключать подключение с неправильной полярностью. В провод, соединяющий плюсовую клемму аккумулятора с разъёмом, следует установить плавкий предохранитель на ток 5 А.

Правильный выбор выходного напряжения, на которое настроено БЗУ, очень важен для успешной эксплуатации аккумулятора и зарядного устройства. Если напряжение ниже оптимального значения, то аккумулятор будет заряжен не полностью. Повышенное напряжение может вызвать постепенное выкипание электролита и привести к сокращению срока службы аккумулятора. Изготовители обычно не указывают оптимальное напряжение для буферного режима зарядки автомобильных аккумуляторных батарей. Можно сделать выбор на основе напряжения в автомобильной бортсети — от 13.8 В до 14.5 В. Для буферной зарядки лучше выбрать значение вблизи нижней границы этого диапазона. Также можно взять за основу параметры режима хранения (буферного режима) одного из автоматических зарядных устройств, выпускаемых промышленностью. Например в описании зарядных устройств семейства «Вымпел», фрагмент таблицы из которого приведен в приложении к данной статье, указано напряжение 13.4 — 13.8 В. В настоящее время автор использует БЗУ с необслуживаемой аккумуляторной батареей обычного типа (не AGM). При температуре 20°C напряжение выставлено на 13.7 В. Значения напряжений для других температур можно взять из таблицы, находящейся на передней панели устройства (см. 1-ю фотографию).

Источник