Меню

Ток в диоде при напряжении комнатной температуры



Характеристики и параметры полупроводникового диода

рис 1.25Вольт-амперная характеристика (ВАХ) полупроводникового Вольт-амперная характеристика (ВАХ) полупроводникового диода на постоянном токе (статическая характеристика).

Вольт-амперная характеристика — это зависимость тока i, протекающего через диод, от напряжения u , приложенного к диоду (рис. 1.25). Вольт-амперной характеристикой называют и график этой зависимости.

Вначале будем полагать (см. рис. 1.25), что обратное напряжение (u u /φr- 1)

Тепловой ток is обусловлен генерацией неосновных носителей в областях, прилегающих к области p-n-перехода. Однако часто это идеализированное описание дает неприемлемую погрешность. Особенно большая погрешность возникает при вычислении тока диода, включенного в обратном направлении (U > (φт)) для кремниевых диодов оказывается на несколько порядков меньше реального. В то же время стоит отметить, что в некоторых расчетах обратным током вообще можно пренебречь.

Укажем причины отличия характеристик реальных диодов от идеализированных. Обратимся к прямой ветви вольт-амперной характеристики диода (u> 0,i> 0). Она отличается от идеализированной из-за того, что в реальном случае на нее влияют:

  • сопротивления слоев полупроводника (особенно базы);
  • сопротивления контактов металл-полупроводник.

Важно отметить, что сопротивление базы может существенно зависеть от уровня инжекции (уровень инжекции показывает, как соотносится концентрация инжектированных неосновных носителей в базе на границе перехода с концентрацией основных носителей в базе). Влияние указанных сопротивлений приводит к тому, что напряжение на реальном диоде при заданном токе несколько больше (обычно на доли вольта), чем это следует из формулы.

Обратимся к обратной ветви (u рис 1.26 рис 1.27

Обратимся к режиму пробоя полупроводникового диода и соответствующему участку обратной ветви вольт-амперной характеристики (на рис. 1.27 этот участок не показан).

Диоды многих конкретных типономиналов не предназначены для работы в режиме пробоя. Для них этот режим работы — аварийный. Если при пробое ток в цепи не ограничивается (например, внешним сопротивлением), то диод выходит из строя. В таких приборах при чрезмерном увеличении обратного напряжения (по модулю) практически сразу же начинается тепловой пробой (участок электрического пробоя практически отсутствует).

рис 1.28 1.29

Напряжение начала пробоя для рассматриваемых диодов — величина нестабильная (пробой начинается при u= -u роб, где uпроб— так называемое напряжение пробоя — положительная величина). Изобразим соответствующую вольт-амперную характеристику (рис. 1.28).

Диоды некоторых конкретных типов спроектированы с расчетом на работу в режиме лавинного пробоя в течение некоторого короткого времени. Такие диоды называют лавинными. Если отрезок времени, в течение которого диод находится в режиме лавинного пробоя, невелик, то его p-n-переход не успевает перегреться и диод не выходит из строя.

Иначе лавинный пробой перейдет в тепловой и диод выйдет из строя.

Изобразим вольт-амперную характеристику для лавинного диода (рис. 1.29).

Лавинные диоды, как правило, более надежны в сравнении с обычными кратковременные (перенапряжения не выводят лавинный диод из строя).

Для некоторых конкретных типов диодов режим пробоя является основным рабочим режимом. Это так называемые стабилитроны, рассматриваемые ниже.

Зависимость барьерной емкости диода от напряжения.

рис 1.30 1.31

Приведем график зависимости общей емкости Сд кремниевого диода 2Д212А от обратного напряжения (основной вклад в общую емкость вносит барьерная емкость) (рис. 1.30).

Для этого диода максимальный постоянный (средний) прямой ток — 1 А, максимальное постоянное (импульсное) обратное напряжение — 200 В.

Временные диаграммы тока и напряжения диода при его переключении.

Обратимся к схеме на рис. 1.31. Предполагается, что вначале ключ К подключает источник напряжения u1, а затем, в момент времени t = 0, источник напряжения u2.

рис 1.32

Предполагается также, что напряжения u1 и u2 значительно больше прямого падения напряжения на диоде. Изобразим соответствующие временные диаграммы (рис. 1.32).

До момента времени t = 0 протекает ток i1, который с учетом принятого условия u1>>u определяется выражением i1=u1/R/ Сразу после переключения ключа К и в течение так называемого времени рассасывания tрас протекает ток i2, который ограничивается практически только сопротивлением R, т. е. i2= — (u1/R). В этот отрезок времени в базе диода уменьшается (рассасывается) заряд накопленных при протекании тока неравновесных носителей. Заряд уменьшается в результате рекомбинации и перехода неосновных носителей в эмиттер.

По истечении времени tpac концентрация неосновных носителей в базе на границе p-n-перехода становится равной равновесной. В глубине же базы неравновесный заряд еще существует. Длительность времени рассасывания прямо пропорциональна среднему времени жизни неосновных носителей в базе и зависит от соотношения токов i1 и i2 (чем больше по модулю ток i2, тем меньше, при заданном токе i1, время рассасывания).

В момент времени t1 напряжение на диоде начинает быстро возрастать по модулю, а ток i уменьшаться по модулю (спадать). Соответствующий отрезок времени tcп называют временем спада. Время спада отсчитывают до того момента t2 которому соответствует достаточно малое (по модулю) значение тока i3.

Время спада зависит от времени жизни носителей, а также от барьерной емкости диода и от сопротивления R схемы.

Чем больше указанные емкость и сопротивление R, тем медленнее спадает ток.

Отрезок времени tвос = tpac + tcп называется временем восстановления (временем обратного восстановления).

После завершения переходного процесса (момент времени t3) через диод течет ток iобр ycm — обратный ток в установившемся режиме (определяемый по статической вольт-амперной характеристике диода).

Для упомянутого выше диода 2Д212А типовое время восстановления — 150 нc (150 · 10

9 с) при i1 = 2 А (импульсный ток) и i2 = 0,2 А.

Параметры диодов.

Для того, чтобы количественно охарактеризовать диоды, используют большое количество (измеряемое десятками) различных параметров. Некоторые параметры характеризуют диоды самых различных подклассов.

Другие же характеризуют специфические свойства диодов только конкретных подклассов.

Укажем наиболее широко используемые параметры, применяемые к диодам различных подклассов:

Iпр макс — максимально допустимый постоянный прямой ток;

Uпp — постоянное прямое напряжение, соответствующее заданному току;

Uобр макс — максимально допустимое обратное напряжение диода (положительная величина);

Iобр макс — максимально допустимый постоянный обратный ток диода (положительная величина; если реальный ток больше, чем Iобр макс , то диод считается непригодным к использованию);

Rдиф — дифференциальное сопротивление диода (при заданном режиме работы).

В настоящее время существуют диоды, предназначенные для работы в очень широком диапазоне токов и напряжений. Для наиболее мощных диодов Iпр макс составляет килоамперы, a Uобр макс — киловольты.

Источник

Методические указания к практическим занятиям по дисциплине “Общая электротехника и электроника” , страница 7

то есть дырочная составляющая на 2 порядка больше.

3. Определим напряжение для получения заданной плотности тока, воспользовавшись уравнением

, В.

22. Ток, текущий видеальном р-n переходе при большом обратном напряжении и 300К, равен 2*10 -7 А. Определить ток при прямом напряжении 0,1В.

так как при большом обратном напряжении протекает обратный ток насыщения.

При прямом напряжении 0,1В ток

.

23. Диод имеет обратный ток насыщения I = 10мкА. Напряжение, приложенное к диоду, равно 0,5 В. Найти отношение прямого тока к обратному при 300К.

Читайте также:  Почему скорость тока крови в капиллярах самая низкая

Зависимость тока от напряжения

,где

I – обратный ток насыщения,

jТ – температурный потенциал, для 300К он равен 0,025В.

24. Германиевый полупроводниковый диод, имеющий обратный ток насыщения I = 25мкА, работает при прямом смещении 0,1В и 300К. Определить сопротивление диода постоянному и переменному току (дифференциальное).

Прямой ток диода

где jТ – температурный потенциал, для 300К он равен 0,025В.

Сопротивление диода постоянному току

Дифференциальное сопротивление получим дифференцированием исходного выражения.

или

С учётом того, что I >> I можно считать, что

тогда

в нашем случае это будет

Ом, то есть упрощенной формулой можно пользоваться для оценки дифференциального сопротивления прямосмещённого p-n перехода. На практике она чаще используется в следующем виде (для 300 К):

где I берётся в мА, а результат получается в Омах.

Тогда Ом

Из анализа решений можно сделать также очень важный вывод:

сопротивление прямосмещённого p-n перехода переменному току значительно меньше, чем постоянному. Это явление очень часто используется на практике.

25. Для идеального p-n перехода определить

1). при каком напряжении обратный ток будет достигать 90% значения обратного тока насыщения при 300 К?

2). отношение тока при прямом напряжении 0,05 В к току при том же значении обратного напряжения.

1). При 300 К температурный потенциал В.

Из условия задачи обратный ток составит 0,9I.

или

В (60 мВ) (

2). отношение прямого тока к обратному при напряжениях 0,05 и -0,05 В:

, то есть примерно в 7 раз прямой ток больше обратного.

26. Видеальном p-n переходе обратный ток насыщения I = 10 -14 А при 300 К и I = 10 -9 А при 398 К (125 0 С). Определить напряжения на p-n переходе в обоих случаях, если прямой ток равен 1 мА.

Из уравнения вольт-амперной характеристики перехода

, или

, логарифмируя последнее выражение, получим

Для 300 К jТ = kT = 0,86*10 -4 *300 = 0,0258 В, а напряжение

Для 398 К jТ = kT = 0,86*10 -4 *398 = 0,0342 В и

Такая температурная зависимость характерна для Si диодов.

27. Определить во сколько раз увеличивается обратный ток насыщения сплавного p-n перехода, если

1). для Ge диода температура увеличивается от 20 0 С до 80 0 С

2). для Si диода температура увеличивается от 20 0 С до 150 0 С.

Зависимость обратного тока от температуры имеет вид:

где k1 – постоянная;

Езо = еUзо – ширина запрещённой зоны при 0 К;

— температурный потенциал;

Для Ge: h = 1; m = 2; Uзо = 0,785 В

Si: h = 2; m = 1,5; Uзо = 1,21 В.

Следовательно, для Ge обратный ток насыщения

При 80 0 С, или 353 К, имеем:

В

При 20 0 С, или 293 К, имеем:

В

отношение токов для Ge

то есть при повышении температуры с 20 0 С до 80 0 С ток в Ge диоде увеличивается почти в 300 раз.

При 150 0 С, или 433 К, имеем:

В

При 20 0 С или 293 К jТ = 0,0253 В и ток

то есть для Si диода при повышении температуры с 20 0 С до 80 0 С обратный ток насыщения увеличится почти в 3000 раз.

Источник

Устройство и принцип работы диода при прямом и обратном включении

Диоды

Диоды – самые простые полупроводники с двумя электродами, проводящие ток в одном направлении.

Они способны стабилизировать, выпрямлять, модулировать, ограничивать, преобразовать ток, поэтому установлены почти во всех бытовых электроприборах.

Основные характеристики диода: постоянный прямой и обратный электроток, прямое и обратное напряжение, прямое и обратное сопротивление, их максимально допустимые значения.

При монтаже в любом устройстве учитываются максимально допустимые значения параметров.

Устройство

В корпус, изготовленный в виде вакуумного баллона из керамики, стекла или металла, устанавливается:

  • кристалл;
  • анод;
  • катод;
  • подогреватель.

Кристаллы производятся из кремния или германия. Анод (плюс) и катод (минус) цилиндрической формы, помещаются внутри баллона. Подогреватель – нить внутри катода, которая раскаляется при подаче электротока, нагревая его. После достижения определенного уровня температуры активный слой на катоде генерирует нужные для работы электроны.

Сферы применения и назначение

По выполняемой работе диоды разделяются на универсальные, СВЧ, импульсные, выпрямительные, переключающие, стабилитроны, варикапы.

Они устанавливаются в электрооборудование:

  • преобразователи частоты, детекторы, логарифматоры;
  • выпрямители тока;
  • стабилизаторы;
  • ограничители колебаний вольтажа;
  • переключатели;
  • цепи, проводящие ток в единственном направлении;
  • лампочки индикации;
  • приборы, требующие отображения информации на дисплеях;
  • LED телевизоры.

Справка! Светодиоды монтируется в осветительные матрицы (ленты, лампы).

Работа диода и его вольт амперная характеристика

Диоды

По конструкции диод является кристаллом с двумя областями, обладающими различной проводимостью (p и n). Область с p-проводимостью анод (+), с n-проводимостью – катод (-). В аноде заряд в дырках, в катоде – в электронах. Кристалл покрыт металлом с выводами.

Строение определяет 2 положения:

  • открытое;
  • закрытое.

В открытом положении проводимость электротока хорошая, в закрытом – очень плохая.

Вольт-амперной характеристикой называется график. На вертикальной оси отражается основной и противоположный ток, на горизонтальной – основной и противоположный вольтаж.

Прямой электроток повышается быстро параллельно увеличению вольтажа. Противоположный ток увеличивается медленнее.

При слишком большом прямом электротоке молекулы кристалла нагреваются. Если нет системы охлаждения, существует вероятность разрушения кристаллической решетки. В схемах прямой поток ограничивается резистором, подключенным последовательно.

Справка! От электротока прямое напряжение не зависит. Для кремневых полупроводников оно не превышает 1,5 В, для изделий из германия – 1 В.

Прямое включение диода

Диод открывается после подключения напряжения, параметры основного тока зависят от характеристик кристалла и вольтажа. Из n-области в p-область устремляются электроны, из p-области в n-область – дырки. Частицы встречаются на границе (p-n переходе), запускается процесс поглощения (рекомбинации), сопротивление и вольтаж снижаются.

Подключение

Вокруг p-n образуется поле, которое направляется в противоположную сторону. Электроны перемещаются и возвращаются, появляется дрейфующий ток с неизменными параметрами, зависящими только от количества заряженных частиц. Одновременно растет обратное напряжение, переходя в стадию насыщения.

Основной ток увеличивается стремительнее при повышении температуры во время работы прибора.

Обратное включение диода

Если плюс блока питания присоединяется к минусу полупроводника, а минус – к плюсу, работа диода прекращается (он закрывается). Заряженные частицы начинают отдаляться от области p-n, она расширяется, повышается сопротивление

При увеличении обратного напряжения до 100 В растет электроток в противоположном направлении. Рост резко увеличивается, если вольтаж превышает максимально допустимый для границы p-n. Обратный ток нагревает кристалл в диоде, переход пробивается, нормальная работа прибора прекращается. После выключения напряжения рядом с полюсами образуется диффузия.

Внимание! Во время нормальной работы противоположный электроток небольшой, поэтому им пренебрегают, считая полупроводниковый диод элементом с односторонней проводимостью.

Прямое и обратное напряжение

Во время работы (в открытом состоянии) в диоде основное напряжение, от его величины зависит сопротивление и величина электротока. В процессе закрывания через полупроводник проходит ток в противоположном направлении, создается напряжение, способствующее росту сопротивления до нескольких тысяч кОм.

Читайте также:  Влияние величины сварочного тока

Если работа полупроводника проходит на переменном напряжении, он открывается на плюсовой полуволне и закрывается на минусовой. Это свойство позволяет использовать полупроводники в выпрямителях.

Основные неисправности диодов

Внимание! Если диодные полупроводники перестали работать, сначала необходимо выяснить, не закончился ли срок их эксплуатации.

Если это не так, неисправность вызвала другая причина:

  • нарушение герметичности;
  • разрыв перехода, превративший прибор в изолятор:
  • тепловой пробой;
  • электрический пробой:
  • туннельный;
  • лавинный.

При нарушении герметичности возникает протечка, мешающая нормальному функционированию.

Пробой p-n перехода

Пробоем называют увеличение электротока в противоположном направлении после достижении во время работы показателя обратного напряжения, являющегося максимально допустимым для прибора. Если он превышается, противоположный поток электротока резко увеличивается при незначительном изменении вольтажа. После обрыва перехода направление потока всего одно, полупроводник превращается в проводник.

Определить эту неисправность можно при помощи мультиметра, определяющего сопротивление и подающего сигнал при прохождении электротока.

Мультиметр

Электрический пробой

Электрический туннельный или лавинный пробой можно устранить, если вовремя принять необходимые меры.

Причина электрического пробоя – сильный электроток в переходе или перегрев при отсутствии отвода тепла.

Туннельный пробой образуется, если во время работы на диод подается слишком высокое напряжение. Растет значение противоположного электротока, вольтаж снижается, электроны проходят через барьер, если его высота меньше их энергии.

Эту неисправность может вызвать:

  • слишком маленькая толщина области p-n (меньше длины пробега электрона);
  • обратный ток насыщения более 108 В/м;
  • наличие свободных мест в области дырок, в которую переходят электроны.

Лавинный пробой – увеличение во время работы противоположного электротока при небольшом увеличении вольтажа. Причина образования – повышение ионизации в p-n области, вызывающее увеличение количества частиц, носящих заряд. Электроны теряют свои обычные характеристики.

Важно! Пробои туннельного и лавинного типа обратимы, так как не повреждают полупроводник (при своевременном уменьшении вольтажа свойства сохраняются).

Тепловой пробой

Эту неисправность чаще всего вызывает недостаточный отвод тепла, способствующего перегреву перехода во время работы.

  • в кристалле растет амплитуда колебаний атомов;
  • электроны взаимодействуют с проводимой областью;
  • быстро повышается температура;
  • запускается процесс изменения структуры кристалла.

Полупроводник разрушается, причем процесс необратимый.

Основные выводы

Полупроводниковые диоды – радиоэлементы с единственным p-n переходом, присутствующие практически во всех бытовых электроприборах. Чтобы работа полупроводников длилась дольше, необходимо обладать знаниями о принципе работы диодов, причинах неисправностей и способах их предотвращения.

Чаще всего работа полупроводников нарушается при изменениях температуры в окружающей среде или переходе. Если температура слишком высокая, увеличивается количество энергоносителей в переходе, снижается сопротивление, растет объем противоположного тока. После достижения максимально допустимого уровня запускается процесс разрушения кристалла.

Чтобы предотвратить сокращение сроков работы, необходимо следить за температурой среды и чистотой приборов. При необходимости следует организовать дополнительную систему отвода тепла. Повышение температуры в переходе предотвращается соблюдением требований к уровню вольтажа и тока, определенному для конкретного прибора. Даже при малейшем превышении существует вероятность разрушения кристалла.

Источник

Ток в диоде при напряжении комнатной температуры

Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.

обратный клапан

обратный клапан

Диод – это радиоэлемент с двумя выводами. Некоторые диоды выглядят почти также как и резисторы:

диод 1N4007 диод

А некоторые выглядят чуточку по-другому:

д226б диод д214 диод

Есть также и SMD исполнение диодов:

Выводы диода называются – анод и катод. Некоторые по ошибке называют их “плюс” и “минус”. Это неверно. Так говорить нельзя.

На схемах диод обозначается так

Он может пропускать электрический ток только от анода к катоду.

Из чего состоит диод

В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток – фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.

После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.

Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.

строение диода

строение диода

Полупроводник P-типа в диоде является анодом, а полупроводник N-типа – катодом.

Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.

диод Д226

диод Д226

Вот это и есть тот самый PN-переход

PN-переход диода

PN-переход диода

Как определить анод и катод диода

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

катод смд smd диода

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

воронка диод

Диод в цепи постоянного тока

Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.

прямое включение диода

прямое включение диода

Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.

диод в прямом включении

диод в прямом включении

Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.

обратное включение диода

обратное включение диода

Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.

обратное включение

обратное включение диода

Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.

Диод в цепи переменного тока

Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.

Читайте также:  Спектр сигнала постоянного тока

диод в цепи переменного тока

Мой генератор частоты выглядит вот так.

генератор частоты

генератор частот

Осциллограмму будем снимать с помощью цифрового осциллографа

цифровой осциллограф OWON

Генератор выдает переменное синусоидальное напряжение.

синусоидальный сигнал

синусоидальный сигнал

Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.

переменное напряжение после диода

переменное напряжение после диода

Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.

А что будет, если мы поменяем выводы диода? Схема примет такой вид.

переменый ток после диода

переменый ток после диода

Что же получим на клеммах Х1 и Х2 ? Смотрим на осциллограмму.

переменный ток после диода

переменный ток после диода

Ничего себе! Диод срезал только положительную часть синусоиды!

Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”

параметры диода КД411

Для объяснения параметров диода, нам также потребуется его ВАХ

вольтамперная характеристика диода

1) Обратное максимальное напряжение Uобр – это такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр – сила тока при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести к полному тепловому разрушению диода. В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток Iпр – это максимальный ток, который может течь через диод в прямом направлении. В нашем случае это 2 Ампера.

3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Виды диодов

Стабилитроны

Стабилитроны представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение. Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца. Главный параметр стабилитрона – это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.

Выглядят стабилитроны точно также, как и обычные диоды:

Диод

На схемах обозначаются вот так:

Светодиоды

Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.

Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.

светодиоды осветительные светодиоды

Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.

Диод

Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.

На схемах светодиоды обозначаются так:

Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления

светодиоды

Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах

Диод

Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

Как проверить светодиод можно узнать из этой статьи.

Тиристоры

Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – Iос,ср. – среднее значение тока, которое должно протекать через тиристор в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор – (Uу), которое подается на управляющий электрод и при котором тиристор полностью открывается.

тиристор

а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с большой силой тока:

На схемах триодные тиристоры выглядят вот таким образом:

Существуют также разновидности тиристоров – динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

Диодный мост и диодные сборки

Производители также несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки. Диодные мосты – одна из разновидностей диодных сборок.

маломощный диодный мост

На схемах диодный мост обозначается вот так:

Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки и тд. Для того, чтобы их всех описать, нам не хватит и вечности.

Очень интересное видео про диод

Похожие статьи по теме “диод”

Источник