Меню

Ток утечки в компрессоре



Как проверить компрессор холодильника

проверка компрессора холодильника

Вы заметили, что мотор холодильника постоянно работает, включается и почти сразу отключается или вовсе не включается? Температура в камерах выше установленной. Вы подозреваете, что причина в компрессоре. Эта статья поможет самостоятельно разобраться с диагностикой этого узла.

Когда следует проверить компрессор — признаки неисправности

Мотор-компрессор — важный рабочий узел холодильника, который обеспечивает циркуляцию хладагента по системе трубопроводов. Мотор расположен сзади в нижней части холодильного шкафа. Он может находится в закрытом отсеке за панелью или в открытой нише.

закрытый отсек холодильника для компрессора

открытый отсек для компрессора

открытая ниша холодильника для компрессора

В большинстве старых и новых моделей стоят линейные компрессоры с подключением через реле.

линейный компрессор с подключением через реле

В улучшенных современных — инверторные с управлением через преобразователь тока.
Мотор на них подключен через клеммную колодку.

компрессор с подключением через клеммную колодку

По конструкции компрессоры делятся на поршневые, их большинство, и ротационные. Но признаки неисправности у всех общие. В список основных входят:

  • повышенная температура только в одном или в обоих отсеках;
  • компрессор работает постоянно, с очень короткими промежутками отдыха;
  • узел включается, работает несколько секунд, потом щёлкает реле, и мотор отключается, через некоторое время цикл повторяется, корпус компрессора сильно греется;
  • мотор не запускается, корпус не греется.

Неисправности могут быть связаны с дефектами пускозащитного реле или компрессора.

Как проверить компрессор холодильника: рабочий он или нет

Неисправный мотор — частая поломка. Поэтому проверять нужно сначала его.

Список стандартных причин неисправности компрессора выглядит так:

  • замыкание пусковой или рабочей обмотки;
  • обрыв обмоток;
  • замыкание на массу (на корпус);
  • «клин» компрессора, когда мотор гудит, но не работает;
  • повреждение контактов;
  • поломка инвертора (в инверторных компрессорах);
  • неисправность платы управления холодильника в цепи подключения компрессора.

Начнём разбор поломок с конца. Найти поломку в блоке управления или проверить контакты сможет только мастер. Знаний на уровне «могу поставить розетку» будет мало. Копаясь в схеме, вы рискуете повредить что-то важное, и тогда ремонт понадобится не только неисправному компрессору.

Проверить замыкания и обрывы в двигателе можно самостоятельно. Вам понадобятся тестер с клещами, оммометр или мультиметр и пара часов свободного времени.

мультиметр

оммометр

тестер с клещами

Внимание! Отключайте холодильник от сети при любой работе с электрооборудованием.

Это нужно для вашей безопасности и, чтобы сохранить живыми тестеры. Приборы сгорят, если вы будете «прозванивать» контакты под напряжением. Кроме того, на корпусе холодильника может «сидеть» половина напряжения, примерно 110 В из-за фильтра помех (конденсаторе) в схеме, если домашняя проводка не подключена к защитному нулю, обеспечивающему заземление.

проверка напряжения на корпусе холодильника

Это напряжение не опасно из-за малой силы тока без контакта с другими металлическими предметами и корпусом одновременно. Но передвигая не обесточенный холодильник, вы можете случайно коснуться батареи, стояка или плиты.

Проверяем кабель холодильника

Прежде чем браться за мотор-компрессор, проверьте кабель оборудования. Иногда сбои в работе связаны с плохим состоянием питающего провода. Осмотрите кабель, ищите разрывы изоляции и сильные перегибы. Повреждение внешней оболочки может говорить о повреждении жил. Если нарушена изоляция или заломана жила, напряжение может падать. Поэтому двигатель запускается с трудом или через раз.

Осмотрите и проверьте вилку. Возможно штыри качаются или выглядят подгоревшими. Это говорит о перегреве и вероятном внутреннем нарушении контактов. Заодно осмотрите розетку. Если она «болтается», то вилка плохо держится, и напряжение периодически падает.

Кабель, вилка и розетка внешне в норме? Тогда будем разбираться с компрессором.

Замыкание на корпус — как можно проверить мотор холодильника

Замыкание на корпус часто становится причиной отказа компрессора. Начальное сопротивление изоляции двигателя равно 1000 МОм, за время работы качество изоляции ухудшается и показатель сопротивления падает до 100 или даже 10 МОм. Когда величина опускается до 1 Мегаома, мотор подлежит замене, а при замере ниже 500 кОм использовать оборудование запрещено.

Поэтому перед диагностикой надо проверить движок на пробой, чтобы не получить удар током от неисправного устройства при проверке тока под напряжением. Для измерения можно использовать мультиметр, омметр или мегаомметр.

  • Отключите холодильник от сети.
  • Снимите панель компрессора, если она есть.
  • Снимите пусковое или пускозащитное реле с контактов двигателя.
  • Переключите тестер на режим измерения сопротивления.
  • Поищите место с облупившейся краской на корпусе двигателя. Или зачистите небольшой участок.
  • Приложите один щуп прибора к нижнему левому или правому контакту, а второй к корпусу мотора.

схема обмотка замкнута на массу

  • Проверьте показатель. В исправном двигателе тестер покажет величину, как «бесконечность». Если изоляция нарушена, на экране появится значение близкое к нулю.
  • Самый точный показатель даст мегомметр или мультиметр с режимом постоянного напряжения 500 В.

мегомметр

Внимание! Если вы обнаружили пробой обмоток, вызывайте мастера. Пользоваться холодильником с такой неисправностью компрессора опасно для жизни.

Чем отличается замыкание на массу и на корпус? Замкнутый на массу двигатель выдаст полный ноль, и скорее всего не будет работать. При замыкании на корпус сопротивление имеет низкое значение, но отличается от нуля. На такие двигатели не реагирует автомат защиты, но они опасны в работе и требуют замены. УЗО на замыкание на корпус тоже не реагирует, потому что утечки тока в цепи холодильника нет, есть только напряжение на кожухе компрессора.

Тестер показал обрыв? Значит замыкания на корпус нет и можно тестировать дальше.

Как проверить компрессор холодильника мультиметром на исправность

Выводы контактов двигателя расположены треугольником. Верхний называют общим, левый идёт от пусковой обмотки, правый от рабочей. Величина сопротивления между контактами обмоток примерно равна сумме показателей между парами «верхний общий — пусковая обмотка» и «общий — рабочая обмотка».

схема для проверки холодильника мультиметром

Показатели замеряют в таком порядке:

  • верхний и левый контакт (пусковая обмотка);
  • верхний и правый (рабочая обмотка);
  • левый и правый (между обмотками).

Как правило, сопротивление пусковой обмотки выше рабочей, но есть модели с обратным распределением и высоким рабочим сопротивлением.

схема сопротивление обмоток

  • Отключите холодильник от сети.
  • Снимите панель, если она есть.
  • Снимите пусковое реле с контактов двигателя.
  • Переключите тестер на режим измерения сопротивления.
  • Замерьте пусковую обмотку.
  • Замерьте рабочую обмотку.

замер тестером обмотки компрессора

  • Замерьте сопротивление между обмотками.

сопротивление между обмотками

  • Сравните показатели с таблицей сопротивления. Отклонение может составлять 0.1–5 Ом от табличной величины.

Данные по различным моделям компрессоров и маркам холодильников собраны в таблицах.

таблица сопротивления обмоток двигателя Danfoss

таблица сопротивления обмоток двигателя Атлант

таблица сопротивления обмоток двигателя ACC на хладогене R 134

таблица сопротивления обмоток двигателя ACC на хладогене R 600

Внимание! Если между любыми парами контактов на замере тестер показывает ноль, в двигателе есть межвитковое замыкание одной из обмоток.

Данные из замеров не отличаются от табличных значений? Значит компрессор исправен и возможно причина в том, что электропитание поступает с перебоями. Выявить это поможет проверка тока на компрессор.

Как проверить компрессор холодильника без установленного реле

Протестировать ток можно с помощью другого питающего провода и нового реле. Для снятия показаний потребуются токоизмерительные клещи. Они дают более точные показания, чем тестер со щупами.

Внимание! Вы будете измерять ток в проводе под напряжением. Строго соблюдайте технику безопасности. Измеряйте ток на удалении от открытых контактных частей.

Порядок действий такой:

  • Отключите холодильник от сети.
  • Снимите панель, если она есть.

снятие панели компрессора

  • Снимите установленное пусковое реле с контактов двигателя.
  • Возьмите другое рабочее реле и другой кабель.
  • Присоедините контакты кабеля к реле на фазовый выход и рабочую обмотку.

присоединение контактов кабеля к реле

  • Включите провод в розетку.
  • Замерьте токоизмерительными клещами один провод на участке с изоляцией. Для этого разомкните клещи, пропустите провод внутрь, замкните. Прибор покажет величину тока в контуре.
  • Не касайтесь открытых частей! Вы можете получить электротравму.
  • Проверьте показание прибора. Величина тока зависит от мощности двигателя. Для 120 Вт ток составит 1.1–1.2А, для 140 Вт норма 1.3А. Если величина ниже нормы, компрессор не может нормально запуститься.

Эти способы подходят для диагностики моторов-компрессоров обычного типа. Для инверторных холодильников нужно использовать другой метод.

Как проверить производительность компрессора холодильника с инвертором

В хладоагрегате инверторного типа из строя чаще выходит не сам компрессор, а токопреобразующий узел. Поэтому сначала проверять нужно инвертор.

Для тестового включения понадобится гирлянда из трёх ламп накаливания мощностью 60 Вт, соединённых треугольником.

Внимание! Вы будете проверять работу инвертора под напряжением. Строго соблюдайте технику безопасности. Не касайтесь проводов и оборудования при включённом генераторе.

  • Отключите холодильник от сети.
  • Снимите панель с компрессора, если она установлена.
  • Отсоедините инвертор от компрессора.
  • Подключите лампочки к выходу инвертора.
  • Включите холодильник в сеть.
  • При запуске генератора на рабочем инверторе лампочки будут поочерёдно зажигаться и гаснуть. Проследите четыре цикла. Одна лампа должна светить в полную силу, две других вполнакала. Длительность горения примерно 1 секунда.

Если контрольные лампы горят иначе хотя бы в одном из циклов, то нужно искать неисправность в инверторе. Заниматься полной диагностикой должен специалист. Проверить компрессор можно в описанном выше порядке.

Почему мотор компрессора в холодильнике выходит из строя

Как любой другой, холодильный мотор-компрессор ломается по четырём основным причинам:

  • Неправильная эксплуатация холодильника. Холодильный шкаф установлен рядом с источником тепла: батареей отопления или плитой, поэтому двигатель перегревается. Повышенная температура может вызвать пробой изоляции обмоток. Если холодильник подключён к сети с большими перепадами напряжениями или тока без стабилизатора, скачки электрических величин могут спровоцировать перегрев изоляции. Длительный перегрев нарушает целостность обмоток и приводит к замыканию или обрыву.
  • Износ двигателя. У мотора есть рабочий ресурс часов. После его выработки производительность падает и ухудшаются изоляционные свойства обмоток. Двигатель теряет мощность, дольше работает без отдыха, из-за чего перегревается. Сопротивление обмоток становится ниже, изоляция греется и трескается. Из-за этого может возникнуть замыкание, обрыв или пробой на корпус.
  • Заводской брак двигателя. Хотя брак редкая причина, но иногда это случается. При сборке изоляцию обмоток, контакты, поршень или клапаны компрессора могут повредить. На тестировании брак не проявится, но при работе холодильника дефекты быстро «вылезут», и технику придётся отдавать в гарантийный ремонт.
Читайте также:  Ипр 513 3ам ток потребления

Вы проверили мотор холодильника на работоспособность и нашли неисправность? Звоните в «Айс Мэн»! Мастер приедет и установит новый компрессор.
Ремонтируем после заявки в течение 24-х часов, даём гарантию 2 года на установленные узлы, запчасти и обслуживание.

Источник

Неисправности компрессора

Компрессор — это компонент, который в кондиционере подвержен высокой нагрузке и его несправности критичеки сказываются на работоспособности всей системы кондиционирования. В электрической части у компрессора имеется два параметра: пусковой и рабочий ток. Их значения показательны и характеризуют режимы работы компрессора:

  • Высокий пусковой ток приводит к срабатыванию защиты и отключению нагрузки. Причин возникновения высокого пускового тока может быть несколько. Необходимо проверить замыкание между витками электродвигателя: пробой обмотки или конденсатора, разрушение или заклинивание подшипников.
  • Пусковой ток нормальный, но компрессор не работает, так как срабатывает тепловая защита. Причины: это механическое заклинивание, обрыв вывода (замена конденсатора полностью), чрезмерная заправка кондиционера хладагентом (проверка давления и корректировка количества фреона в системе); «слабая фаза» или недостаточное напряжение (переключение техники на менее посаженную фазу).
  • Пусковой ток отсутствует: отсутствует команда от контрольной платы и ее требуется заменить; обрыв обмоток, размыкание реле защиты (все эти компоненты следует заменить)
  • Компрессор работает нормально, но кондиционер плохо охлаждает. Необходима проверка количества фреона, дозаправка, проверка клапанов и других элементов.

Как проверить производительность кондиционера?

Для начала вам следует отключить его от электросети. Закройте сервисный клапан, а также запустите компрессор. Посмотрите, каким окажется давление всасывания. Если с компрессором все нормально, то давление будет держаться на уровне в 0,35 кГ/см2. Давление сильно растет? В таком случае имеются утечки либо же какие-то проблемы с внутренним клапаном.

Как проверить состояние защитного реле и внутреннюю проводку на обрыв?

В самом начале обязательно отключите кондиционер от электросети. От компрессора следует отключить все клеммы и подождать, пока он остынет. Между клеммами измеряется электрическое сопротивление. Для этого следует установить прибор на «R x 1K». Если вы не наблюдаете отклонений стрелки, то это говорит об обрыве обмотки промеж проверяемых клемм. Решить проблему можно только полной заменой компрессора. Как видите, проблем с ним может быть достаточно много, а проверка и ремонт не так уж и просты. Для правильной диагности и ремонта неисправностей компрессора следует обратиться к компетентному специалисту.

Источник

Информация о холодильниках от

Линейный компрессор. Проблемы в эксплуатации и их исправление

24 октября 2005

Прочитано: 32540 раз

Проблемы в эксплуатации и их исправление/инструкция по эксплуатации

Департамент компрессоров LG Electronics|Компания по производству цифровых приборов.

1. Основная информация.

1. Содержание. 1. Главная информация.
2. Внешний вид
3. Внутренний вид (схема)
4. Линейная схема соединения проводов
5. Схема решения простейших неполадок
6. Разделы 1,2 – исправление неполадок
7. Предупреждения
Приложение 1: как проверить исправность компрессора, 1,2.
Приложение 2: как подключить компрессор
Приложение 3: корпус компрессора и монтаж проводов
Приложение 4: идентификация компрессора/контроллера
Приложение 5: функция линейной защиты
Приложение 6: руководство по эксплуатации для R600a – 1,2,3,4.

Проблемы в эксплуатации и их исправление/инструкция по эксплуатации разработаны только для следующих моделей:

Информация по использованию выложена в основном каталоге на странице www.lge.com

2. Внешний вид

Изометрическая проекция Боковой вид

3. Внутренний вид (схема)

1. Перечень:
1. Компрессор
2. Защитный терминал
3. Герметизирующий терминал
4. Приспособление для безопасности
(заземление)
5. Приспособление для
безопасности (силовой кабель)
6. Корпус, PWB (нижняя часть)
7. Панель PCB
8. Корпус, лэйбл
9. Корпус, PWB (верхняя часть)
10. Корпус, PWB (передняя часть)
11. Замок, кодовый стоппер (ввод)
12. Замок, кодовый стоппер (выход)
13. Скрепляющий болт 14 мм
(1-3) части компрессора
(3-13) части двигателя

В собранном состоянии

4. Электрическая схема линейного компрессора

5. Схема решния простейших неполадок

6. Исправление неполадок

1. Компрессор не включается, и не издаёт звука

7. Внимание.

Пожалуйста, используйте только хладагент/смазочное масло/электрические компоненты, рекомендованные производителем компрессора, и следуйте инструкциям производителя во избежание взрыва, возгорания и травм от электричества.

Это предупреждение должно систематически доводиться до сведения конечного владельца и персонала сервисных мастерских.

8. Приложение 1.

Как проверить исправность компрессора — 1

Как проверить исправность линейного компрессора

При возникновении в ходе работы компрессора каких-либо проблем, следует проверить исправность компрессора следующим образом:

1. Проверка исправности компрессора с помощью измерения сопротивления. Способ 1.

Измерьте сопротивление между двумя полюсами герметичного терминала (1 и 2 на рисунке) с помощью
мультитестера. (Выполняется через несколько минут после отключения тока)

Случай 1-1. Если показатели находятся в пределах диапазона нормального
сопротивления (см. таблицу внизу страницы), то компрессор исправен.

Случай 1-2. Если измерение показывает, что сопротивление свыше нескольких Мом или «Бесконечно»,
это значит, что провод не подключен к устройству.

Случай 1-3. Если измерение показывает очень малое сопротивление,
это значит, что где-то в устройстве произошло короткое замыкание.

Таблица диапазонов нормального сопротивления (при температуре окружающей среды +23°С)

* В зависимости от температуры окружающей среды и ситуации работы показатели могут немного изменяться.

9. Приложение 1. Как проверить исправность компрессора — 2 2.

Проверка исправности компрессора с помощью измерения сопротивления. Способ 2.

Измерьте сопротивление между любой точкой на корпусе устройства и любым полюсом герметичного терминала (3 на рисунке справа) с помощью мультитестера (измерение тока утечки).

Случай 2-1. Если при измерении прибор показывает «Бесконечность»,
то компрессор исправен.

Случай 2-2. Если при измерении прибор не показывает «Бесконечность», это значит,
что повреждена изоляция где-то внутри корпуса.

3. Проверка исправности компрессора с помощью измерения температуры.

Измерьте температуру поверхности корпуса и сливной трубы.

Случай 3-1. Если температура поверхности корпуса значительно выше температуры трубки,
значит, слив заблокирован.

В заключение: Если компрессор исправен, проверьте провода.
Если провода исправны, проверьте двигатель и замените его в случае неисправности.

*Важно:

1. Замеряйте сопротивление только через несколько минут после отключения питания холодильника.

2. Будьте осторожны, так как конденсатор соединен с электрической сетью, даже если ток отключен.

10. Приложение 2. Как подключить компрессор

11. Приложение 3. Корпус контроллер и монтаж проводов

Рекомендуемая схема монтажа

*Указанная схема монтажа является только рекомендацией производителя (провода 1, 2 и 6 должны находится в предназначенных для них положениях). Фактическая схема монтажа может определяться изготовителем холодильника.

12. Приложение 4. Идентификация компрессора

13. Приложение 4. Идентификация контроллера (двигателя)

14. Приложение 5. Линейная функция защиты

Диаграмма линейной функции защиты

Линейный двигатель обладает тройной защитой от неправильных условий эксплуатации.

Функцию защиты мы обычно называем «трип», например, трип тока — для тока, трип напряжения для напряжения.

Таблица линейной функции защиты

Заказ

Гарантия

Предмет

Причины

Следующий шаг

Превышение тока 2.1А(RMS) в течение более 10 секунд

Превышение напряжения — менее 160 В или более 300 В

Резкие скачки напряжения +/- 15 В

Подождать 7-8 минут или выключть и включить

В случае поломки изоляции или короткого замыкания (4 А, 250 В)

Проверьте и замените неисправные детали или двигатель

15. Приложение 6. Руководство по эксплуатации линейного компрессора R600a – 1.

Диапазоны эксплуатации компрессора

1-1. Хладагент

В связи с высокой возгораемостью хладагента, используемого в R600a (Изобутан) перед инсталляцией компрессора в цикл охлаждения, необходимо достигнуть полного понимания и выполнить соответствующим образом монтаж обеспечивающего безопасность оборудования.

1-2. Температура испарения

Температуру испарения следует поддерживать в диапазоне между -30°С (-22°F) и -5°С (-23°F).
В случае, когда температура испарения становится намного ниже, чем -30°С (-22°F),
мотор перегревается и температура газа разгрузки и смазочного масла повышается, и,
как следствие, возможна поломка компрессора.

Температура

Давление

-0.56 kg/sm2 G (-8.00 psig)

-0.44 kg/sm2 G (-6.29 psig)

-0.30 kg/sm2 G (-4.26 psig)

-0.13 kg/sm2 G (-1.86 psig)

0.07 kg/sm2 G (0.95 psig)

0.30 kg/sm2 G (4.22 psig)

Если температура испарения превышает -5°С (-23°F), повышается давление разгрузки и, как следствие, компрессор будет перегружен, что увеличивает износ деталей компрессора, и, в итоге, приведет к сокращению срока эксплуатации компрессора.

1-3. Температура конденсации/сжатия

Температура и давление конденсации при непрерывной работе не должны превышать 60°С (140°F) и 7,82 кг/см2 G(111psig), а при единовременной пиковой нагрузке эти показатели не должны превышать 70°С (158°F) и 10,1кг/см2 G(143psig) при окружающей температуре 43°С (110°F). В случае, когда температура конденсации превышает 60°С, это может оказать негативный эффект на работу компрессора и потребление энергии в системе.

16. Приложение 6. Руководство по эксплуатации линейного компрессора R600a – 2.

1-4. Температура двигателя

Температура охлаждения двигателя, при температуре окружающей среды в 43 градуса Цельсия (110 по Фаренгейту), должна быть ниже, чем 120 градусов Цельсия (240 по Фаренгейту). Если температура превысит эти показатели – мотор будет работать в режиме перегрузки, и это сильно сократит срок работы мотора. Температура охлаждения вычисляется при помощи схемы охладительного сопротивления, пример – в таблице справа. После того, как компрессор остановится, сопротивление должно быть немедленно измерено, и как результат – точная охладительная температура двигателя будет получена.

1-5. Температура газа разгрузки

Температура газа разгрузки, измеренная примерно в 50 мм от поверхности компрессора при температуре окружающей среды в 43 градуса Цельсия (110 Фаренгейта), и должна поддерживаться в пределах 120 градусов Цельсия (248 Фаренгейта), чтобы избежать термального распада масла, и обеспечить работу компрессора на протяжении долгого времени. Если температура превысит эту отметку, вредный отстой будет собираться на периферии клапана.

1-6. Температура корпуса компрессора

Если охлаждающая температура двигателя и температура газа разгрузки сохранены в обозначенных пределах, то температура корпуса компрессора не регулируется точно. Когда она необходима, температура измеряется на верхней точке корпуса компрессора.

1-7. Температура газа всасывания

Температура газа всасывания измеряется на расстоянии 150 мм от поверхности компрессора, она должна находиться в пределах + — 5 градусов Цельсия от окружающей температуры.

17. Приложение 6. Руководство по эксплуатации линейного компрессора R600a – 3

2. Присоединение компрессора к охлаждающей системе.

2-1. Подведение напряжения.

Подключённое напряжение должно быть выше 90 – 100% от необходимого во время запуска и во время работы. Если с обеспечением такого напряжения возникают сложности – то LG предложит другой, альтернативный вариант компрессора.

2-2. Электрический контроллер (двигатель)

Линейный компрессор должен обязательно управляться соответствующим контроллером, предоставляемым LGE. Электрический контроллер предназначен для контроля и для защиты линейного компрессора. Существуют 2 защитных контура, которые управляются программами и приспособлениями в двигателе с целью предотвратить любые катастрофические ситуации в компрессоре. В качестве защитной функции, если подключённое напряжение превышает необходимый лимит, двигатель заставляет компрессор на секунду остановиться. Как только причина остановки исчезает, компрессор запускается снова без дальнейшей паузы. Очень важно провести содержательный технический разговор с поставщиком, дабы увеличить контролирующий эффект, потому что двигатель должен быть настроен соответственно, в зависимости от подключённого оборудования. Особенно в том случае, если планируется использовать линейный компрессор с другим типом тестируемого оборудования, нежели охладительный контур, — необходимо использование другого двигателя, поставляемого поставщиком.

2-3. Электрокомпоненты компрессора

Нет никакой необходимости в использовании РТС и OLP в линейном компрессоре. Электрический контроллер работает как заменитель PTC и OLP. Только исправный конденсатор может использоваться с линейным компрессором, он должен быть именно таким, какой обозначен в техническом описании.

18. Приложение 6. Руководство по эксплуатации линейного компрессора R600a – 4.

2-4. Изменение объёма охлаждения

Двигатель делает возможным контролировать поршневой удар, что даёт возможность контролировать количество (объем) охлаждения в пределах 70 – 80% при помощи двигателя.

2-5. Количество зарядок хладагента

Количество зарядок хладагента рекомендовано как минимальное. Если количество хладагента превышает или ниже рекомендованного, это вызывает снижение объёма охлаждения, и может повредить компрессору. В случае изменения уровня хладагента, обратитесь к LG за рекомендациями.

2-6. Количество масла

Компрессор поставляется потребителю полностью заряженным маслом.

3. Заметки по управлению охлаждающей системой и компрессором.

3-1.При вакуумизировании всего контура для воздуха или какого-нибудь опасного газа, не загрязните контур, очистите его полностью. Охладитель должен меняться, когда питание компрессора выключено.

3-2. Каждый компонент охладительной системы должен содержаться в чистоте.

3-3. Максимальное количество воды в охладительной системе должно быть под контролем.

В моделях R600a используется исключительно осушитель (молекулярное сито) типа XH-7, изготовляемый отдельно. Избыток воды приводит к выработке кислоты или осадка, который может закупорить капиллярную трубу.

3-4. Из-за высокой пожароопасности R600a, система охлаждения хорошо герметизирована, чтобы не возникло неожиданных протечек.

21. Приложение 6. Руководство по эксплуатации линейного компрессора R600a – 5.

3-5. Когда компрессор подсоединён к охлаждающей системе, обратите внимание на следующие пункты.

1. Нитроген заряжен и запечатан до того, как компрессор был выпущен. Обращаться с компрессором следует осторожно, чтобы не повредить его во время транспортировки, или хранения.

2. Как только резиновая насадка снята, компрессор должен как можно быстрее быть подсоединён к охладительной системе.

3. Компрессор должен начать использоваться в течение 6 месяцев с момента его выпуска.

4. Во время транспортировки или установки, следите за тем, чтобы компрессор находился в правильном положении, и не роняйте его.

5. Когда компрессор присоединён к контуру, поверхность рядом с ним должна быть очищена, чтобы мусор не попал внутрь компрессора. Если же мусор, такой, как пыль, всё же попадёт внутрь компрессора, это может вызвать его поломку. Будьте внимательны и не допустите проникновения загрязнителей внутрь трубы компрессора.

6. Так как компрессор покрашен эпоксидной краской, вы можете перекрасить его, если вдруг краска отстала в результате случайности.

3-6. В случае изменения конструкции компрессора, или частей компрессора, или в случае его использования не по назначению без согласования с LGE, имейте в виду, что вся ответственность за это лежит на потребителе.

Источник

Неисправности кондиционеров

Чтобы своевременно обнаружить и устранить неисправности кондиционеров, рассмотрим основные проблемы, возникающие в процессе эксплуатации оборудования, и способы их устранения.

Однако, прежде, чем говорить о неисправностях, ознакомьтесь с рекомендациями производителя. Если кондиционер работает ненормально, посмотрите подобную таблицу из инструкции по эксплуатации. Это может сэкономить вам время и избежать ненужных расходов.

Характерные неисправности кондиционеров и способы их устранения

Неисправности кондиционеров и способы их устранения - требуется сервисное обслуживание

Загрязнение фильтров внутреннего блока

Загрязнение фильтров ухудшает обдув теплообменника, что приводит к снижению производительности кондиционера по холоду или теплу. Кроме того, нарушение режима работы системы может привести к обмерзанию медных трубопроводов. При выключении кондиционера лед начнет таять, и из внутреннего блока будет капать вода. Сильное загрязнение фильтров может привести к засорению дренажной системы комками пыли и нарушению нормального отвода конденсата. Очистка фильтров должна производиться один раз в две — три недели, а при высокой запыленности воздуха в помещении — чаще. Для очистки фильтров их промывают в теплой воде и просушивают, либо чистят с помощью пылесоса. Срок службы фильтров тонкой очистки воздуха, применяемых в некоторых моделях кондиционеров либо в качестве опции, либо в стандартной комплектации (эти фильтры не подлежат восстановлению), зависит от загрязненности воздуха, но в условиях города редко превышает 3 — 4 месяца. Замена дополнительных фильтров не входит в стандартное гарантийное обслуживание и, подобно чистке или смене мешков в пылесосе, должна выполняться пользователем.

Загрязнение теплообменника наружного блока

Одним из наиболее характерных типов загрязнения теплообменника является засорение его тополиным пухом, что приводит к нарушению режима теплосъема, перегреву компрессора и выходу его из строя. По оценкам специалистов по этой причине происходит около трети отказов климатических систем. Очистку теплообменника производят перед началом эксплуатации кондиционера после зимнего сезона, а в период эксплуатации — периодически, по мере загрязнения. Кроме тополиного пуха теплообменник могут засорять опавшие листья, уличный мусор и т. п. При очистке теплообменника следует соблюдать
осторожность, чтобы не повредить тонкие пластинки оребрения. Для очистки и правки ребер в случае их повреждения можно использовать специальный инструмент, представляющий собой набор из нескольких «расчесок» для ребер с различным шагом между пластинками. Тополиный пух, пыль и другие загрязнения выдувают струей сжатого воздуха.

Нормируемая утечка хладагента

Второй по распространенности причиной выхода кондиционера из строя является нормируемая утечка хладагента. Величина нормируемой утечки составляет 6…8% в год от массы заправленного в контур хладагента. Эта утечка происходит всегда, даже при самом качественном монтаже системы, и является неизбежным следствием наличия стыков соединительных трубок. Для компенсации нормируемой утечки необходимо каждые 1,5…2 года производить дозаправку кондиционера хладагентом. В противном случае количество хладагента в контуре может упасть ниже минимально допустимого уровня, что приведет к перегреву компрессора и его заклиниванию. Для минимизации утечки хладагента не следует прилагать избыточных усилий при затяжке гаек стыковых соединений, так как перетяжка может привести к повреждению стыка. В инструкции по установке приведены рекомендуемые значения крутящего момента при затяжке гаек на трубках различного диаметра.

Первым признаком уменьшения количества хладагента в контуре является образование инея или льда на штуцерных соединениях наружного блока, а также недостаточное охлаждение или обгорев воздуха в помещении. В норме разность температур воздуха на входе и выходе внутреннего блока после примерно 15 мин работы кондиционера должна составлять не менее 8…10 °С в режиме охлаждения и не менее 12 ..14 °С в режиме обогрева.

В кондиционерах обычно предусмотрен как вывод сообщения об уменьшении количества хладагента в ряду прочих кодов неисправностей, так и срабатывание защитных исполнительных устройств. В кондиционерах, выпущенных в 1980—1990-х гг., для отключения изделия при недостатке хладагента использовалось реле низкого давления, которое срабатывало при нештатном падении давления в контуре и отключало систему. Сейчас большинство производителей переходит на электронные системы контроля, которые измеряют температуру в ключевых контрольных точках системы и/или рабочий ток компрессора. На основании этих данных вычисляются все рабочие параметры климатической системы, в том числе и давление хладагента.

Читайте также:  Направление индукционного тока правило ленца 9 класс 2 вариант
Утечка хладагента опасна по следующим причинам:
  • компрессор наружного блока охлаждается потоком хладагента, поэтому из-за уменьшения плотности хладагента компрессор перегревается;
  • температура нагнетаемого газа повышается, что может привести к повреждению горячим газом 4-ходового клапана;
  • нарушается система смазки компрессора, происходит унос масла в теплообменник.
Признаками утечки хладагента являются:
  • потемнение теплоизоляции компрессора;
  • периодическое срабатывание теплозащитного реле компрессора;
  • обгорание изоляции на нагнетательной трубке компрессора;
  • потемнение масла, появление запаха гари;
  • положительный результат при проверке масла на кислотность.
Неправильная заправка контура хладагентом

Одной из основных причин аномальной работы кондиционеров и выхода из строя компрессоров является неправильная заправка контура хладагентом. При этом если нехватка хладагента в контуре может объясняться различного рода утечками, то избыточная заправка, как правило, является следствием ошибочных действий сервисного персонала.

Для систем, в которых в качестве дросселирующего устройства используется терморегулирующий вентиль (ТРВ), лучшим индикатором, указывающим на нормальную величину заправки хладагентом, является значение температуры переохлаждения.

Температура переохлаждения Т1 (или просто переохлаждение) определяется как разность Т1 = Тв — Тх1, где
Тв — температура конденсации, считываемая с манометра со стороны высокого давления (напомним, что манометры, установленные на манометрическом коллекторе, обычно имеют шкалу температур),
Тх1 — температура хладагента (жидкостной трубки) на выходе из конденсатора.

Слабое переохлаждение говорит о том, что заправка недостаточна, сильное указывает на избыток хладагента. Заправка может считаться нормальной, когда температура переохлаждения жидкости на выходе из конденсатора поддерживается в пределах 4…7 “С, при температуре воздуха на входе в испаритель, близкой к номинальным условиям эксплуатации.

а) Симптомы нехватки хладагента

Недостаток хладагента проявляет себя в каждом элементе контура, но особенно этот недостаток чувствуется в испарителе, конденсаторе и жидкостной линии контура. В результате недостаточного количества жидкости испаритель слабо заполнен хладагентом, что приводит к снижению холодопроизводительности системы. Поскольку жидкости в испарителе недостаточно, количество производимого там пара сильно падает. Так как объемная производительность компрессора превышает количество пара, поступающего из испарителя, давление в нем аномально падает. Падение давления испарения приводит к снижению температуры испарения. Температура испарения может опуститься до минусовой отметки, в результате чего произойдет обмерзание входной трубки и испарителя, при этом перегрев пара будет очень значительным.

Температура перегрева пара Т2 (или просто перегрев пара) определяется как разность Т2 = Тх2 — Тн, где
Тх2 — температура хладагента (газовой трубки) на выходе из испарителя,
Тн — температура пара в испарителе, считываемая с манометра со стороны низкого давления.

Перегрев должен находится в пределах 5…8 °С. При значительном недостатке хладагента перегрев может достигать 12…14 °С и, соответственно, температура на входе в компрессор также возрастет. А поскольку охлаждение электрических двигателей герметичных и полугерметичных компрессоров осуществляется при помощи всасываемых паров, то в этом случае компрессор будет аномально перегреваться и может выйти из строя. Вследствие повышения температуры паров на линии всасывания температура пара в магистрали нагнетания также будет повышенной. Поскольку в контуре будет ощущаться нехватка хладагента, точно также его будет недостаточно и в зоне переохлаждения.

Таким образом, основными признаками нехватки хладагента являются:
  • низкая холодопроизводительность;
  • низкое давление испарения;
  • высокий перегрев;
  • недостаточное переохлаждение (менее 4 °С).

Необходимо отметить, что в установках с капиллярными трубками в качестве дросселирующего устройства, переохлаждение не может рассматриваться как определяющий показатель для оценки правильности величины заправки хладагентом.

б) Симптомы чрезмерной заправки хладагентом

В системах с ТРВ в качестве дросселирующего устройства жидкость не может попасть в испаритель, поэтому излишки хладагента находятся в конденсаторе. Аномально высокий уровень жидкости в конденсаторе снижает поверхность теплообмена, охлаждение газа поступающего в конденсатор, ухудшается, что приводит к повышению температуры насыщенных паров и росту давления конденсации. С другой стороны, жидкость внизу конденсатора остается в контакте с наружным воздухом гораздо дольше, и это приводит к увеличению зоны переохлаждения. Поскольку давление конденсации увеличено, а покидающая конденсатор жидкость отлично охлаждается, переохлаждение, замеренное на выходе из конденсатора, будет высоким.

Из-за повышенного давления конденсации происходит снижение массового расхода через компрессор и падение холодопроизводительности. В результате давление испарения также будет расти. Ввиду того, что чрезмерная заправка приводит к снижению массового расхода паров, охлаждение электрического двигателя компрессора будет ухудшаться. Более того, из-за повышенного давления конденсации растет ток электрического двигателя компрессора. Ухудшение охлаждения и увеличение потребляемого тока ведет к перегреву электрического двигателя и в конечном итоге — выходу из строя компрессора.

Таким образом, основными признаками перезаправки хладагентом являются:
  • падение холодопроизводительности;
  • рост давления испарения;
  • рост давления конденсации;
  • повышенное переохлаждение (более 7 °С).

В системах с капиллярными трубками в качестве дросселирующего устройства излишек хладагента может попасть в компрессор, что приведет к гидравлическим ударам и в конечном итоге к выходу компрессора из строя.

Небольшие (в пределах 10%) отклонения заправки системы хладагентом от номинала не приводят к существенному изменению параметров системы. Это подтверждается замерами температуры воздуха, выходящего из внутреннего блока сплит-системы (работа в режиме охлаждения), рабочего тока компрессора и низкого давления в контуре хладагента при неизменных параметрах среды (температурах наружного воздуха и воздуха в помещении) и различных заправках контура. При малых отклонениях заправки контура от номинала изменения рабочих параметров сплит-системы в обоих режимах невелики.

Неисправности компрессора

Параметрами, характеризующими работу компрессора, являются рабочий и пусковой токи. Для однофазных компрессоров с конденсатором пусковой ток в 6-8 раз превышает рабочий.

Ниже перечислены наиболее характерные неисправности компрессора.

а) Пусковой ток завышен (срабатывает автомат отключения нагрузки).

Причинами могут быть:

  • межвитковое замыкание электродвигателя компрессора;
  • пробой обмотки электродвигателя компрессора на корпус;
  • пробой конденсатора на корпус;
  • разрушение подшипников компрессора.
б) Пусковой ток соответствует номиналу, но компрессор не запускается и срабатывает тепловая защита компрессора.

Причинами могут быть:

  • механическое заклинивание компрессора (в данном случае можно увеличить емкость пускового конденсатора);
  • обрыв вывода в пусковом конденсаторе (в этом случае заменяют конденсатор);
  • пониженная емкость пускового конденсатора (заменяют конденсатор);
  • избыточная заправка контура хладагентом (восстанавливают номинальную заправку системы травлением избыточного фреона или полной перезаправкой);
  • «слабая фаза». Если в момент запуска напряжение питания кондиционера падает до уровня 196 В и ниже, компрессор не запустится, а через 3 с сработает тепловая защита компрессора. В этом случае кондиционер необходимо подключить на менее «просаженную» фазу и увеличить емкость пускового конденсатора.
в) Пусковой ток отсутствует.

Причинами могут быть:

  • нет команды от платы управления внутреннего блока на включение компрессора (проверяют, и при необходимости заменяют плату);
  • разомкнуто реле тепловой защиты компрессора (заменяют реле);
  • обрыв обмоток электродвигателя компрессора (заменяют компрессор).
г) Компрессор работает, но производительность кондиционера по холоду низкая, давление в трубопроводах высокого давления низкое, а давление в трубопроводах низкого давления высокое.

Причинами могут быть:

  • неисправность внутреннего клапана компрессора;
  • повреждение шатуна или коленчатого вала (в поршневом компрессоре);
  • наличие внутренних утечек.

Останавливают и вновь запускают вентилятор конденсатора, и если давление в трубопроводе высокого давления не поднимается, то компрессор неисправен. Измеряют температуру выпускной трубки компрессора, и если она слишком низкая (50 °С или ниже), то компрессор неисправен.

Для проверки производительности компрессора:
  • отключают питание кондиционера;
  • закрывают сервисный клапан трубопровода жидкого хладагента;
  • запускают компрессор и следят за давлением всасывания;
  • если компрессор исправен, то при откачке системы давление должно удерживаться на уровне 0…0.35 кГ/см2, а если давление всасывания возрастает, то в компрессоре имеются внутренние утечки или неисправен внутренний клапан.
Для проверки замыкания компрессора на «землю»:
  • отключают питание кондиционера;
  • отсоединяют провода от клемм компрессора;
  • зачищают точки для измерения сопротивления щупом омметра на впускной (всасывающей) и выпускной трубках компрессора;
  • измеряют электрическое сопротивление между впускной трубкой и каждой из клемм компрессора, затем повторяют измерения для выпускной трубки. Щуп омметра прикладывают к зачищенным точкам на трубках, прибор устанавливают на диапазон «R х 1К»;
  • значительное отклонение стрелки прибора указывает на наличие утечки на «землю». Номинальное значение сопротивления изоляции составляет порядка 10 Мом. В случае обнаружения утечки на «землю» заменяют компрессор.
Для проверки обрывов внутренней проводки и состояния защитного реле:
  • отключают питание кондиционера;
  • отсоединяют провода от клемм компрессора и дают компрессору остыть;
  • измеряют электрическое сопротивление между клеммами компрессора (прибор устанавливают на диапазон «R х 1К»);
  • отсутствие отклонений стрелки означает обрыв в обмотке электродвигателя компрессора между проверяемыми клеммами. В этом случае заменяют компрессор.

Проверки элементов электрической цепи

Требования к электропроводке

Сечение проводов, подводящих питание к кондиционеру, должно обеспечивать допустимое падение напряжения при пуске и работе климатической системы. Смысл значений входного напряжения V1, пускового напряжения V2 и рабочего напряжения V3 проиллюстрирован на рисунке.

допустимое падение напряжения при пуске и работе кондиционера

Допустимое относительное падение напряжения в момент пуска не должно превышать 5%, а относительное падение напряжения при работе кондиционера не должно превышать 2%.

Номинальные сечения проводов, обеспечивающих эти условия при различных значениях рабочего тока, приведены в таблице.

Источник