Меню

Ток протекает если в электрической цепи имеется сила тока который создает электрическое напряжение



§ 39. Электрическое напряжение

Мы знаем, что электрический ток — это упорядоченное движение заряженных частиц, которое создаётся электрическим полем, а оно при этом совершает работу. Работу сил электрического поля, создающего электрический ток, называют работой тока. В процессе такой работы энергия электрического поля превращается в другой вид энергии — механическую, внутреннюю и др.

От чего же зависит работа тока? Можно с уверенностью сказать, что она зависит от силы тока, т. е. от электрического заряда, протекающего по цепи в 1 с. В этом мы убедились, знакомясь с различными действиями тока (см. § 35). Например, пропуская ток по железной или никелиновой проволоке, мы видели, что чем больше была сила тока, тем выше становилась температура проволоки, т. е. сильнее было тепловое действие тока.

Но не только от одной силы тока зависит работа тока. Она зависит ещё и от другой величины, которую называют электрическим напряжением или просто напряжением.

Напряжение — это физическая величина, характеризующая электрическое поле. Оно обозначается буквой U. Чтобы ознакомиться с этой очень важной физической величиной, обратимся к опыту.

На рисунке 64 изображена электрическая цепь, в которую включена лампочка от карманного фонарика. Источником тока здесь служит батарейка. На рисунке 64, б показана другая цепь, в неё включена лампа, используемая для освещения помещений. Источником тока в этой цепи является городская осветительная сеть. Амперметры, включённые в указанные цепи, показывают одинаковую силу тока в обеих цепях. Однако лампа, включённая в городскую сеть, даёт гораздо больше света и тепла, чем лампочка от карманного фонаря. Объясняется это тем, что при одинаковой силе тока работа тока на этих участках цепи при перемещении электрического заряда, равного 1 Кл, различна. Эта работа тока и определяет новую физическую величину, называемую электрическим напряжением.

Различное свечение ламп при одной и той же силе тока: а — источник тока — батарейка; б — источник тока — городская сеть

Напряжение, которое создаёт батарейка, значительно меньше напряжения городской сети. Именно поэтому при одной и той же силе тока лампочка, включённая в цепь батарейки, даёт меньше света и тепла.

  • Напряжение показывает, какую работу совершает электрическое поле при перемещении единичного положительного заряда из одной точки в другую.

Зная работу тока А на данном участке цепи и весь электрический заряд q, прошедший по этому участку, можно определить напряжение U, т. е. работу тока при перемещении единичного электрического заряда:

можно определить напряжение

Следовательно, напряжение равно отношению работы тока на данном участке к электрическому заряду, прошедшему по этому участку.

Из предыдущей формулы можно определить:

напряжение равно отношению работы тока на данном участке к электрическому заряду, прошедшему по этому участку.

Электрический ток подобен течению воды в реках и водопадах, т. е. течению воды с более высокого уровня на более низкий. Здесь электрический заряд (количество электричества) соответствует массе воды, протекающей через сечение реки, а напряжение — разности уровней, напору воды в реке. Работа, которую совершает вода, падая, например, с плотины, зависит от массы воды и высоты её падения. Работа тока зависит от электрического заряда, протекающего через сечение проводника, и от напряжения на этом проводнике. Чем больше разность уровней воды, тем большую работу совершает вода при своём падении; чем больше напряжение на участке цепи, тем больше работа тока. В озёрах и прудах уровень воды всюду одинаков, и там вода не течёт; если в электрической цепи нет напряжения, то в ней нет и электрического тока.

Вопросы

1. Опишите опыт, который доказывает, что работа тока зависит не только от силы тока, но и от напряжения.
2. Что такое электрическое напряжение? Как можно определить его через работу тока и электрический заряд?

Источник

1. Электрическое напряжение

Теория:

Электрический ток протекает в проводниках электричества. Например, в металлах электрический ток создают свободные электроны, в жидкостях — положительные и отрицательные ионы.
Чтобы мог образоваться электрический ток, необходимо наличие в веществе электрически заряженных частиц, которые могут свободно перемещаться.

Свободные электроны и ионы сами по себе не могут перемещаться, необходима сила, воздействующая на них. Эту силу создаёт источник тока, который характеризуется электрическим напряжением.

Что такое электрическое напряжение, поможет выяснить его сравнение с течением реки. Течение — это тоже поток. Оно образуется только потому, что вода течёт с высокого места в низкое. Существует разница высот между истоком и устьем. Эта разница обеспечивает течение реки по всей её длине. Можно сказать, разница высот между истоком и устьем реки — своего рода напряжение.
Подобно действуют источники электрического тока, например, батарейка. У батарейки есть два полюса: плюс ( + ) и минус ( — ). В отрицательном полюсе накапливаются свободные электроны, а в положительном полюсе электронов меньше. Поэтому существует разница в концентрации зарядов. Эта разница между обоими полюсами батарейки создаёт электрическое напряжение.
В каждом источнике тока совершается работа, чтобы отделить положительные и отрицательные заряды, которые накапливаются в полюсах источника тока.

Однако электроны могут перемещаться только тогда, когда образована замкнутая электрическая цепь.

В электрической цепи протекает ток, если в ней имеется источник тока. Чем выше электрическое напряжение источника тока, тем большую работу может совершить поток электронов.

Источник

Постоянный электрический ток. Сила тока. Напряжение. Электрическое сопротивление. Закон Ома для участка электрической цепи

1. Электрическим током называют упорядоченное движение заряженных частиц.

Для того чтобы в проводнике существовал электрический ток, необходимы два условия: наличие свободных заряженных частиц и электрического поля, которое создаёт их направленное движение.

При существовании тока в разных средах: в металлах, жидкостях, газах — электрический заряд переносится разными частицами. В металлах этими частицами являются электроны, в жидкостях заряд переносится ионами, в газах — электронами, положительными и отрицательными ионами.

Дистиллированная вода не проводит электрический ток, поскольку она не содержит свободных зарядов. Если в воду добавить поваренную соль или медный купорос, то в ней появятся свободные заряды, и она станет проводником электрического тока. В растворе поваренной соли в воде происходит электролитическая диссоциация — процесс разложения молекулы поваренной соли на положительный ион натрия и отрицательный ион хлора. Если в сосуд с раствором поваренной соли поместить две металлические пластины, соединённые с источником тока (рис. 79), то положительный ион натрия в электрическом поле будет двигаться к пластине, соединенной с отрицательным полюсом источника тока, называемым катодом, а отрицательный ион хлора — с положительным полюсом источника тока, называемым анодом.

Газы в обычных условиях тоже не проводят электрический ток, так как в них нет свободных зарядов. Однако если в воздушный промежуток между двумя металлическими пластинами, соединёнными с источником тока, внести зажжённую спичку или спиртовку, то газ станет проводником и гальванометр зафиксирует протекание тока но цепи. При внесении пламени в воздушный промежуток между пластинами происходит ионизация газа (рис. 80). При этом от атома «отрываются» электроны и образуется положительный ион. Во время движения электрон может присоединиться к нейтральному атому и образовать отрицательный ион. Положительные ионы движутся к отрицательному электроду, а отрицательные ионы и электроны — к положительному электроду.

2. Направленное движение зарядов обеспечивается электрическим полем. Электрическое поле в проводниках создаётся и поддерживается источником тока. В источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц. Эти частицы накапливаются на полюсах источника тока. Один полюс источника заряжается положительно, другой — отрицательно. Между полюсами источника образуется электрическое поле, под действием которого заряженные частицы начинают двигаться упорядоченно.

Читайте также:  Положительный плюс источника электрического тока

В источнике тока совершается работа при разделении заряженных частиц. При этом различные виды энергии превращаются в электрическую энергию. В электрофорной машине в электрическую энергию превращается механическая энергия, в гальваническом элементе — химическая.

3. Электрический ток, проходя по цепи, производит различные действия. Тепловое действие электрического тока заключается в том, что при его прохождении по проводнику в нём выделяется некоторое количество теплоты. Пример применения теплового действия тока — электронагревательные элементы чайников, электроплит, утюгов и пр. В ряде случаев температура проводника нагревается настолько сильно, что можно наблюдать его свечение. Это происходит в электрических лампочках накаливания.

Магнитное действие электрического тока проявляется в том, что вокруг проводника с током возникает магнитное поле, которое, действуя на магнитную стрелку, расположенную рядом с проводником, заставляет её поворачиваться (рис. 81).

Благодаря магнитному действию тока можно превратить железный гвоздь в электромагнит, намотав на него провод, соединённый с источником тока. При пропускании по проводу электрического тока гвоздь будет притягивать железные предметы.

Химическое действие электрического тока проявляется в том, что при его прохождении в жидкости на электроде выделяется вещество. Если в стакан с раствором медного купороса поместить угольные электроды и присоединить их к источнику тока, то, вынув через некоторое время эти электроды из раствора, можно обнаружить на электроде, присоединённом к отрицательному полюсу источника (на катоде), слой чистой меди.

Это происходит потому, что между электродами существует электрическое поле, в котором ионы (положительно заряженные ионы меди и отрицательно заряженные ионы кислотного остатка) движутся к соответствующим электродам. Достигнув отрицательного электрода, ионы меди получают недостающие электроны, при этом восстанавливается чистая медь.

4. Характеристикой тока в цепи служит величина, называемая силой тока ​ \( (I) \) ​. Силой тока называют физическую величину, равную отношению заряда ​ \( q \) ​, проходящего через поперечное сечение проводника за промежуток времени ​ \( t \) ​, к этому промежутку времени: ​ \( I=q/t \) ​.

Определение единицы силы тока основано на магнитном действии тока, в частности на взаимодействии параллельных проводников, по которым идёт электрический ток. Такие проводники притягиваются, если ток по ним идёт в одном направлении, и отталкиваются, если направление тока в них противоположное.

За единицу силы тока принимают такую силу тока, при которой отрезки параллельных проводников длиной 1 м, находящиеся на расстоянии 1 м друг от друга, взаимодействуют с силой 2·10 -7 Н.

Эта единица называется ампером (1 А).

Зная формулу силы тока, можно получить единицу электрического заряда: 1 Кл = 1 А · 1 с.

5. Прибор, с помощью которого измеряют силу тока в цепи, называется амперметром. Его работа основана на магнитном действии тока. Основные части амперметра магнит и катушка. При прохождении по катушке электрического тока она в результате взаимодействия с магнитом, поворачивается и поворачивает соединённую с ней стрелку. Чем больше сила тока, проходящего через катушку, тем сильнее она взаимодействует с магнитом, тем больше угол поворота стрелки. Амперметр включается в цепь последовательно с тем прибором, силу тока в котором нужно измерить (рис. 82), и потому он имеет малое внутреннее сопротивление, которое практически не влияет на сопротивление цепи и на силу тока в цепи.

У клемм амперметра стоят знаки «+» и «-», при включении амперметра в цепь клемма со знаком «+» присоединяется к положительному полюсу источника тока, а клемма со знаком «-» к отрицательному полюсу источника тока.

6. Источник тока создаёт электрическое поле, которое приводит в движение электрические заряды. Характеристикой источника тока служит величина, называемая напряжением. Чем оно больше, тем сильнее созданное им поле. Напряжение характеризует работу, которую совершает электрическое поле по перемещению электрического заряда, равного 1 Кл.

Напряжением ​ \( U \) ​ называют физическую величину, равную отношению работы ​ \( (A) \) ​ электрического поля по перемещению электрического заряда к заряду ​ \( (q) \) ​: ​ \( U=A/q \) ​.

Возможно другое определение понятия напряжения. Если числитель и знаменатель в формуле напряжения умножить на время движения заряда ​ \( (t) \) ​, то получим: ​ \( U=At/qt \) ​. В числителе этой дроби стоит мощность тока ​ \( (P) \) ​, а в знаменателе — сила тока ​ \( (I) \) ​: ​ \( U=P/I \) ​, т.е. напряжение — физическая величина, равная отношению мощности электрического тока к силе тока в цепи.

Единица напряжения: ​ \( [U]=[A]/[q] \) ​; ​ \( [U] \) ​ = 1 Дж/1 Кл = 1 В (один вольт).

Напряжение измеряют вольтметром. Он имеет такое же устройство, что и амперметр и такой же принцип действия, но он подключается параллельно тому участку цепи, напряжение на котором хотят измерить (рис. 83). Внутреннее сопротивление вольтметра достаточно большое, соответственно проходящий через него ток мал по сравнению с током в цепи.

У клемм вольтметра стоят знаки «+» и «-», при включении вольтметра в цепь клемма со знаком «+» присоединяется к положительному полюсу источника тока, а клемма со знаком «-» к отрицательному полюсу источника тока.

7. Собрав электрическую цепь, состоящую из источника тока, резистора, амперметра, вольтметра, ключа (рис. 83), можно показать, что сила тока ​ \( (I) \) ​, протекающего через резистор, прямо пропорциональна напряжению ​ \( (U) \) ​ на его концах: ​ \( I\sim U \) ​. Отношение напряжения к силе тока ​ \( U/I \) ​ — есть величина постоянная. Если заменить резистор, включённый в цепь, другим резистором и повторить опыт, получим тот же результат: сила тока в резисторе прямо пропорциональна напряжению на его концах, а отношение напряжения к силе тока есть величина постоянная. Только в этом случае значение отношения напряжения к силе тока будет отличаться от отношения этих величин в первом опыте. Причиной этого является то, что в цепь включались разные резисторы. Следовательно, существует физическая величина, характеризующая свойства проводника (резистора), по которому течёт электрический ток. Эту величину называют электрическим сопротивлением проводника, или просто сопротивлением. Обозначается сопротивление буквой ​ \( R \) ​.

Сопротивлением проводника ​ \( (R) \) ​ называют физическую величину, равную отношению напряжения ​ \( (U) \) ​ на концах проводника к силе тока ​ \( (I) \) ​ в нём. ​ \( R=U/I \) ​.

За единицу сопротивления принимают Ом (1 Ом).

Один Ом — сопротивление такого проводника, в котором сила тока равна 1 А при напряжении на его концах 1 В: 1 Ом = 1 В/1 А.

Причина того, что проводник обладает сопротивлением, заключается в том, что направленному движению электрических зарядов в нём препятствуют ионы кристаллической решетки, совершающие беспорядочное движение. Соответственно, скорость направленного движения зарядов уменьшается.

Читайте также:  Как выпрямить ток все варианты

8. Электрическое сопротивление ​ \( R \) ​ прямо пропорционально длине проводника ​ \( (l) \) ​, обратно пропорционально площади его поперечного сечения ​ \( (S) \) ​ и зависит от материала проводника. Эта зависимость выражается формулой: ​ \( R=\rho\frac \) ​. ​ \( \rho \) ​ — величина, характеризующая материал, из которого сделан проводник. Эта величина называется удельным сопротивлением проводника, её значение равно сопротивлению проводника длиной 1 м и площадью поперечного сечения 1 м 2 .

Единицей удельного сопротивления проводника служит: ​ \( [\rho]=\frac<[R][S]> <[l]>\) ​; ​ \( [\rho]=\frac<1Ом\cdot1м^2> <1м>\) ​. Часто площадь поперечного сечения измеряют в мм 2 , поэтому в справочниках значения удельного сопротивления проводника приводятся как в Ом·м, так и в ​ \( \frac<Ом\cdotмм^2> <м>\) ​.

Изменяя длину проводника, а следовательно его сопротивление, можно регулировать силу тока в цепи. Прибор, с помощью которого это можно сделать, называется реостатом (рис. 84).

9. Как показано выше, сила тока в проводнике зависит от напряжения на его концах. Если в опыте менять проводники, оставляя напряжение на них неизменным, то можно показать, что при постоянном напряжении на концах проводника сила тока обратно пропорциональна его сопротивлению. Объединив зависимость силы тока от напряжения и его зависимость от сопротивления проводника, можно записать: ​ \( I=\frac \) ​. Этот закон, установленный экспериментально, называется законом Ома (для участка цепи): сила тока на участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке приведена схема электрической цепи, состоящей из источника тока, ключа и двух параллельно соединённых резисторов. Для измерения напряжения на резисторе ​ \( R_2 \) ​ вольтметр можно включить между точками

1) только Б и В
2) только А и В
3) Б и Г или Б и В
4) А и Г или А и В

2. На рисунке представлена электрическая цепь, состоящая из источника тока, резистора и двух амперметров. Сила тока, показываемая амперметром А1, равна 0,5 А. Амперметр А2 покажет силу тока

1) меньше 0,5 А
2) больше 0,5 А
3) 0,5 А
4) 0 А

3. Ученик исследовал зависимость силы тока в электроплитке от приложенного напряжения и получил следующие данные.

Проанализировав полученные значения, он высказал предположения:

А. Закон Ома справедлив для первых трёх измерений.
Б. Закон Ома справедлив для последних трёх измерений.

Какая(-ие) из высказанных учеником гипотез верна(-ы)?

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

4. На рисунке изображён график зависимости силы тока в проводнике от напряжения на его концах. Чему равно сопротивление проводника?

1) 0,25 Ом
2) 2 Ом
3) 4 Ом
4) 8 Ом

5. На диаграммах изображены значения силы тока и напряжения на концах двух проводников. Сравните сопротивления этих проводников.

1) ​ \( R_1=R_2 \) ​
2) \( R_1=2R_2 \) ​
3) \( R_1=4R_2 \) ​
4) \( 4R_1=R_2 \) ​

6. На рисунке приведена столбчатая диаграмма. На ней представлены значения мощности тока для двух проводников (1) и (2) одинакового сопротивления. Сравните значения напряжения ​ \( U_1 \) ​ и ​ \( U_2 \) ​ на концах этих проводников.

1) ​ \( U_2=\sqrt<3>U_1 \) ​
2) \( U_1=3U_2 \)
3) \( U_2=9U_1 \)
4) \( U_2=3U_1 \)

7. Необходимо экспериментально обнаружить зависимость электрического сопротивления круглого угольного стержня от его длины. Какую из указанных пар стержней можно использовать для этой цели?

1) А и Г
2) Б и В
3) Б и Г
4) В и Г

8. Два алюминиевых проводника одинаковой длины имеют разную площадь поперечного сечения: площадь поперечного сечения первого проводника 0,5 мм 2 , а второго проводника 4 мм 2 . Сопротивление какого из проводников больше и во сколько раз?

1) Сопротивление первого проводника в 64 раза больше, чем второго.
2) Сопротивление первого проводника в 8 раз больше, чем второго.
3) Сопротивление второго проводника в 64 раза больше, чем первого.
4) Сопротивление второго проводника в 8 раз больше, чем первого.

9. В течение 600 с через потребитель электрического тока проходит заряд 12 Кл. Чему равна сила тока в потребителе?

1) 0,02 А
2) 0,2 А
3) 5 А
4) 50 А

10. В таблице приведены результаты экспериментальных измерений площади поперечного сечения ​ \( S \) ​, длины ​ \( L \) ​ и электрического сопротивления ​ \( R \) ​ для трёх проводников, изготовленных из железа или никелина.

На основании проведённых измерений можно утверждать, что электрическое сопротивление проводника

1) зависит от материала проводника
2) не зависит от материала проводника
3) увеличивается при увеличении его длины
4) уменьшается при увеличении его площади поперечного сечения

11. Для изготовления резисторов использовался рулон нихромовой проволоки. Поочередно в цепь (см. рисунок) включали отрезки проволоки длиной 4 м, 8 м и 12 м. Для каждого случая измерялись напряжение и сила тока (см. таблицу).

Какой вывод можно сделать на основании проведённых исследований?

1) сопротивление проводника обратно пропорционально площади его поперечного сечения
2) сопротивление проводника прямо пропорционально его длине
3) сопротивление проводника зависит от силы тока в проводнике
4) сопротивление проводника зависит от напряжения на концах проводника
5) сила тока в проводнике обратно пропорциональна его сопротивлению

12. В справочнике физических свойств различных материалов представлена следующая таблица.

Используя данные таблицы, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) При равных размерах проводник из алюминия будет иметь меньшую массу и большее электрическое сопротивление по сравнению с проводником из меди.
2) Проводники из нихрома и латуни при одинаковых размерах будут иметь одинаковые электрические сопротивления.
3) Проводники из константана и никелина при одинаковых размерах будут иметь разные массы.
4) При замене никелиновой спирали электроплитки на нихромовую такого же размера электрическое сопротивление спирали уменьшится.
5) При равной площади поперечного сечения проводник из константана длиной 4 м будет иметь такое же электрическое сопротивление, что и проводник из никелина длиной 5 м.

Часть 2

13. Меняя электрическое напряжение на участке цепи, состоящем из никелинового проводника длиной 5 м, ученик полученные данные измерений силы тока и напряжения записал в таблицу. Чему равна площадь поперечного сечения проводника?

Источник

что вызывает и поддерживает электрический ток в цепи

Электрический ток в металлических проводниках представляет собой направленное движение свободных электронов вдоль проводника, включенного в электрическую цепь. Избыток электронов на одном конце проводника и недостаток на другом характеризует напряжение, т. е. разность потенциалов на концах проводника. Электрический ток протекает под действием электродвижущей силы (ЭДС) или напряжения.

Электрическая цепь постоянного тока состоит из источника тока (аккумулятор, гальванический элемент и др.) , потребителей (лампы накаливания, электронагревательные приборы и др. ) и проводов, соединяющих источник тока с потребителями. При разрыве электрической цепи действие электрического тока прекращается.

Электродвижущая сила, создаваемая источником тока, устанавливает и поддерживает разность потенциалов между полюсами источника тока, вызывает электрический ток в цепи, преодолевая ее внешнее и внутреннее сопротивление. Электрический ток существует, если электрическая цепь замкнута. Электродвижущая сила существует независимо от того, замкнута электрическая цепь или нет, есть ли электрический ток или его нет.

Читайте также:  Расчет трехфазных электрических цепей синусоидального тока

В источнике тока (внутренняя цепь) электричеекий ток течет от зажима со знаком минус (—) к зажиму со знаком плюс (+). Во внешней цепи электрический ток течет от плюса к минусу. Электрический ток, который с течением времени не изменяет своего направления и величины при прохождении по замкнутой электрической цепи, называют постоянным электрическим током.

Источник

Электрический ток и закон Ома

теория по физике 🧲 постоянный ток

Электрический ток — направленное движение заряженных частиц под действием внешнего электрического поля.

Условия существования электрического тока:

  • наличие заряженных частиц;
  • наличие электрического поля, которое создается источниками тока.

Носители электрического тока в различных средах

Среда Носители электрического тока
Металлы Свободные электроны
Электролиты (вещества, проводящие ток вследствие диссоциации на ионы) Положительные и отрицательные ионы
Газы Ионы и электроны
Полупроводники Электроны и дырки (атом, лишенный одного электрона)
Вакуум Электроны

Электрическая цепь и ее схематическое изображение

Электрическая цепь — это совокупность устройств, соединенных определенным образом, которые обеспечивают путь для протекания электрического тока.

Основные элементы электрической цепи:

  • Источник тока (генератор, гальванический элемент, батарея, аккумулятор).
  • Потребители тока (лампы, нагревательные элементы и прочие электроприборы).
  • Проводники — части цепи, обладающие достаточным запасом свободных электронов, способных перемещаться под действием внешнего электрического поля. Проводники соединяют источники и потребители тока в единую цепь.
  • Ключ (переключатель, выключатель) для замыкания и размыкания цепи.

Электрическая цепь также может содержать:

  • резистор — элемент электрической цепи, обладающий некоторым сопротивлением;
  • реостат — устройство для регулировки силы тока и напряжения в электрической цепи путём получения требуемой величины сопротивления;
  • конденсатор — устройство, способное накапливать электрический заряд и передавать его другим элементам цепи;
  • измерительные приборы — устройства, предназначенные для измерения параметров электрической цепи.

Определение

Электрическая схема — графическое изображение электрической цепи, в котором реальные элементы представлены в виде условных обозначений.

Условные обозначения некоторых элементов электрической цепи

Простейшая электрическая цепь содержит в себе источник и потребитель тока, проводники, ключ. Схематически ее можно отобразить так:

Направление электрического тока в металлах

По металлическим проводам перемещаются отрицательно заряженные электроны, т.е. ток идет от «–» к «+» источника. Направление движения электронов называют действительным. Но исторически в науке принято условное направление тока от «+» источника к «–».

Действия электрического тока (преобразования энергии)

Электрический ток способен вызывать различные действия:

  • Тепловое — электрическая энергия преобразуется в тепло. Такое преобразование обеспечивает электроплита, электрический камин, утюг.
  • Химическое — электролиты под действием постоянного электрического тока подвергаются электролизу. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) — положительные ионы (катионы).
  • Магнитное (электромагнитное) — при наличии электрического тока в любом проводнике вокруг него наблюдается магнитное поле, т.е. проводник с током приобретает магнитные свойства.
  • Световое — электрический ток разогревает металлы до белого каления, и они начинают светиться подобно вольфрамовой спирали внутри лампы накаливания. Другой пример — светодиоды, в которых свет обусловлен излучением фотонов при переходе электрона с одного энергетического уровня на другой.
  • Механическое — параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются.

Основные параметры постоянного тока

Постоянный ток — электрический ток, который с течением времени не изменяется по величине и направлению.

Основными параметрами электрического тока являются:

  • Сила тока. Обозначается как I. Единица измерения — А (Ампер).
  • Напряжение. Обозначается как U. Единица измерения — В (Вольт).
  • Сопротивление. Обозначается как R. Единица измерения — Ом.

Сила тока

Сила тока показывает, какой заряд q проходит через поперечное сечение проводника за 1 секунду:

I = q t . . = Δ q Δ t . . = N q e t .

N — количество электронов, q e = 1 , 6 · 10 − 19 Кл — заряд электрона, t — время (с).

Заряд, проходящий по проводнику за время t при силе тока, равной I:

Пример №1. Источник тока присоединили к двум пластинам, опущенным в раствор поваренной соли. Сила тока в цепи 0,2 А. Какой заряд проходит между пластинами в ванне за 2 минуты?

2 минуты = 120 секунд

q = I t = 0 , 2 · 120 = 24 ( К л )

Заряд, проходящий за время ∆t при равномерном изменении силы тока от I1 до I2:

Δ q = I 1 + I 2 2 . . Δ t

Сила тока и скорость движения электронов:

n — (м –3 ) — концентрация, S (м 2 ) — площадь сечения проводника, v — скорость электронов.

Внимание!

Электроны движутся по проводам со скоростью, равной долям мм/с. Но электрическое поле распространяется со скоростью света: c = 3∙10 8 м/с.

Сопротивление

Сопротивление металлов характеризует тормозящее действие положительных ионов кристаллической решетки на движение свободных электронов:

ρ — удельное сопротивление, показывающее, какое сопротивление имеет проводник длиной 1 м и площадью поперечного сечения 1 м 2 , изготовленный из определенного материала. l — длина проводника (м), S — площадь его поперечного сечения.

Пример №2. Медная проволока имеет электрическое сопротивление 6 Ом. Какое электрическое сопротивление имеет медная проволока, у которой в 2 раза больше длина и в 3 раза больше площадь поперечного сечения?

Сопротивление первого и второго проводника соответственно:

Поделим электрическое сопротивление второго проводника на сопротивление первого:

R 2 R 1 . . = ρ 2 l 3 S . . ÷ ρ l S . . = ρ 2 l 3 S . . · S ρ l . . = 2 3 . .

Отсюда сопротивление второго проводника равно:

Напряжение

Напряжение характеризует работу электрического поля по перемещению положительного заряда:

Пример №3. Перемещая заряд в первом проводнике, электрическое поле совершает работу 20 Дж. Во втором проводнике при перемещении такого же заряда электрическое поле совершает работу 40 Дж. Определить отношение U1/U2 напряжений на концах первого и второго проводников.

U 1 U 2 . . = A 1 q . . ÷ A 2 q . . = A 1 q . . · q A 2 . . = A 1 A 2 . . = 20 40 . . = 1 2 . .

Закон Ома для участка цепи

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению:

Иллюстрация закона Ома.

Сила тока направлена в сторону движения заряженных частиц (электронов). Силе тока противостоит сопротивление: чем оно больше, тем меньше сила тока (тем меньше проходит электронов через проводник в единицу времени). Но росту силы тока способствует напряжение, которое словно толкает заряженные частицы, заставляя их упорядоченно перемещаться.

Закон Ома для участка цепи с учетом формулы для расчета сопротивления:

Для сравнения и расчета сопротивления часто используют вольтамперную характеристику. Так называют графическое представление зависимости силы тока от напряжения. Пример вольтамперной характеристики:

Чем круче график, тем меньше сопротивление проводника. При расчете сопротивления важно учитывать единицы измерения величин, указанных на осях.

Пример №4. На рисунке изображен график зависимости силы тока от напряжения на одной секции телевизора. Каково сопротивление этой секции:

Точке графика, соответствующей 5 кВ, соответствует сила тока, равна 20 мА.

Сначала переведем единицы измерения величин в СИ:

R = U I . . = 5000 0 , 02 . . = 250000 ( О м ) = 250 ( к О м )

При определении сопротивления резистора ученик измерил напряжение на нём: U = (4,6 ± 0,2) В. Сила тока через резистор измерялась настолько точно, что погрешностью можно пренебречь: I = 0,500 А. По результатам этих измерений можно сделать вывод, что сопротивление резистора, скорее всего,

Источник