Меню

Ток последовательно соединенных светодиодов



Последовательное и параллельное подключение светодиодов

При конструировании различных электронных устройств часто возникает необходимость в последовательном, параллельном или комбинированном включении элементов. Не стали исключением и светодиоды. Учитывая их небольшие размеры, а также с целью повышения яркости, в одном корпусе осветительного прибора можно разместить несколько LED-чипов.

Как правильно собрать электрическую цепь, чтобы надёжность схемы была на высоком уровне? Что нужно знать о светодиодах, соединяя их параллельно или последовательно?

  • Параллельное соединение
  • Пример расчета
  • Последовательное соединение
  • Пример расчета
  • Два важных момента

Параллельное соединение

Необходимость в параллельном включении возникает в случае, когда напряжения источника питания недостаточно для запитки нескольких последовательно соединённых светодиодов. Теоретически, в самом простом варианте можно было бы отдельно объединить все аноды и все катоды излучающих диодов. После чего подключить их к источнику напряжения с соблюдением полярности. простой неправильный вариантНо такая схема не работоспособна, так как дифференциальное сопротивление открытого светодиода чрезмерно мало, что провоцирует режим короткого замыкания. В результате все светодиоды в цепи единожды вспыхнут и навсегда погаснут.

Но как говорят: «Правило без исключений не бывает». В китайских игрушках и зажигалках с подсветкой можно увидеть, что светодиоды запитаны прямо от батареек без каких-либо промежуточных элементов. Почему они не перегорают? Дело в том, что ток в цепи ограничен внутренним сопротивлением круглых батареек типа AG1. Их мощности недостаточно, чтобы нанести вред светодиоду.

неправильная схема

Ограничить резкое нарастание тока в нагрузке можно с помощью резистора. О том, как это грамотно сделать с одним светодиодом, подробно написано в данной статье. Для цепи из нескольких параллельно подключенных LED с одним резистором схема примет следующий вид. Но и этот вариант не пригоден для конструирования осветительных устройств с высокой надёжностью. Почему? Ответ на этот вопрос кроется в особенностях строения полупроводников. В процессе производства полупроводниковых элементов невозможно получить два абсолютно одинаковых прибора. Даже у светодиодов из одной партии будет разное дифференциальное (внутреннее) сопротивление, от которого зависит величина прямого напряжения. Это касается не только светодиодов, но и других полупроводников. Среди диодов, транзисторов и тиристоров тоже не найти двух приборов с равными электрическими параметрами.

Из второй схемы видно, что резистор R1 ограничивает только суммарный ток цепи, который затем распределяется по ветвям со светодиодами в зависимости от их сопротивления. По закону Ома светодиод с наименьшим сопротивлением p-n-перехода получит наибольшую порцию тока. И скорее всего он будет больше номинального значения, что ускорит деградацию кристалла. Работа светодиода в режиме перегрузки по току рано или поздно приведёт к выходу из строя на обрыв. Оставшиеся в работе светодиоды распределят между собой ток сгоревшего элемента, что также приведёт к резкой потере яркости.

Как и в первом варианте, китайцы не стесняются конструировать светильники на базе «полурабочих» схем. Схему с одним резистором часто можно встретить в дешёвых фонариках и маломощных светильниках на пальчиковых батарейках. А чтобы светодиоды проработали хотя бы год, сопротивление резистора умышленно завышают, как бы, исключая возможные перегрузки.

правильный вариант

Ниже приведен единственно верный вариант параллельного включения светодиодов. Здесь последовательно с каждым светодиодом подключен ограничительный резистор. Такое схемотехническое решение позволяет выровнять токи в каждой отдельной ветви, не позволяя им превышать рабочее значение.

Подключать светодиоды через резистор рекомендуется только от стабилизированного источника постоянного напряжения.

Пример расчета

Для закрепления теоретических знаний параллельное соединение светодиодов рассмотрим на конкретном примере. примерВ схеме включены два светодиода: слаботочный красный и мощный одноваттный белый, которые для удобства можно запитать от разных выключателей.

  • источник напряжения U = +5 В;
  • LED1 – красного свечения с ULED1 = 1,8 В и ILED1 = 0,02 А;
  • LED2 – белого свечения с ULED2 = 3,2 В и ILED2 = 0,35 А.

Требуется рассчитать параметры и выбрать резисторы R1 и R2.

При параллельном включении к обеим ветвям (R1-LED1 и R2- LED2) прикладывается одинаковое напряжение, равное 5 В. Сопротивление каждого резистора определим по формуле: расчет сопротивленийОкругляем полученное значение R2 до ближайшего большего значения из стандартного ряда E24 – 5,1 Ом. Подставив его обратно в формулу, находим реальный ток во второй ветви: расчет реального токаС учетом возможного отклонения сопротивления выбранного резистора, которое для ряда Е24 может достигать 5%, ток 0,33 А является оптимальным. Снижение рабочего тока примерно на 4% сильно не повлияет на яркость, но позволит светодиоду работать без перегрузок.

Мощность, которую должны рассеивать резисторы, определим с учетом пересчёта тока LED2 по формуле: расчет токаРезистор R1 подойдёт любой как планарный, так и с выводами сопротивлением 160 Ом и мощностью 0,125 Вт. Корпус резистора R2 должен эффективно отводить тепло в течение длительной работы светильника. Поэтому его выбираем с двойным запасом по мощности, а именно: 5,1 Ом – 1 Вт.

Последовательное соединение

В последовательном включении светодиодов нужно соблюдать правило: «Напряжение источника питания должно быть больше суммы падений напряжений на светодиодах». соответствие напряженийОстаток напряжения в неравенстве гасится одним единственным резистором R, правильное включение которого показано на схеме. правильное последовательное подключениеВсе светодиоды подключаются поочередно от анода к катоду. Сопротивление резистора задаёт ток цепи. Это значит, что соединять последовательно можно светодиоды только с одинаковым рабочим током.

Пример расчета

Расчет сопротивления и мощности резистора проведём на примере включения трёх белых светодиодов из серии Cree XM-L, для которых характерным является ток ILED = 0,7 А и прямое напряжение ULED = 2,9 В. Взяв за основу цветовую температуру и требуемую яркость, можно последовательно подключать светодиоды из разных групп в пределах серии XM-L. Например, один Cree XM-L-T6 с ТС=5000°K и два Cree XM-L-T2 с ТС=2600°K, которые в итоге дадут мощный поток нейтрального света. пример 2Питание на схему поступает от блока стабилизированного напряжения U = +12 В. Сопротивление резистора находим по закону Ома: расчет сопротивленияБлижайший стандартный номинал – 4,7 Ом, при котором ток теоретически будет равен 0,702 А. Это не критично, но следует быть уверенным, что сопротивление резистора не изменится под влиянием температуры во время работы. Поэтому устанавливать нужно либо прецизионный резистор с допуском менее 1%, либо последовательно с R1 = 4,7 Ом запаять ещё одно сопротивление 0,1-0,2 Ом такой же мощности.

Найдём мощность резистора: расчет мощностиПо аналогии с расчётами для первой схемы устанавливать нужно резистор примерно с двойным запасом по мощности, то есть один на 5 Вт. Можно его заменить на два штуки по 2 Вт, но тогда придётся пересчитать сопротивление.

Два важных момента

В момент первого включения желательно измерить мультиметром ток в цепи и падение напряжения на каждом светодиоде. Если полученные данные будут отличаться от расчётных, то нужно пересчитать сопротивление резистора. Иначе, ток в схеме может оказаться слишком заниженным (с потерей яркости) или завышенным (с перегревом чипа светодиода).

Как в последовательном, так и в параллельном включении светодиодов нельзя делать расчеты, ссылаясь исключительно на способность источника питания обеспечить нужный ток или напряжение. Важны оба этих параметра, произведение которых даёт мощность. Мощность блока питания всегда должна быть больше мощности потребления, чтобы гарантировать стабильную и продолжительную работу всего устройства.

Источник

Последовательное или параллельное подключение светодиодов?

В светильниках и фонариках применяется две схемы – последовательное и параллельное соединение светодиодов. У этих схем есть масса вариаций и комбинированных вариантов, каждый из них имеет свои преимущества и недостатки.

Чтобы понять какая схема соединений лучше – нужно узнать, что такое вольт-амперная характеристика и какая она у LED.

светодиодная матрица для сети 220В

Основные теоретические вопросы

Вольт-амперная характеристика (сокр. ВАХ) – это график отображающий зависимость величины тока протекающего через любой прибор от напряжения, приложенного к нему. Простая и очень ёмкая характеристика для анализа нелинейных компонентов. С её помощью можно выбрать режимы работы, и определить характеристики источника питания для прибора.

Взгляните на пример линейной и нелинейной ВАХ.

Пример линейной и нелинейной ВАХ

График под номером 1 на рисунке отображает линейную зависимость тока от напряжения, такую имеют все приборы резистивного характера, например:

  • Лампа накаливания;
  • обогреватель;
  • резистор (сопротивление);

График номер 2 – это ВАХ характерная для p-n переходов диодов, транзисторов и диодов.

Подробнее о работе диодов

Какое выбрать подключение светодиодов: последовательно или параллельно? Это сильно зависит от условий работы и источника питания, а также системы стабилизации напряжения и тока. Для правильного выбора нужно рассмотреть оба варианта.

Изначально шла речь о вольт-амперной характеристике не просто так, рассмотрим подробно её форму для Led приборов.

ВАХ для светодиодов

Обратите внимание, что в области напряжений ниже чем 2,5В, ток через светодиод протекает крайне малый или вообще не протекает. Преодолев уровень в 2,5 вольта через диод начинает протекать ток и он зажигается на участке от 2,5 до 3 вольт. После этого уровня ток начинает стремительно нарастать.

Для 5 мм диодов белого свечения рабочий ток – 20мА при 3В, а при 3.5 вольта ток будет равняться 80 мА, что в четверо превышает номинал.

Яркость диода хоть и зависит от протекающего через него тока, но при чрезмерно больших значениях LED светится не намного ярче, чем при номинале. Поэтому не стоит экспериментировать с высоким показателями – ваши диоды просто перегорят.

Значения напряжений могут различаться в зависимости от типов и конструкции LED, на это влияет их количество в одном корпусе, цвет, и даже материал который был выбран в качестве основы чипа.

Как правильно подключать?

При параллельном соединении светодиодов нужно пользоваться ограничительным резистором для каждого из диодов, как изображено на рисунке ниже. Это даёт возможность установить ток для каждого из элементов электрический схемы.

Читайте также:  Расчет полной мощности цепи синусоидального тока

Схема параллельного подключения

Схема параллельного соединения светодиодов

Ниже схема НЕ правильного подключения резистора в цепь.

Не правильное подключение резистора Так подключать не правильно

При параллельном подключении светодиодов и любых других потребителей, напряжение на их выводах будет равным. С одной стороны это хорошо, но не для диодов. Каждый светодиод, даже набор взятый из одной партии, имеет небольшой технологический разброс параметров. Напряжение, необходимое для достижения номинального тока, может незначительно отличаться в пределах десятых долей вольта.

Выше вы видели вольт-амперную характеристику прибора и легко сделаете вывод, что незначительное превышение номинального напряжения ведет к лавинообразному росту тока и перегреву. Некоторые предлагают исключить и резистор из этой схемы, такое соединение светодиодов самое неудачное!

Общий ток в цепи равен сумме токов в каждой из ветвей параллельной цепи. Если выбирать, как соединять светодиоды для работы в цепи с повышенным напряжением (6 и более вольт), лучше использовать последовательное соединение.

Последовательное подключение диодов

При такой схеме вы можете использовать диоды в цепях с любым напряжением.

Последовательное подключение светодиодов

Напряжения между элементами распределятся в нужном количестве, а ток вы зададите резистором. Параллельное включение светодиодов не позволяет добиться такого результата. При последовательном подключении общий ток цепи будет равным току через один из элементов.

Онлайн калькулятор для расчета резистора

Тип соединения: Один светодиод
Последовательное соединение
Параллельное соединение
Напряжение питания: Вольт
Прямое напряжение светодиода: Вольт
Ток через светодиод: Милиампер
Количество светодиодов: шт.
Результаты:
Точное значение резистора: Ом
Стандартное значение резистора: Ом
Минимальная мощность резистора: Ватт
Общая потребляемая мощность: Ватт

Варианты соединений

Чтобы выполнить последовательное соединение светодиодов на 220В, воспользуйтесь схемой ниже.

Схема последовательного соединения светодиодов

В данном случае в большей степени ограничивает ток конденсатор С1, он играет роль реактивного сопротивления. Подробнее о расчете конденсатора мы писали в статье. Для получения необходимого значения емкости конденсатора воспользуйтесь онлайн калькулятором:

Так вы можете подключить даже один светодиод.

Если вы хотите собрать схему последовательного соединения светодиодов на 100 вольт постоянного напряжения, в цепь нужно включить порядка 30 светодиодов. Тогда необходимое напряжение будет порядка 90 вольт. Расчёт резистора выполнить по формуле в предыдущих разделах статьи.

Конденсатор нужен для сглаживания пульсаций тока, резистор стоящий параллельно – для разряда конденсатора после отключения прибора, в целях безопасности. Если источник питания достаточно стабилизирован их можно исключить.

Альтернативный тип подключения

Последовательно-параллельное соединение светодиодов – встречается в прожекторах и других мощных светильниках, работающих как от постоянного, так и от переменного напряжения.

Последовательно параллельное подключение

Как видите, матрица поделена на ветки, каждая из которых имеет токоограничивающий резистор. Конкретный экземпляр предназначен для замены штатной лампы плафона в салоне автомобиля. Если один диод выйдет из строя – одна цепь перестанет гореть, а остальные цепочки продолжат свечение.

Если вы не можете определиться, как подключить светодиоды последовательно или параллельно, есть альтернативный вариант — гибридное соединение. С первого взгляда непонятно в чем смысл.

Гибридное подключение светодиодов

Гибридный вариант принял достоинства от последовательного и параллельного соединения светодиодов. Схема будет работать полностью, даже если один из элементов в цепи перегорит, в тоже время остальные элементы не испытают перегрузки. Напряжение на каждом сегменте будет ограничено светодиодом с наименьшим падением.

Чтобы собрать светильник правильно, а LED работали долго и не перегревались, нужно определиться как подключать светодиоды — последовательно или параллельно. Вы ознакомились с сильными и слабыми сторонами каждого из вариантов. Благодаря полученным знаниям можно выполнить ремонт LED лампы или прожектора.

Материалы по теме:

ДЛЯ ВАС ПО ТЕМЕЕЩЕ ОТ АВТОРА

Как правильно подключить RGB светодиодную ленту к контроллеру. Правильные схемы с описанием

SMD 3528, 5050, 5630, 5730 параметры и технические характеристики

Правильный расчет резистора для светодиода, подбор резистора по цветовой маркировке + онлайн калькулятор

3 способа замены галогеновых ламп на светодиодные в люстре

КПД светодиодного светильника (светодиод + питание + форм-фактор)

Регулировка яркости LED. Все о диммерах для светодиодных ламп

8 КОММЕНТАРИИ

Фигово сделан светильник.
Надо оставлять как можно больше металла на плате, чтоб улучшить теплоотвод.

Сколько смотрю схемы включения светодиодов, но так и не понял: зачем нужен токоограничивающий резистор, если при последовательном соединении сумма падений напряжений помещается в рабочий диапазон? К примеру 12В/4шт=3 вольта на каждом, или вполне так себе в рабочем диапазоне, судя по опыту и графику в статье: примерно семнадцать миллиампер, при том что светодиоды повышенной яркости нормально работают и при двадцати. Просто для страховки?

Тоже в недоумении, как и Дмитрий. Снял свою люстру специально посмотреть, каким образом осуществлен первый режим ее включения — светодиодный. Что выяснил: пребразователь-выпрямитель от сети

220 выдает постоянное 265V. 93 светодиода в последовательной цепи без всяких резисторов. Снял показания: падение напряжения на каждом скачет в пределах примерно 2,7-2,9V, ток цепи 0,053А (тоже нестабилен, меняется в пределах +-0,004А). Прихожу к выводу, что в схеме выпрямиться стабилизатора тока нет (вскрывать не стал, т.к неразборная конструкция). Почитал инетик — везде однозначно утверждается, что такой режим работы светодиодов крайне нежелателен: скачки тока, да еще и его завышение относительно номинального 0,02А для белых диодов в 2,5 с лишним раза! Однако этот режим включения люстры используется всегда и подолгу, работает она уже лет 7, и не похоже, чтобы собиралась перегорать. Диоды — 5-и миллиметровые «соломенные шляпки». Короче, непонятно мне, как так… Буду благодарен, если кто-нибудь разъяснит это всё.

Сейчас объясню. Весь интернет забит полубреднями на тему подключения светодиодов. Ключевая фраза: «Светодиоды питаются током». ****** необразованные. В электронике ВСЁ питается током! Все схемы рассматриваются с точки зрения прохождения ТОКА! Ну да ладно. Теперь по существу. Светодиоды МОЖНО запитывать без резистора. МОЖНО. Это я для интернетных упорошей такими большими буквами написал. Ещё раз повторю — можно. Но есть нюансы.
1. Вы должны четко соблюсти температурный режим. То есть ни при каких условиях не допускать перегрева. При перегреве меняется ток потребления, а компенсировать нечем. Светодиод сдохнет.
2. Вы имеете гарантированное, стабилизированное напряжение питания. При превышении напряжения меняется ток потребления, а компенсировать нечем. Светодиод сдохнет.
3. Не используете светодиоды в предельном режиме. У светодиода со временем присутствует некоторая деградация параметров и можно выскочить за приемлемый ток. Далее лавинообразное увеличение тока а компенсировать нечем. Светодиод сдохнет.
4. Без токоограничивающих резисторов или источников питания можно не попасть в приемлемый токовый диапазон питания светодиодов. К примеру напряжение питания 5В. А светодиод у вас потребляет номинальный ток при 3,4. Что будете делать? Поставить два? Будет не хватать и может плохо светить. А если один, то сгорит.
Поэтому чтобы получить от светодиода номинальную отдачу придется или делать нестандартное напряжение питания под конкретный светодиод или вводить токоограничивающие элементы.
Вот так вот всё просто. 🙂
Это кстати единственное ВМЕНЯЕМОЕ объяснение во всём рунете.

Лично я иногда использую схему без резистора.
Например заменил лампочки в салоне УАЗ + установил дополнительное освещение (для работы со сваркой).
Но не так все просто, да я убрал токоограничивающий резистор, включил 3 светодиода последовательно, НО для стабилизации применил 7809 с регулировкой (резисторы в цепи минуса), таким образом подбирается оптимальный ток.
Для светодиодов 5730 ток в пределах 80 мА (на радиаторе) и вполне нормально работает много лет 🙂

Ты гадёныш !
ОТКУДА родом — ты не из РОССИИ.
все лампочки в продаже из—— ДОГАДАЙСЯ?——Китай
все фонарики и другое свето——-ИЗ КИТАЯ
Раша — (НАКЛЕЙКИ приклёпывает)
НА али заказал УФ фонарик-прислали ,недорого,упакован.
на почте вскрывать не стал. ПОЖАЛЕЛ ! что не вскрыл…..
Корпус фонарика поцарапан линза стекла косо стоит.
при вставке бат— нет свет.
доработка на 400 руб.
форнарик 50руб.
ЭТО ДВИГАТЕЛЬ ОТ *РОСНАНО*

Михаил, не надо быть таким категоричным. Похоже Вы просто не в курсе, что есть источники тока и источники напряжения. Так вот, светодиодные лампы правильнее питать от источника тока(питать током). Это делает работу ламны слабо зависимой от температуры. При её изменении меняется падение прямого напряжения и, соответственно, при использовании источника напряжения резко меняется ток. При питании от источника тока, такого не происходит. При закорачивании вышедшего из строя светодиода (при питании током), ток через оставшиеся светодиоды изменится незначительно. Зависит от качества источника.
Учите матчасть :))

Вы наверное сами не знаете, но источники тока стабилизируют ток УМЕНЬШАЯ НАПРЯЖЕНИЕ, или УВЕЛИЧИВАЯ НАПРЯЖЕНИЯ. Посмотрите на блоки питания для светодиодов, там указана разбежка напряжения 60-120 вольт, и ФИКСИРОВАННЫЙ ТОК 120 миллиампер. Когда вы подключите к нему светодиодную ленту, блок чтобы установить 120 миллиампер, будет подбирать НАПРЯЖЕНИЕ, при котором будет установлен именно этот ток в 120 миллиампер. Если вы потом померяете напряжение, оно скажем будет на ленте 80 вольт и ток в цепи будет 120 миллиампер.
ТАК ВОТ! Что вам мешает подать на ленту сразу 80 вольт при которых на ленте и будет этот ток в 120 миллиампер! А другого собственно быть и не может. Единственно что надо убедиться это как сказал михаил чтобы в процессе работы ленты она не перегрелась, не изменилось сопративление её диодов и ток не увеличился выше 120 миллиампер. Если это соблюдается, то можно питать ленту от ФИКСИРОВАННОГО НАПРЯЖЕНИЯ при котором через ленту будет течь ток в 120 миллиампер.

Источник

Способы подключения светодиодов

Светодиоды (они же led) на протяжении многих лет активно применяются как в производстве телевизоров, так и в качестве основного освещения дома или квартиры, однако вопрос о том, как правильно выполнить подключение светодиодов актуален и по сей день.

Читайте также:  Механизм переноса тока в растворах электролитов

На сегодняшний день их существует огромное количество, различной мощности (сверхяркие Пиранья), работающих от постоянного напряжения, которые можно подключать тремя способами:

  1. Параллельно.
  2. Последовательно.
  3. Комбинированно.

Также существуют специально разработанные схемы, позволяющие подключить светодиод к стационарной бытовой сети 220В. Давайте рассмотрим более детально все варианты подключения led, их преимущества и недостатки, а также как это выполнить своими руками.

  1. Основные принципы подключения
  2. Как определить полярность?
  3. Способы подключения
  4. Подключение светодиодов к напряжению 220В
  5. Подключение светодиодов к сети 12В
  6. Последовательное подключение
  7. Недостатки последовательного подключения
  8. Параллельное подключение
  9. Недостатки параллельного подключения:
  10. Смешанное подключение
  11. Как подключить мощный светодиод?
  12. Ошибки при подключении
  13. Видео

Основные принципы подключения

Как было сказано ранее, конструкция светоизлучающего диода подразумевает их подключение исключительно к источнику постоянного тока. Однако, поскольку рабочая часть светодиода – это полупроводниковый кристалл кремния, то очень важно соблюдать полярность, в противном случае светодиод не будет излучать световой поток.

Каждый светодиод имеет техническую документацию, в которой содержатся инструкции и указания по правильному подключению. Если документации нет, можно посмотреть маркировку светодиода. Маркировка поможет узнать производителя, а зная производителя, Вы сможете найти нужный даташит, в котором и содержится информация по подключению. Вот, такой не хитрый совет.

Как определить полярность?

Для решения вопроса существует всего 3 способа:

  1. Конструктивно. Согласно нормам, принятым во всем мире, на обычном светодиоде (не SMD типа), длинная ножка всегда является «+» или же анодом. Для работы светодиода на него должна подаваться положительная полуволна. А короткая – катодом. определение полярности - конструктивный способ
  2. С помощью мультиметра. Для проверки необходимо переключатель прибора поставить в режим «Прозвонка» и установить красный щуп мультиметра на анод, а черный – на катод. В результате светодиод должен засветиться. Если этого не произошло, необходимо поменять полярность (черный на анод, а красный на катод). Если результат не меняется, тогда led вышел из строя (для установления более точного диагноза, читайте как проверить светодиод). как проверить полярность светодиода тестером
  3. Визуально. Если присмотреться к светодиоду, то можно увидеть 2 кончика возле кристалла. Тот, который больше – катод, тот, что меньше – анод. полярность цилиндрического светодиода

С полярностью разобрались, теперь нам нужно определиться с тем, как подключить LED к сети. Для тех, кто не понял, читайте подробную и интересную статью определения полярности у светодиода. В ней мы собрали все возможные способы проверки, и даже при помощи батарейки.

Способы подключения

Условно, подключение происходит по 2 способам:

  1. К стационарной сети промышленной частоты (50Гц) напряжением 220В;
  2. К сети с безопасным напряжением величиной 12В.

Если необходимо подключить несколько led к одному источнику питания, тогда нужно выбрать последовательное или параллельное подключение.

Рассмотрим каждый из вышеприведенных примеров по отдельности.

Подключение светодиодов к напряжению 220В

Первое, что нужно знать при подключении к сети 220В, — для номинального свечения через светодиод должен проходить ток в 20мА, а падение напряжения на нем не должно превышать 2,2-3В. Исходя из этого, необходимо рассчитать номинал токоограничивающего резистора по следующей формуле:

формула расчета токоограничевающего резистора

в которой 0,75 – коэффициент надежности led, U пит – это напряжения источника питания, U пад – напряжение, которое падает на светоизлучающем диоде и создает световой поток, I – номинальный ток, проходящий через него, и R – номинал сопротивления для регулирования проходящего тока. После соответствующих вычислений, номинал сопротивления должен соответствовать 30 кОм.

Однако не стоит забывать, что на сопротивлении будет выделятся большое количество тепла за счет падения напряжения. По этой причине дополнительно необходимо рассчитать мощность этого резистора по формуле:

формула расчета мощности резистора

Для нашего случая U – это будет разность напряжения питающей сети и напряжения падения на светодиоде. После соответствующих вычислений, для подключения одного led мощность сопротивления должна равняться 2Вт.

После определения номинала и мощности сопротивления можно собрать схему для подключения одного светодиода к 220В. Для ее надежной работы необходимо ставить дополнительный диод, который будет защищать светоизлучающий диод от пробоя, при возникновении амплитудного напряжения на выводах светодиода в 315В (220*√2).

схема подключения светодиода к сети 220в

Схема практически не применяется, поскольку в ней возникают очень большие потери из-за выделения тепла в сопротивлении. Рассмотрим более эффективную схему подключения к 220 В:

эффективная схема подключения светодиода к сети 220 В

На схеме, как видим, установлен обратный диод VD1, пропускающий обе полуволны на конденсатор C1 емкостью 220 нФ, на котором происходит падение напряжение до необходимого номинала.

Сопротивление R1 номиналом 240 кОм, разряжает конденсатор при выключенной сети, а во время работы схемы не играет никакой роли.

Но это упрощенная модель для подключения LED, в большинстве светодиодных ламп уже встроенный драйвер (схема), который преобразует переменное напряжение 220В в постоянное с величиной 5-24В для их надежной работы. Схему драйвера Вы можете видеть на следующем фото:

схемы светодиодного драйвера

Подключение светодиодов к сети 12В

12 вольт – это безопасное напряжение, которое применяется в особо опасных помещениях. Именно к таким и относятся ванные комнаты, бани, смотровые ямы, подземные сооружения и другие помещения.

Для подключения к источнику постоянного напряжения номиналом 12В, аналогично, подключению к сетям 220В необходимо гасящее сопротивление. В противном случае, если подключить его напрямую к источнику, из-за большего проходящего тока светодиод мгновенно сгорит.

Номинал этого сопротивления и его мощность рассчитываются по тем же формулам:

формула расчета токоограничевающего резистора

формула расчета мощности резистора

В отличии от цепей 220В, для подключения одного светодиода к сети 12В нам потребуется сопротивление со следующими характеристиками:

  • R = 1,3 кОм;
  • P = 0,125Вт.

Еще одним достоинством напряжения 12В, является то, что в большинстве случаев оно уже выпрямленное (постоянное), что значительно упрощает схему подключения. Рекомендуется дополнительно монтировать стабилизатор напряжения типа КРЭН или аналога.

подключение светодиода через стабилизатор напряжения

Как мы уже знаем, светоизлучающий диод можно подключить как к цепям 12В, так и к цепям 220В, однако существует и несколько вариаций их соединения между собой:

  • Последовательное.
  • Параллельное.

Последовательное подключение

При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:

последовательное подключение светодиодов

В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.

Падение напряжения – это уровень напряжения, которое светоизлучающий диод преобразует в световую энергию (свечение).

Например, в схеме падение напряжения на одном светодиоде составит 3 Вольта. Всего в схеме 3 светодиода. Источник питания 12В. Считаем, 3 Вольта * 3 led = 9 В — падение напряжения.

После несложных расчетов, мы видим, что не сможем включить в схему параллельного подключения более 4 светодиодов (3*4=12В), запитывая их от обычного автомобильного аккумулятора (или другого источника с напряжением 12В).

Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом.

Данная схема довольно часто встречалась в елочных гирляндах, однако из-за одного существенного недостатка в современных светодиодных гирляндах применяют смешанное подключение. Что за недостаток, разберем ниже.

Недостатки последовательного подключения

  1. При выходе из строя хотя бы одного элемента, не рабочей становится вся схема;
  2. Для питания большого количества led нужен источник с высоким напряжением.

Параллельное подключение

В данной ситуации все происходит наоборот. На каждом светодиоде уровень напряжения одинаковый, а сила тока состоит из суммы токов, проходящих через них.

параллельное подключение светодиодов

Следуя из вышесказанного делаем вывод, если у нас есть источник в 12В и 10 светодиодов, блок питания должен выдерживать нагрузку в 0,2А (10*0,002).

Исходя из вышеупомянутых расчетов — для параллельного подключения потребуется токоограничивающий резистор с номиналом 2,4 Ом (12*0,2).

Это глубокое заблуждение. Почему? Ответ Вы найдете ниже

Характеристики каждого светодиода даже одной серии и партии всегда разные. Если другими словами: чтобы засветился один, необходимо пропустить через него ток с номиналом 20 мА, а для другого этот номинал может составлять уже 25 мА.

Таким образом, если в схеме установить только одно сопротивление, номинал которого был рассчитан ранее, через светодиоды будет проходить разный ток, что вызовет перегрев и выход из строя светодиодов, рассчитанных на номинал в 18мА, а более мощные будут светить всего на 70% от номинала.

Исходя из вышесказанного, стоит понимать, что при параллельном подключении, необходимо устанавливать отдельное сопротивление для каждого.

неправильное подключение светодиодов параллельно

Недостатки параллельного подключения:

  1. Большое количество элементов;
  2. При выходе одного диода из строя увеличивается нагрузка на остальные.

Смешанное подключение

Подобный способ подключения является самым оптимальным. По такому принципу собраны все светодиодные ленты. Он подразумевает комбинацию параллельного и последовательного подключения. Как он выполняется можно увидеть на фото:

комбинированное подключение светодиодов

Схема подразумевает включение параллельно не отдельных светодиодов, а последовательных цепочек из них. В результате этого даже при выходе из строя одной или нескольких цепочек, светодиодная гирлянда или лента будут по-прежнему одинаково светить.

Мы рассмотрели основные способы подключения простых светодиодов. Теперь разберем методы соединения мощных светодиодов, и с какими проблемами можно столкнуться при неправильном подключении.

Как подключить мощный светодиод?

Для работоспособности мощных светоизлучающих диодов, так же, как и простых нам потребуется источник питания. Однако в отличии от предыдущего варианта, он должен быть на порядок мощней.

Чтобы засветить мощный светодиод номиналом 1W, источник питания должен выдерживать не менее 350 мА нагрузки. Если номинал 5W, то источник питания постоянного тока должен выдержать нагрузку тока не менее 1,4А.

Для корректной работы мощного светодиода обязательно необходимо использовать интегральный стабилизатор напряжения типа LM, который защищает его от скачков напряжения.

Читайте также:  Направление магнитных линий зависит от направления тока в проводнике взаимосвязь этих направлений

схема подключения мощного светодиода

Если необходимо подключить не один, а несколько мощных LED, рекомендуем ознакомиться с правилами последовательного и параллельного подключения, которые были описаны выше.

Ошибки при подключении

  1. Прямое подключение к источнику питания. прямое подключение светодиода к источнику питанияВ данном случае светодиод моментально сгорит, поскольку отсутствует ограничивающий ток резистор.
  2. Параллельное подключение через один резистор. параллельное подключение через один резисторСветодиоды постепенно будут выходить из строя, поскольку рабочий ток у каждого разный.
  3. Последовательное подключение с различным током потребления. последовательное подключение светодиодов с различным током потребленияПри такой схеме подключения есть 2 варианта: либо просто одни будут светить тусклее других, либо те, что рассчитаны на меньший ток – сгорят.
  4. Неправильно подобранный ограничивающий резистор. неправильно подобранный ограничивающий ток резистор светодиодаПри неправильно подобранном сопротивлении через светодиоды будет проходить большой ток, в результате чего, они будут перегреваться и со временем перегорят. При большом сопротивлении они будут светить не в полную силу.
  5. Подключение к сети переменного напряжения номиналом 220В без диода или других компонентов защиты. Если при подключении с сети 220В, е подключение светодиода без защитысли не установить дополнительный диод, то на светодиоде возникнет амплитудное значение напряжения в 315В, которое моментально выведет его из строя.

Видео

Ошибки подключения могут повлечь за собой неприятные последствия, от банальной поломки светодиодов, до нанесения себе повреждений. Поэтому, настоятельно рекомендуем посмотреть видео, где разбирают часто встречающиеся ошибки.

Прочитав статью можно сделать вывод, что все светодиоды, вне зависимости от рабочего напряжения, всегда подключаются параллельно или последовательно — школьный курс физики. Еще стоит помнить, что никакой светодиод не подключается напрямую в сеть 220В, всегда нужно использовать защитные элементы в схеме подключения. Тип применяемых защитных элементов зависит от вида подключаемого светоизлучающего диода.

Источник

Особенности параллельного и последовательного соединений светодиодов

Светодиоды

Соединение светодиодов – несложная процедура даже для человека без профессиональных навыков.

Соединение в LED цепочку компонентов может быть нескольких видов – последовательное и параллельное.

Эти схемы могут выполняться в различных вариациях, каждая из которых имеет свои положительные и отрицательные стороны.

Принципы подключения

Соединение

Светоизлучающие диоды активно применяются в подсветке, индикации. Своими руками можно создать устройства, поэтому важно знать, как производить соединение светодиодов.

К основным способам подключения относятся:

  • параллельное;
  • последовательное;
  • комбинированное.

Основные причины выхода из строя светодиодных цепочек:

  • неправильное соединение;
  • некачественные диоды или блоки питания.

Конструкция излучающего диода подразумевает его подключение к источнику постоянного тока. При соединении важно соблюдать полярность компонента – если перепутать катод и анод, диод не будет излучать световой поток.

Важно! Любой компонент имеет техдокументацию, в которой указывается полярность. Ее узнать можно по маркировке компонента или визуально.

Полярность

Определить, какой из электродов является плюсом, а какой – минусом, можно несколькими способами.

Первый – конструктивно. Обычный LED компонент имеет две ножки, длинная является плюсом (анодом), а короткая – катодом.

Светодиоды

При помощи тестера. Для этого нужно взять мультиметр, перевести его в положение «Прозвонка» и прикладывать щупы к электродам. Когда красный щуп коснется анода, а черный катода – светодиод загорится. Если при перестановке на шкале высвечивается и не меняется «бесконечное» сопротивление, есть неполадка с элементом. Так что мультитестер используется и для проверки работоспособности излучающих приборов.

Визуальный осмотр. Можно посмотреть внутрь колбы. Широкая часть – это катод, а узкая – анод. Мощные светодиоды сверхъяркого типа имеют маркировку выводов «+» и «–». Компоненты для поверхностного монтажа обычно имеют специальный скос, который указывает на катод.

Включение в источник питания. Диод можно подключить к аккумулятору, батарее или другому блоку. Нужно постепенно повышать электропитание, которое вызовет свечение. Если компонент не горит, полярность следует поменять. Собирается такая схема проверки обязательно с использованием токоограничивающего резистора.

По технической документации. В паспорте прибора будет написано, какая полярность.

После определения плюса и минуса электродов нужно разобраться с методом подсоединения.

Способы подключения

Светодиодная лента

Этапы соединения:

  • определение полярности;
  • составление схемы подключения;
  • подбор драйвера и блока питания;
  • расчет резистора;
  • сбор цепи;
  • тестирование подключенной системы.

Можно выделить 2 метода соединения – к электросети 220 Вольт и 12 Вольт. Осуществить подключение можно последовательно или параллельно. Наилучшим способом считается последовательное соединение светодиодов.

Подключение к напряжению 220 В

Полярность

Чтобы светодиод загорелся, через него должен проходить ток в 20 мА и выше, а падение напряжения не должно превышать 2,2 – 3 В в зависимости от материалов кристалла. С учетом указанных параметров выбирается токоограничивающий резистор по закону Ома. Его формула:

R=(Uпит-Uпад)/(I*0,75), где R – номинал резистора, Uпит – напряжение источника, Uпад – падение на диоде, I – номинальный ток, 0,75 – коэффициент надежности.

Падением напряжения называют уровень напряжения, которое светодиод преобразует в свечение.

Также требуется знать мощность резистора. Она вычисляется как P=I*I*R=(Uпит-Uпад)*(Uпит-Uпад)/R.

Таким образом, для тока в 20 мА, сети 220 В и падения напряжения на диоде 2,2-3 В номинал сопротивления должен быть равен 30 кОм. Мощность сопротивления равняется 2 Вт.

Упрощенная схема подключения будет состоять из светодиода, диода, конденсатора и резисторов.

Но такое соединение используется все реже. Чтобы подключить светодиоды к электросети, используются специальные устройства – драйверы. Они преобразуют переменное напряжение 220 В в постоянное, пригодное для работы элемента. В большинстве светодиодных лент драйверы уже имеются в конструкции. В основе драйвера находятся диодный мост, делитель напряжения и стабилизатор. Основное преимущество – простота исполнения и надежность эксплуатации.

Как выбрать нужный драйвер, зависит от трех параметров:

  • выходной ток;
  • максимальное и минимальное напряжение на выходе;

Рабочий ток является важнейшей характеристикой. Ток драйвера должен быть чуть меньше или равен току светодиода.

Подключение к сети 12 в

Напряжение 12 В является оптимальным для работы светоизлучающего диода. Оно безопасно, и используется для включения в особо опасных помещениях (ванная, смотровые ямы гаража, бани).

Для подключения к 12 В нужен резистор. Он рассчитывается по той же формуле, что и для 220 В.

Важное преимущество 12 В – оно постоянное. Это позволяет упростить схему соединения.

Последовательное подключение

Светодиодная лента

Чтобы подключить светодиоды последовательно, нужно к катоду одного устройства припаять анод другого, и так до нужной длины цепочки. Соединение производится через токоограничивающий резистор. По схеме будет протекать один и тот же ток через все элементы. Уровень напряжения будет суммой падений на каждом участке.

Так, для подключения к источнику питания с напряжением 12 Вольт потребуется не более четырех светодиодов 3 Вольт (3*4=12). Для большего числа диодов нужен более мощный аккумулятор.

Преимущества и недостатки

  • одинаковый уровень тока;
  • простота.
  • количество светодиодов ограничено падением напряжения;
  • если сломается один элемент, непригодной становится вся цепочка.

Схема раньше использовалась в гирляндах для елки. Сейчас ее вытеснило смешанное соединение.

Параллельное подключение

Способы

При параллельном подключении уровень напряжения на каждом светодиоде одинаков. Сила тока наоборот состоит из суммы токов, проходящих через элементы. Подключаются диоды так же через резисторы, но для каждого устройства он свой. Это связано с тем, что любой светоизлучающий диод имеет различные характеристики. Если поставить один резистор, через светодиоды будет пропускаться разный ток, и некоторые могут выйти из строя.

Параллельное подключение может использоваться для реализации двухцветного свечения ламп.

Плюсы и минусы

  • можно использовать большее количество диодов;
  • если перегорит один светодиод, цепь продолжит работу.
  • требуется много резисторов;
  • если сломается один элемент, на другие увеличится нагрузка.

Смешанное подключение

Процесс паяния

Смешанный тип соединения является самим оптимальным. Он используется во всех LED лентах, гирляндах, светодиодных панелях и представляет собой смесь параллельного и последовательного включений.

Так, параллельно включаются не отдельные элементы, а группы светодиодов. В группах диоды подключаются последовательно через один резистор для каждой цепи.

  • при поломке элемента из одной цепочки вся гирлянда будет светить дальше;
  • нужно не так много резисторов.

В этом способе учтены и исправлены все недостатки из параллельного и последовательного соединений.

Как подключить мощный светодиод

Для мощного светодиода потребуется источник питания с большим номиналом. Так, диод 1 В будет загораться, если по нему будет протекать ток величиной не менее 350 мА. Для 5 В элемента потребуется источник тока с нагрузкой не менее 1,4 А.

Схема соединения также будет включать токоограничивающий резистор и интегральный стабилизатор напряжения. Он помогает обезопасить светодиод от скачков электричества. Чаще всего используется интегральная микросхема LM317 для стабилизации. Подключить мощный светодиод можно параллельно, последовательно и комбинированным способом.

Распространенные ошибки при подключении

Подключение

Самые часто встречающиеся ошибки при соединении светодиодов:

  1. Выбор резистора не того номинала – если подобрать слишком маленькое сопротивление, светодиод может перегореть. При большом значении светить диод будет не в полную силу.
  2. Подключение напрямую к источнику питания без токоограничивающего резистора. Излучающий компонент сразу сгорит.
  3. Соединение по параллельной схеме с одним резистором для всех диодов. Компоненты начнут выходить из строя, так как рабочий ток у каждого различный.
  4. Соединение по последовательной схеме светодиодов, рассчитанных на разный ток. В таком случае часть диодов перегорит, а часть будет светить тусклее.
  5. Подключение напрямую к сети 220 В без защиты.

Важно! Совершение описанных ошибок повлечет за собой негативные последствия в виде поломки диода или нанесения себе травм.

Основные выводы

Все светодиоды, в не зависимости от их рабочего напряжения или силы тока, подключаются последовательно или параллельно. Способ включения может быть и комбинированным – в таком случае устраняются недостатки последовательного и параллельного соединений. Важно уметь правильно собирать цепь, подбирать источник питания, считать номиналы токоограничивающих резисторов и нужное количество светодиодов, чтобы схема функционировала. Соединение без токоограничивающего резистора и других защитных элементов приведет к поломке диода.

Источник