Меню

Ток от шин в линию



ТОКОВАЯ НАПРАВЛЕННАЯ ЗАЩИТА

date image2014-02-12
views image12832

facebook icon vkontakte icon twitter icon odnoklasniki icon

ЧАСТЬ 3

3.1. ОБЛАСТЬ ПРИМЕНЕНИЯ ТОКОВЫХ НАПРАВЛЕННЫХ ЗАЩИТ

Токовые направленные защиты (ТНЗ) используются в основном в кольцевых сетях напряжением Uном£35 кВ с одним источником питания, если обеспечивают необходимую чувствительность и приемлемые выдержки времени. В сетях 110 и 220 кВ направленная токовая защита применяется в основном как резервная, а иногда, в сочетании с отсечкой, как основная.

Широкое применение в сетях с глухозаземленными нейтралями (Uном³110 кВ) имеют токовые направленные защиты нулевой последовательности со ступенчатыми характеристиками как основные или резервные от К (1) и К (1,1) .

3.2. НЕОБХОДИМОСТЬ ПРИМЕНЕНИЯ НАПРАВЛЕННОЙ ЗАЩИТЫ В СЕТЯХ С ДВУХСТОРОННИМ ПИТАНИЕМ

Направленной называется защита, реагирующая на ток, проходящий в защищаемом элементе, и фазу (направление) тока относительно напряжения в месте установки защиты. Условные положительные направления указанных токов приняты от шин, где установлена защита, вглубь защищаемой зоны. Необходимость в применении направленных защит возникает в сетях с двухсторонним питанием. Защита в этих сетях должна не только реагировать на появление тока КЗ, но для обеспечения селективности должна учитывать направление мощности КЗ в защищаемой линии.

В сетях с двухсторонним питанием (рис. 3.1) и кольцевых сетях направление тока и мощности КЗ зависит от места возникновения повреждения и может иметь два противоположных значения. Поэтому для ликвидации повреждений в таких сетях защита должна устанавливаться с обеих сторон защищаемой линии.

Рис. 3.1. Схема сети с двухсторонним питанием и размещение защит

Например, при КЗ на участке линии 2-3 (т. К1) через защиту 3 проходит ток от источника питания Б к точке КЗ. При КЗ в т. К2 на участке линии 4-5 через защиту 3 проходит ток от источника питания А.

Направление мощности КЗ, проходящей по линии, характеризует, где возникло повреждение: на защищаемой линии или на других присоединениях, отходящих от шин данной подстанции.

Это обстоятельство используется в направленной защите, которая по знаку мощности определяет, на каком присоединении возникло повреждение, и действует только при КЗ на защищаемом участке.

Простая токовая защита, не реагирующая на знак мощности, действует как при КЗ на защищаемой линии, так и при повреждениях на других присоединениях, отходящих от шин подстанции, питающей защищаемую линию. Поэтому получить селективное отключение КЗ в сетях с двухсторонним питанием с помощью простой токовой защиты, как правило, невозможно.

Предположим, что в сети на рис. 3.1 установлены максимальные токовые защиты (МТЗ), и рассмотрим действие какой-либо из них, например защиты 3. При КЗ в т. К1 выдержка времени защиты 3 должна быть меньше времени действия защиты 4, 5, 6, 7, 8, т.е. t3 t4). Одновременное выполнение обоих требований приведет к неселективной работе защиты.

Эту неселективность можно устранить, заменив МТЗ защиты 3 направленной защитой, действующей только при направлении мощности КЗ от шин в линию. В этом случае защита 3 не будет действовать при КЗ в т. К2 и второе требование отпадает. При аналогичном выполнении всех остальных защит сети селективное отключение повреждений становится возможным при выборе выдержек времени защит, действующих в одном направлении, по ступенчатому принципу.

В соответствии с изложенным можно сформулировать следующие принципы выполнения селективной защиты в сетях с двухсторонним питанием:

1. Защита должна устанавливаться с обеих сторон каждой линии и действовать при направлении мощности от шин в линию.

2. Выдержки времени на защитах, работающих при одном направлении мощности (от генератора А или Б), должны согласовываться между собой по ступенчатому принципу, нарастая по направлению к источнику питания, от тока которого действуют направленные защиты.

3.3. СХЕМА ТОКОВОЙ НАПРАВЛЕННОЙ ЗАШИТЫ

Максимальная направленная защита должна реагировать на величину тока и направление мощности КЗ. Она представляет собой МТЗ, дополненную реле направления мощности. Схема защиты (рис. 3.2) состоит из трех основных элементов (органов защиты): два пусковых реле тока KA, которые срабатывают при появлении тока КЗ и выдают сигнал, разрешающий РЗ действовать; два реле направления мощности KW, которые срабатывают при направлении мощности от шин в линию и подают сигнал, разрешающий РЗ действовать. Если же мощность направлена к шинам, то реле KW выдают сигнал, блокирующий действие РЗ.

Рис. 3.2. Упрощенная схема максимальной направленной защиты

3.4. РЕЛЕ НАПРАВЛЕНИЯ МОЩНОСТИ

Реле направления мощности (РНМ) реагируют на значение и знак мощности, подведенной к их зажимам. Они используются в схемах как орган, определяющий по направлению (знаку) мощности (протекающей по защищенной ЛЭП);. где произошло повреждение – на защищаемой ЛЭП или на других присоединениях, отходящих от шин подстанции (рис. 3.3, а). В первом случае мощность КЗ SК1 направлена от шин в ЛЭП и РНМ должно срабатывать и замыкать свои контакты, во втором – мощность КЗ SК2 направлена к шинам, в этом случае реле не должно замыкать контакты.

Реле мощности имеет две обмотки: одна питается напряжением Up, а другая – током сети Iр (рис. 3.3, б). Взаимодействие токов, проходящих по обмоткам, создает электромагнитный момент, значение и знак которого зависят от напряжения Up, тока Iр и угла сдвига φр между ними.

РНМ должны обладать высокой чувствительностью, т.к. при КЗ вблизи места установки защиты напряжение Up резко снижается, достигая в пределе нуля; при этом мощность, подводимая к реле, оказывается очень малой и при недостаточной чувствительности реле может не сработать, т.е. может иметь «мертвую» зону.

Рис. 3.3. Реле направления мощности: а) – принцип действия ; б) – схема включения

Чувствительность РНМ оценивается минимальной мощностью, при которой реле замыкает свои контакты. Эта мощность называется мощностью срабатывания и обозначается Sср.

РНМ выполняются мгновенными. Время срабатывания РНМ должно быть минимальным.

Индукционные реле мощности выполняются с подвижной системой в виде цилиндрического ротора (рис. 3.4, а). Реле имеет замкнутый магнитопровод 1 с выступающими внутрь полюсами. Между полюсами установлен стальной цилиндр (сердечник) 2, повышающий магнитную проницаемость междуполюсного пространства. Алюминиевый цилиндр (ротор) 3 может поворачиваться в зазоре между стальным сердечником и полюсами. При повороте ротора 3 происходит замыкание контактов реле 6.

Для возврата ротора и контактов в исходное положение предусматривается противодействующая пружина 7 (рис. 3.4, б).

Обмотка 4 питается напряжением , а обмотка 5 – током , где Uc и Ic – напряжение и ток сети (защищаемого элемента). Ток в обмотке 4 создает магнитный поток Фн (поляризующий).

Ток Iр, проходящий по обмотке 5, создает магнитный поток Фт (рабочий).

На рис. 3.5 изображена векторная диаграмма магнитных потоков Фн и Фт. За исходный для ее построения принимается вектор напряжения Up. Ток Iн сдвинут по фазе относительно напряжения Up на угол a, а ток Iр – на угол φр.

Читайте также:  Решение задач нелинейных электрических цепей постоянного тока

Рис. 3.4. Реле мощности: а) – с цилиндрическим ротором;

б) – ротор реле и направление положительного момента Мэ

Рис. 3.5. Векторная диаграмма реле мощности

Угол a определяется индуктивным и активным сопротивлением обмотки 4, питаемой напряжением, и называется углом внутреннего сдвига реле. Угол φр зависит от параметров сети и схемы присоединения реле.

Магнитные потоки Фн и Фт изображены на диаграмме совпадающими с создающими их токами Iн и Iр.

Из векторной диаграммы следует, что потоки Фн и Фт, а также токи Iн и Iр сдвинуты по фазе на угол y = a – φр.

Магнитные потоки Фн и Фт пронизывают подвижную систему реле и наводят в ней вихревые токи Iдн и Iдт (рис. 3.4, а).

Взаимодействие вихревых токов с магнитными потоками создает электромагнитный момент Мэ, который равен

Имея ввиду, что , , а y = a φр, получаем

Анализируя последнее выражение, можно сделать следующие выводы:

— электромагнитный момент реле пропорционален мощности Sр на его зажимах;

— знак электромагнитного момента реле определяется знаком Sin(a φр) и зависит от значения φр и угла внутреннего сдвига a.

Это иллюстрируется рис. 3.5, где зона отрицательных моментов заштрихована. Незаштрихованная часть диаграммы соответствует области положительных моментов, где Фт опережает Фн, а y и его синус имеют положительный знак. Линия АВ, проходящая через углы a – φр = 0 и 180°, называется линией изменения знака момента. Она всегда расположена под углом a к вектору Up, т.е. совпадает с направлением векторов Iн и Фн.

Линия СD (перпендикулярная АВ) называется линией максимальных моментов. Момент Мэ достигает максимума при a – φр = 90°, т. е. когда Iр опережает Iн на 90°. Угол φр, при котором Мэ достигает максимального значения, называется углом максимальной чувствительности, значение которого зависит от угла a.

Реле не действует, если отсутствует напряжение или ток в реле или если Sin(aφр) = 0. Последнее условие имеет место при a = φр иφр = a+ 180°.

Источник

16-6. Проверка токовых цепей реле направленного действия

В отличие от рассмотренного выше случая проверки токовых цепей дифференциальных защит, когда нас интересовало только взаимное расположение двух или нескольких токов, при проверке токовых цепей реле направленного действия (реле направления мощности, направленного реле сопротивления) необходимо знать взаимное расположение токов и напряжений, подводимых к обмоткам проверяемого реле.

Это условие определяет следующие особенности снятия векторных диаграмм при проверке правильности включения реле направленного действия:

диаграмму токов необходимо снимать на те же напряжения, которые подведены к проверяемой защите;

перед снятием диаграммы необходимо убедиться, что напряжения симметричны и имеют определенное чередование фаз (ABC);

необходимо знать направление мощности в первичной цепи, где установлено проверяемое реле.

Направление мощности от шин в линию принято считать положительным, а с линии на шины отрицательным (см. гл. 1). Положение векторов токов при разных направлениях активной и реактивной мощности показано на рис. 16-12.

На рис. 16-13 построена диаграмма, на которой показаны положения вектора тока фазы А при разных знаках мощности. Диаграмма разделена осями координат (Р — активная мощность, с которой совпадает вектор фазного напряжения, и Q — реактивная мощность) на четыре участка — так называемые квадранты, имеющие нумерацию I—IV. Например, если активная и реактивная мощности направлены от шин подстанции в линию, т. е. имеют положительный знак, говорят, что вектор тока расположен в I квадранте.

Направление мощности в первичной цепи, знание которого необходимо, чтобы построить вектор первичного тока, определяется на основании показаний щитовых приборов. Если точное направление мощности в первичной сети не может быть определено при существующей схеме коммутации, необходимо создать режим одностороннего питания. При этом активная мощность, очевидно, всегда будет направлена от элекростанции к нагрузке. То же самое можно сказать о направлении реактивной мощности, если только на приемной подстанции нет синхронных электродвигателей, компенсаторов или других источников реактивной мощности. В случае наличия таких источников реактивная мощность может быть направлена от шин приемной подстанции. Следует также иметь в виду, что протяженные воздушные линии напряжением 220—500 кВ и кабельные линии, обладающие значительной емкостью на землю, сами являются источниками реактивной мощности, направленной к шинам подстанции. Это обстоятельство следует учитывать при построении и анализе векторных диаграмм.

Проверка правильности подключения токовых цепей реле направленного действия производится путем сопоставлений векторов вторичных токов, определенных при снятии векторной диаграммы, с векторами первичных токов, положение которых определяется по известному направлению мощности в первичной сети (фазометр включается, как показано на рис. 16-3, а и б).

Если вектор вторичного тока совпадает с вектором первичного тока, как показано на рис. 16-14, а, значит, трансформаторы тока соединены в соответствии с рис. 16-14,б, или, как говорят, с «прямой полярностью». Обратная картина имеет место, если трансформаторы тока соединены с «обратной полярностью», как показано на рис. 16-14, г. Соответствующая векторная диаграмма токов изображена на рис. 16-14, в.

Векторные диаграммы, приведенные на рис. 16-14, соответствуют схеме соединения трансформаторов напряжения Y / Y-12, при которой векторы первичных и вторичных напряжений совпадают по фазе.

Если при проверке выяснится, что токовые цепи собраны неправильно, то следует выявить ошибку и исправить ее.

После окончания замеров токов в фазах и снятия векторной диаграммы необходимо замерить ток в нулевом проводе защиты.

Источник

8. Дифференциальная защита линий

8.1. Назначение и виды дифференциальных защит

На линиях отходящих от шин электростанций или узловых подстанций, часто по условиям устойчивости требуется обеспечить отключение КЗ в пределах всей защищаемой линии без выдержки времени. Это требование нельзя выполнить с помощью мгновенных токовых отсечек, защищающих только часть линии. Кроме того, отсечки неприменимы по условию селективности, на коротких ЛЭП, где токи КЗ в начале и в конце линии примерно одинаковы. В этих случаях используются дифференциальные защиты (ДЗ), обеспечивающие мгновенное отключение КЗ в любой точке защищаемого участка и не действующие при КЗ за пределами зоны действия.

Дифференциальные защиты подразделяются на:

продольные – для защит как одинарных, так и параллельных линий;

поперечные – для защиты только параллельных линий.

8.2. Продольная дифференциальная защита

8.2.1. Принцип действия защиты

Принцип действия продольных дифференциальных защит основан на сравнении величины и фазы токов в начале и конце защищаемой линии.

Читайте также:  Схема присоединения двигателя постоянного тока с параллельным возбуждением

При КЗ вне защищаемой линии токи в начале и конце линии направлены в одну сторону и равны по величине (см. рис. 8.2.1. а)). При КЗ в пределах защищаемой линии, токи направлены в разные стороны и не равны по величине (как правило) (см. рис. 8.2.1. б)).

Принцип сравнения токов показан на рис. 8.2.2.: по концам линии установлены трансформаторы тока с одинаковым коэффициентом трансформации. Их вторичные обмотки соединяются кабелем и подключаются к дифференциальному реле.

Различают две схемы построения дифференциальной защиты:

1. с циркулирующими токами;

2. с уравновешенными напряжениями.

На рис. 8.2.2. показана схема с циркулирующими токами. Для этой схемы ток протекающий по реле определяется:

При отсутствии погрешностей I 1 = I 2 и IP =0 реле не работает. Не происходит срабатывания и при качаниях в системе.

По принципу действия дифференциальная защита не реагирует на внешние КЗ, качания и токи нагрузки.

В действительности же трансформаторы тока работают с погрешностью: I 1 – I 2 = I нб чтобы не произошло ложного срабатывания защиты: I С.З. > I нб.макс .

Работа схемы с циркулирующими токами при КЗ на защищаемой линии с односторонним и двусторонним питанием, показаны на рис. 8.2.3. а) и б). Ток протекающий через реле:

где: I КЗ — полный ток КЗ.

Дифференциальная защита реагирует на полный ток I КЗ в месте повреждения, поэтому в сети с двусторонним питанием она обладает большей чувствительностью, чем токовые защиты.

Схема с уравновешенными напряжениями.

Работа дифференциальной защиты на основе схемы с уравновешенными напряжениями представлена на рис. 8.2.4.

В России а, ранее, в (СССР) применялись схемы дифференциальных защит с циркулирующими токами.

8.2.2. Токи небаланса в дифференциальной защите

Для уменьшения тока небаланса необходимо выровнять токи намагничивания трансформаторов по величине и фазе. Ток намагничивания трансформаторов тока зависит от магнитной индукции или вторичной ЭДС (см. рис. 8.2.5.)

Выполнить характеристики намагничивания идентичными у разных трансформаторов тока практически не удается.

Ток небаланса особенно возрастает при насыщении магнитопровода трансформатора. Даже при максимальном токе протекающем по первичной обмотке при КЗ, трансформаторы тока не должны насыщаться.

Пути уменьшения тока небаланса

1. Применяются трансформаторы тока насыщающиеся при возможно больших кратностях тока КЗ (трансформаторы тока класса Р(Д)).

2. Ограничение величины вторичной ЭДС:

Для этого уменьшают нагрузку Z Н и увеличивают коэффициент трансформации n Т .

3. Для выравнивания токов намагничивания II .нам и III .нам необходимо, чтобы нагрузка трансформатора тока была равной Z Н1 = Z Н2 .

Точных и простых для практики способов расчета тока небаланса ещё не разработано. При проектировании используют формулы, приведенные в «Руководящих указаниях по релейной защите».

8.2.3. Принципы выполнения продольной дифференциальной защиты

1. Использование промежуточных трансформаторов тока

Трансформаторы тока, соединяемые в дифференциальную схему, находятся на значительном расстоянии. Сопротивление соединительных проводов между трансформаторами тока очень велико. К примеру, для линии длиной 10 км и сечения контрольного кабеля 1,5 мм 2 , его сопротивление составит 130 Ом. Трансформаторы тока допускают нагрузку в пределах 1-2 Ом. Подобное затруднение преодолевается применением промежуточных трансформаторов тока TLA . Они уменьшают ток в соединительных проводах в nL раз, снижая нагрузку соединительных проводов, приведенную к зажимам основных трансформаторов тока в nL 2 раз.

2. Установка двух дифференциальных реле

Дифференциальная защита должна действовать на отключение выключателей на обоих концах защищаемой линии. Для этого устанавливают два дифференциальных реле. Однако подобный способ имеет недостаток из-за сопротивления соединительных проводов токи, поступающие в реле при сквозных КЗ не балансируются, даже при работе трансформаторов тока без погрешностей. Для уменьшения тока небаланса необходимо уменьшать сопротивление соединительных проводов.

При КЗ в зоне в схеме с одним реле в него поступает сумма вторичных токов трансформаторов тока: IP = I 1 + I 2 = IK . В схеме с двумя реле: (если сопротивление проводов равно нулю). То есть чувствительность защиты уменьшается.

(В схеме с уравновешенными напряжениями установка двух реле не меняет условий работы схемы.)

3. Использование дифференциальных реле с торможением

Для отстройки от токов небаланса получили распространение так называемые дифференциальные реле с торможением. Ток срабатывания у таких реле возрастает с увеличением тока внешнего КЗ. Принципиальная схема конструкции такого реле изображена на рис. 8.2.8.

где: IT — ток, протекающий через тормозную обмотку;

IP.0 — ток срабатывания реле при тормозном токе равном нулю;

kT — коэффициент торможения.

Схема включения реле с торможением показана на рис. 8.2.9. При внешнем КЗ в тормозной обмотке протекает ток КЗ, а в рабочей обмотке – ток небаланса; реле надежно не срабатывает.

При КЗ в зоне (см. рис. 8.2.10. ) в случае одностороннего питания I2 =0 и токи в рабочей и тормозной обмотках совпадают и равны I К ; при таких условиях реле сработает.

Зависимость IP = f ( IT ) изображена на рис. 8.2.11. При одинаковых условиях отстройки от тока небаланса при внешних КЗ, реле с тормозной характеристикой обладает большей чувствительностью по сравнению с простым дифференциальным реле.

Современные защиты оснащены тормозными реле на выпрямленном токе с реагирующим органом в виде поляризованного реле.

4. Включение дифференциальных реле через фильтры симметричных составляющих

Во всех выше рассмотренных схемах подразумевалась установка реле на трех фазах. Для выполнения таких схем необходимо 6 дифференциальных реле и не менее четырех соединительных проводов. Для уменьшения числа реле и соединительных проводов, реле включаются через фильтры симметричных составляющих или суммирующие трансформаторы ( см. рис. 8.2.12. ). На рисунке буквами KAZ обозначены фильтры токов, на их выходе протекает ток I Ф1 пропорциональный токам прямой последовательности. Составляющая прямой последовательности присутствует в фазных токах при всех видах КЗ. В схеме предусмотрены разделительные трансформаторы TL3 , 4 , с помощью которых цепь соединительного кабеля А – В отделяется от цепей реле. Такое разделение исключает появление в цепях реле высоких напряжений, наводимых в жилах кабеля при протекании токов КЗ по защищаемой линии. В нормальном режиме и при внешнем КЗ по соединительным жилам протекает ток, пропорциональный первичному току линии, а при КЗ на линии в соединительных проводах А – В проходит небольшой ток I1–I2 .

8.2.4. Комплект продольной дифференциальной защиты типа ДЗЛ

Принципиальная схема защиты типа ДЗЛ показана на рис. 8.2.13.

Читайте также:  Как изменяется эдс самоиндукции при уменьшении скорости изменения силы тока обратно пропорционально

Данная защита оснащена специальным устройством контроля исправности соединительных проводов. По ним циркулирует контрольный постоянный ток. При обрыве или КЗ соединительного провода, прохождение тока нарушается и отслеживающие устройства выводят защиту из работы.

Соединительный провод защиты выполнен бронированным кабелем – обычно телефонным. Одновременно он может использоваться для связи и телемеханики.

В комплекте ДЗЛ используется комбинированный фильтр ( I1+kI2 ) прямой и обратной последовательности (1). Составляющая обратной последовательности возникает в сети при несимметричных повреждениях (2-х фазных и однофазных) и позволяет повысить чувствительность защиты увеличивая ток в реле. Фильтр ( I1+kI ) прямой и нулевой последовательности позволяет повысить чувствительность только при замыканиях на землю.

Источник

Принцип действия продольной и поперечной токовой дифзащиты

Принцип действия продольной дифференциальной токовой защиты

Эта защита основана на сравнении токов в начале и конце защищаемого элемента. Для выполнения защиты линии на ее концах устанавливаются измерительные трансформаторы тока с одинаковыми коэффициентами трансформации.

Вторичные обмотки трансформаторов тока одноименных фаз и обмотка реле соединяются так, чтобы при коротком замыкании вне зоны, ограниченной измерительными трансформаторами, ток в реле отсутствовал, а при повреждении внутри зоны был равен току короткого замыкания.

Применяются две возможные схемы выполнения дифференциальной защиты: с циркулирующими токами и с уравновешенными напряжения. С циркулирующими токами: схема получается путем параллельного соединения вторичных обмоток трансформаторов тока ТАI, ТAII и обмотки реле тока КА. При этом ток в реле İр определяется с учетом принятых условных положительных направлений токов İ1I и İ1II по концам защищаемой линии Л.

С учетом положительных направлений в нормальном режиме, а также при внешних коротких замыканиях ток в реле равен геометрической разности вторичных токов:

При равенстве первичных токов İ1I и İ1II и отсутствии погрешностей измерительных трансформаторов вторичные токи İ2I = İ2II , поэтому ток в реле Iр = 0 и защита не срабатывает. В этом случае вторичные токи İ2I и İ2II циркулируют только по вспомогательным проводам, соединяющим вторичные обмотки трансформаторов тока.

При повреждении в зоне токи İ1II и İ2II при показанном условном положительном направлении становятся отрицательными, вследствие чего токи İ2I и İ2II в обмотке реле складываются: İр= İ2I + İ2II =İ . При одностороннем питании один из токов, например İ2II , равен нулю. При этом ток İ2I не может замыкаться через вторичную обмотку второго трансформатора тока, так как трансформатор тока работает в режиме источника тока (сопротивление обмотки реле во много раз меньше внутреннего сопротивления трансформатора тока). Весь ток İ2I проходит через реле. Таким образом, при коротком замыкании в зоне ток в реле İр определяется током İк в точке повреждения. При этом защита срабатывает, если IР > Icp.

Следовательно, продольная дифференциальная защита действует при повреждениях в зоне и не реагирует на внешние короткие замыкания и токи нормальной работы, т.е. она обладает абсолютной селективностью. Эта принципиальная особенность дает возможность выполнять защиту без выдержки времени, а при выборке тока срабатывании — не учитывать токов нагрузки.

В действительности трансформаторы тока имеют погрешности. Поэтому, несмотря на равенство первичных токов, вторичные токи İ2I и İ2II при нормальной работе и внешних коротких замыканиях не одинаковы по абсолютному значению и не совпадают по фазе и в реле появляется ток, называемый током небаланса Iнб . Для исключения неправильной работы дифференциальной защиты ток срабатывания реле должен выбираться с учетом токов небаланса.

Поперечная дифференциальная токовая защита

Принцип действия защиты и выбор тока срабатывания.

Эта защита основана на сравнении токов одноименных фаз параллельных цепей с мало отличающимися параметрами. Для осуществления защиты используют трансформаторы тока с одинаковыми коэффициентами трансформации, установленные со стороны питающих шин А. Реле тока КА включается на разность токов двух одноименных фаз сдвоенной линии по схеме с циркулирующими токами. При принятом условном положительном направлении токов от шин в линию ток в реле İр = İ2I İ2II . Поэтому, как и в продольной дифференциальной защите, при нормальной работе и внешних коротких замыканиях (за пределами сдвоенной линии в точке K1) по обмотке реле проходит только ток небаланса.

Ток срабатывания реле тока выбирается по условию Iс.р = kзап Iнб.рсч.max при kзап = 1,3. Максимальный расчетный ток небаланса для защиты линий с одинаковыми параметрами определяется по выражению :

Учитывая изложенное о возможных погрешностях трансформаторов тока и о апериодической составляющей, можно принять kодн kап =1,0.

При коротком замыкании на одной из линий равенство токов İ2I и İ2II нарушается, в реле появляется ток. Если İр = | İ2I – İ2II | > İc.p, то реле срабатывает и отключает выключатель Q линии.

Принцип действия продольной и поперечной токовой дифзащиты

Мертвая зона защиты.

При удалении точки короткого замыкания от места установки защиты ток в поврежденной линии уменьшается, а в неповрежденной возрастает, вследствие чего ток Iр в обмотке реле уменьшается так, что при повреждении вблизи шин противоположной подстанции, он становится меньше тока срабатывания. При этом защита отказывает в действии. Длина участка lм.з , при повреждении в пределах которого защита не работает из-за недостаточного тока в реле, называется мертвой зоной поперечной дифференциальной токовой защиты.

Согласно требованиям, длина мертвой зоны не должна превышать lм.з

Оценка защиты.

Защита по принципу действия не защищает сборки сдвоенной линии и шины подстанции, а в случае отключения одной из цепей должна выводиться из действия, так как ее ток срабатывания в общем случае оказывается не отстроенным от тока оставшейся в работе цепи и защита не имеет выдержки времени. Это, а также наличие мертвой зоны являются недостатком защиты, исключающим возможность ее применения в качестве единственной защиты сдвоенных линий.

Поперечная дифференциальная токовая защита не способна определить, на какой из параллельных цепей имеется повреждение, поэтому она не может быть использована для параллельных линии с выключателями на каждой из них, когда требуется и имеется возможность отключать только поврежденную линию. Такая возможность появляется и на сдвоенной линии, если разъединители в ее параллельных цепях снабжены приводами с дистанционным управлением. В этом случае действие защиты может быть согласовано с работой устройства АПВ линии. При повреждении любой параллельной цепи защита сначала отключает выключатель Q , после этого отключается разъединитель QS1 или QS2 поврежденной цепи, а затем выключатель включается.

Источник