Меню

Ток нулевой последовательности трансформатор тока



Трансформатор тока нулевой последовательности

Иногда в электроустановках может произойти разрушение изоляции, что приводит к утечкам тока. С целью контроля подобных токовых утечек было создано специальное устройство – трансформатор тока нулевой последовательности, нашедший применение также и в устройствах защитного отключения. Данные трансформаторы обнаруживают в нейтрали небаланс или токи нулевой последовательности. Если замыкается одна из фаз, происходит фиксация общих фазных токов, превышающих допустимое значение, после чего вся цепь своевременно отключается.

Что такое ток нулевой последовательности

В электрических сетях с напряжением от 6 до 35 кВ токи нулевой последовательности, как правило, связаны с однофазными замыканиями на землю. Эти токи могут возникать и при нормальных режимах работы, достигая значительной величины. Это приводит к ложным срабатываниям защитных устройств от замыканий на землю.

Трансформатор тока нулевой последовательности

Трехфазные сети с переменным напряжением могут работать в различных режимах, в том числе и несимметричных. Для расчетов таких режимов используется метод симметричных составляющих, в котором фазные токи и напряжения представлены в виде суммы, включающей в себя прямую, обратную и нулевую последовательность.

В схемах автоматической и релейной защиты чаще всего используется прямая и нулевая последовательность. Прямая последовательность состоит из синусоидальных токов и напряжений, одинаковых по величине во всех трех фазах. Их угловой сдвиг составляет 120 градусов, а максимальные значения достигаются в порядке очереди – А, В и С. Компоненты нулевой последовательности также имеют одинаковую величину в каждой из трех фаз, однако у них отсутствует угловой сдвиг.

Когда установлен симметричный режим работы, в фазных токах и напряжениях должна быть только прямая последовательность. Если же зафиксировано заметное проявление элементов нулевой последовательности, это указывает на возникновение в сети аварийной ситуации, требующей обязательного отключения каких-либо участков.

В электрических сетях напряжением 6-35 киловольт настраивать защиту нулевой последовательности следует с особой осторожностью. Это связано с отсутствием глухозаземленной нейтрали, когда токи нулевой последовательности практически не превышают рабочих токов во всех подключениях. Из-за этого настройка защиты становится очень сложной или вообще невозможной, особенно при наличии в цепях множества линий с однофазными кабелями, неудачно расположенными между собой. Токи нулевой последовательности в нормальном режиме могут появиться в жилах и экранах однофазных кабелей. Частично влияние этих токов компенсируется подключением трансформаторов тока.

Принцип работы

Прежде чем рассматривать трансформаторы тока нулевой последовательности, нужно остановится на обычных трансформаторах. Все устройства этого типа разделяются на трансформаторы тока и напряжения. Они применяются для измерений токов и напряжений с большими величинами. На одну из обмоток подается ток или напряжение, которое требуется измерить, а на выходе второй обмотки снимаются уже преобразованные, как правило пониженные значения этих параметров.

Через трансформаторы тока наиболее часто подключаются магнитоэлектрические вольтметры и параллельные цепи, а трансформаторы напряжения соединяются с амперметрами и другими последовательными цепями.

Трансформаторы нулевой последовательности также относятся к токовым измерительным приборам. От других видов трансформаторных устройств они отличаются назначением и принципом работы. Основной функцией данных приборов является регистрация токовых утечек или отсутствия фазы при коротком замыкании в трехфазных кабелях. Когда в жилах таких кабелей возникает асимметрия токов, это приводит к появлению на выходе вторичной обмотки сигнала небаланса. Далее этот сигнал уходит к контрольному устройству, с помощью которого отключается питание поврежденного кабеля. Подключение трансформатора тока нулевой последовательности осуществляется не к каждой фазе. Он соединяется сразу со всеми жилами кабеля.

Таким образом, принцип работы этих устройств основан на выделении сигнала через трансформацию токов нулевой последовательности при однофазных замыканиях на землю. Они применяются в сетях с изолированной нейтралью и схемах релейной защиты. Благодаря нормированному коэффициенту трансформации, который может переключаться во вторичной обмотке, становится возможной эффективная и точная настройка релейной защиты.

Выпуск трансформаторов производителями осуществляется в различных модификациях. Основными техническими характеристиками являются номинальное напряжение и частота, коэффициент трансформации, испытательное одноминутное напряжение, односекундный ток термической стойкости вторичной обмотки. Они имеют различные габариты, обеспечивающие возможность подключения сразу к нескольким одножильным кабелям, сечением до 500 мм2.

Источник

Принцип работы и устройство трансформатора тока нулевой последовательности

Устройство ТНП. Магнитопровод 1, собранный из листов трансформаторной стали, имеет обычно форму кольца или прямоугольника, охватывающего все три фазы защищаемой линии. Провода фаз А, В и С, проходящие через отверстие ТНП, являются первичной обмоткой трансформатора, вторичная обмотка 2 располагается на магнитопроводе.

Рис. Трансформатор тока нулевой последовательности (ТНП).

3 — трехфазный силовой кабель.

Токи фаз Iа, Iв и Iс создают в магнитопроводе соответствующие магнитные потоки ФА, Фв и Фс; складываясь, они образуют результирующий поток первичной обмотки:

Если поток Фрез ≠0, то во вторичной обмотке появляется э. д. с. Е2, обусловливающая ток в реле.

При одинаковом расположении проводов фаз относительно магнитопровода и вторичной обмотки коэффициент к может считаться одинаковым для всех фаз.

Результирующий поток, создаваемый первичными токами ТНП, пропорционален составляющей тока нулевой последовательности:

Поток Фрез, а следовательно, вторичная э. д. с. Е2 и вторичный ток I2 могут возникнуть только при условии, что сумма токов фаз не равна нулю, или, иначе говоря, когда фазные токи, проходящие через ТНП, содержат составляющую I0. Поэтому ток в реле Т, питающемся от ТНП, будет появляться только при замыканиях на землю.

В режиме нагрузки, трехфазного и двухфазного к. з. (без замыкания на землю) сумма токов фаз равна 0, и поэтому ток в реле отсутствует.

Однако практически расположение проводов фаз относительно вторичной обмотки неодинаково. Коэффициент взаимоиндукции фаз со вторичной обмоткой к имеет различную величину, вследствие чего, несмотря на полный баланс первичных токов, сумма их магнитных потоков не равна нулю. Появляется поток небаланса, вызывающий во вторичной обмотке э. д. с. и ток небаланса.

Для защиты линий ТНП выполняются только кабельного типа. При необходимости осуществления защиты воздушных линий делается кабельная вставка, на которой устанавливается ТНП.

Читайте также:  Расчет по току секционирования

Дата добавления: 2016-04-11 ; просмотров: 15929 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Коэффициент трансформации трансформатора тока нулевой последовательности

Одним из устройств, применяемых для защиты ЛЭП с напряжением 110 кВ, является токовая направленная защита нулевой последовательности (сокращенно – ТНЗНП).
Эти линии электропередач выполняются с эффективно заземленной нейтралью. В отличие от сетей 6-35кВ, у которых нейтраль изолирована, токи замыкания на землю достаточно большие, что вызывает необходимость фиксировать их и отключать с минимально возможной выдержкой времени. Но для этого нужно не просто определить факт наличия в системе замыкания на землю, но и найти линию, на которой оно произошло. Для этого такие защиты и делаются направленными.

Токи нулевой последовательности

Систему трехфазных токов и напряжений можно представить в виде векторной диаграммы, где векторы этих токов (напряжений) в нормальном режиме сдвинуты друг относительно друга в пространстве на одинаковый угол, равный 120 градусов. При этом полученная диаграмма является еще и вращающейся относительно условного наблюдателя: сначала мимо него проходит вектора фазы «А», затем «В», потом «С». И так – по кругу. Эту диаграмму принято называть системой токов (напряжений) прямой последовательности.

Если поменять порядок прохождения векторов с А-В-С на С-В-А, получается обратная последовательность. В обоих случаях неизменным остается одно: между векторами разных фаз сохраняется угол в 120 градусов.

Ток или напряжение нулевой последовательности получается, если все эти векторы сложить между собой. Для этого, если вспомнить геометрию, нужно начало второго вектора совместить с концом первого, затем так же добавить к нему третий. Поскольку угол между ними остается равным 120 градусов, то получим равносторонний треугольник, система замкнется. Результирующий вектор, определяющий сумму всех слагаемых, будет равен нулю. Он должен быть проведен от начала первого суммируемого вектора к концу последнего.


Но так будет только при отсутствии в системе замыканий на землю. При междуфазных увеличиваются векторы токов одновременно в двух фазах, а то и во всех трех. Сложение их между собой даст все тот же ноль. Поэтому такие еще называют симметричными.

Интересное видео о работе ТЗНП смотрите ниже:

Что такое нулевая последовательность

Для того чтобы разобраться как работает ТЗНП, сначала нужно вспомнить что такое трехфазная сеть. Трехфазная сеть — это сеть переменного синусоидального тока. В трёхфазной цепи фазы сдвинуты друг относительно друга на 120 градусов. Вот так это выглядит на графике:

Основные идеи и положения трехфазных сетей электроснабжения были разработаны Михаилом Осиповичем Доливо-Добровольским. Он разработал трёхфазный асинхронный двигатель с КЗ ротором типа беличья клетка, с фазным ротором и пусковым реостатом, искрогасительную решетку, фазометр, стрелочный частотомер.

Если изобразить это на векторной диаграмме, то изображение будет напоминать трехлучевую звезду. При условии равенства токов и напряжений между фазами такая система будет называться симметричной. Геометрическая сумма этих векторов равна нулю.

Различают прямую и обратную последовательность чередования фаз. Фазы обозначаются буквами A, B и C. Тогда последовательность A B C — прямая, C B A — обратная. При этом угол сдвига фаз в обоих случаях составляет 120 градусов. При нулевой последовательности вектора всех фаз направлены в одном направлении, соответственно результирующий вектор значительно превышает таковой (в 3 раза, по сравнению с нулевой последовательностью) в нормальном состоянии системы.

В случае межфазного замыкания токи во всех фазах возрастут, система все равно останется симметричной. А напряжения и токи нулевой последовательности равны нулю, как и в нормальном состоянии цепи.

В результате однофазного замыкания на землю система станет несимметричной и будут наблюдаться токи нулевой последовательности I0 и U0. Допустим замкнула фаза C, тогда токи фаз A и B устремятся к нулю, а в фазе C к трети от Iкз.

Отсюда Iк=I0*3. Эти токи возникают под воздействием напряжения КЗ или Uк0 между выводом обмотки трансформатора или генератора и точкой, в которой произошло замыкание.

Защита на токах нулевой последовательности

Но при наличии замыкания на землю нулевая последовательность токов выходит из равновесия. Появляется результирующий ток, на который и реагирует релейная защита.

В системах с изолированной нейтралью для выделения этих токов используется специальный трансформатор, надеваемый на кабель.

На ЛЭП — 110 кВ это выполнить невозможно и токи замыкания на землю определяются по другому принципу. Для этого на обычных трансформаторах тока, использующихся для релейной защиты, выделяется отдельная обмотка на каждой фазе. Обмотки фаз соединяются между собой последовательно особым способом: начало следующей соединяется с концом предыдущей. В эту же цепь включаются и токовые обмотки реле.

Обычно защищаемый участок разделяется на участки (зоны), примерно, как у дистанционной защиты. Сама защита выполняется многоступенчатой. Ток срабатывания первой ступени максимальный, выдержка времени – минимальна или равна нулю. Следующая ступень срабатывает при меньшем токе, но с большей выдержкой по времени. И так далее.

На другом конце линии установлена такая же защита. А линий может быть много. Наличие ступеней позволяет обеспечить отключение именно участка с повреждением, а также – резервировать другие защиты в случае их отказа.

Принцип действия токовой защиты

На приведенной схеме видно, что пусковое реле тока КА, соединенное с фильтром токов с нулевой последовательностью, реагирует на короткое замыкание на землю. С помощью реле мощности KW производится фиксация направления мощности замыкания.

Данное действие обладает селективностью, то есть работа защиты осуществляется в том случае, когда мощность замыкания направляется от шин трансформаторной подстанции на защищаемую электрическую линию. Подводка напряжения производится от обмотки трансформатора при разомкнутом треугольнике на реле мощности с помощью специальных шинок EV.HиEV.K. Необходимая выдержка времени, по условиям селективности, создается при помощи реле времени КТ.

Напряжение нулевой последовательности

Имея в наличии только информацию о токах нулевой последовательности, невозможно определить, где произошло КЗ: в самой линии, или «за спиной». В противоположном от линии конце находится либо распределительное устройство с другими подключенными к нему ЛЭП, либо трансформаторы. У них есть своя собственная защита, которая лучше разберется в ситуации.

Читайте также:  Защита трансформаторов тока от короткого замыкания

Для того, чтобы определить направление на замыкание на землю, потребуется информация о напряжении нулевой последовательности. Оно берется с особых обмоток трансформаторов напряжения, соединенных в разомкнутый треугольник.

Это тоже векторная сумма, но не токов, а фазных напряжений. Она равна нулю в нормальном режиме и при симметричных КЗ, но при однофазных имеет определенную величину.

Далее в дело вступает реле направления мощности. На одну его обмотку подается напряжение нулевой последовательности, а на другую – ток, использующийся для работы земляной защиты. Срабатывание происходит при таком угле между этими величинами, когда мощность направлена в линию. В других случаях, при «за спиной», отсутствие срабатывания этого реле блокирует работу защиты.

Принцип действия ТЗНП, защита нулевой последовательности

Что такое ток нулевой последовательности

В электрических сетях с напряжением от 6 до 35 кВ токи нулевой последовательности, как правило, связаны с однофазными замыканиями на землю. Эти токи могут возникать и при нормальных режимах работы, достигая значительной величины. Это приводит к ложным срабатываниям защитных устройств от замыканий на землю.

Трехфазные сети с переменным напряжением могут работать в различных режимах, в том числе и несимметричных. Для расчетов таких режимов используется метод симметричных составляющих, в котором фазные токи и напряжения представлены в виде суммы, включающей в себя прямую, обратную и нулевую последовательность.

Трансформатор тока нулевой последовательности

В схемах автоматической и релейной защиты чаще всего используется прямая и нулевая последовательность. Прямая последовательность состоит из синусоидальных токов и напряжений, одинаковых по величине во всех трех фазах. Их угловой сдвиг составляет 120 градусов, а максимальные значения достигаются в порядке очереди – А, В и С. Компоненты нулевой последовательности также имеют одинаковую величину в каждой из трех фаз, однако у них отсутствует угловой сдвиг.

Когда установлен симметричный режим работы, в фазных токах и напряжениях должна быть только прямая последовательность. Если же зафиксировано заметное проявление элементов нулевой последовательности, это указывает на возникновение в сети аварийной ситуации, требующей обязательного отключения каких-либо участков.

Токи небаланса

Правильное сложение токов возможно только в случае полной идентичности характеристик трансформаторов тока. На этапе проектирования для защиты обязательно выбираются одинаковые обмотки трансформаторов с одинаковым классом точности, кратностью насыщения.

Кроме того, в цепи этих обмоток не должны быть включены другие устройства или приборы, нарушающие симметрию их нагрузки.

Но и этого может оказаться недостаточно. Если при всем при этом характеристики намагничивания оказываются разными, ток небаланса все-таки появляется. Если в нормальном режиме он не приводит к ложному срабатыванию защиты, то при симметричных КЗ, когда токи становятся в несколько раз большими, ток небаланса существенно возрастет.

Поэтому при замене трансформаторов тока, если не удается подобрать аналог для одного из них с полным соответствием вольт-амперных характеристик, то лучше сменить не один или два, а все три.

Технические характеристики трансформаторов тока ТЗЛК-0,66 и ТЗЛКР-0,66.

Наименование параметра Значение параметра
Номинальное напряжение, кВ 0,66
Номинальная частота, Гц 50 или 60
Односекундный ток термической стойкости вторичной обмотки, А 140
Испытательное одноминутное напряжение промышленной частоты, кВ 3

Трансформаторы тока нулевой последовательности ТЗЛК-0,66

Тип реле Используемая шкала реле, А Установка тока срабатывания, А Чувствительность защиты (первичный ток, А), не более
при работе с одним трансформатором при последовательном соединении трансформатора при параллельном соединении двух трансформаторов
РТ-140/0,2 0,1-0,2 0,1 8,5 10,2 12,5
РТ3-51 0,02-0,1 0,03 2,5 3,2 4,8

Трансформаторы тока нулевой последовательности ТЗЛКР-0,66.

Тип реле Используемая шкала реле, А Установка тока срабатывания, А Чувствительность защиты (первичный ток, А), не более
при работе с одним трансформатором при последовательном соединении трансформатора при параллельном соединении двух трансформаторов
РТ-140/0,2 0,1-0,2 0,1 25 30 45
РТ3-51 0,02-0,1 0,03 3 4 4,5

Реализация защит ТЗНП

Широко применялись еще с советских времен панели защит ЛЭП-110 кВ на базе электромеханических реле, например ЭПЗ-1636. В ее состав, кроме ТЗНП входит еще дистанционная защита и токовая отсечка.

Однако электромеханические реле эксплуатирующихся панелей давно выработали свой ресурс, а точечная их замена не всегда приводит к надежным результатам.

Поскольку со времен разработки данной релейной техники прогресс уже ушел далеко вперед, старое оборудование целиком меняется на панели или шкафы, включающие в себя микропроцессорные терминалы релейных защит.

Трансформаторы тока ТЗЛК-СЭЩ-0,66, ТЗЛКР-СЭЩ-0,66.

Трансформаторы тока нулевой последовательности ТЗЛК-СЭЩ-0,66, ТЗЛКР-СЭЩ-0,66 предназначены для питания схем релейной защиты от замыкания на землю отдельных жил трехфазного кабеля путем трансформации, возникших при этом токов нулевой последовательности, устанавливаются на кабель в комплектных распределительных устройствах (КРУ) внутренней установки. Трансформатор ТЗЛКР-СЭЩ-0,66 устанавливается на действующую кабельную линию.

Трансформаторы изготавливаются в климатическом исполнении «У» и «Т» категории размещения 2 по ГОСТ 15150-69 и предназначены для работы в следующих:

  • верхнее значение температуры окружающего воздуха для исполнения «У» +50 °С, для исполнения «Т» +55 °С;
  • нижнее значение температуры окружающего воздуха -45 °С, для исполнения «У», -10 °С для исполнения «Т»;
  • относительная влажность воздуха 98% при + 25 °С для исполнения «У», при +35 °С для исполнения «Т»;
  • высота над уровнем моря не более 1000 м;
  • окружающая среда не взрывоопасная; не содержащая токопроводящей пыли, химически активных газов и паров в концентрациях, разрушающих металлы — атмосфера типа II по ГОСТ 15150-69;
  • положение трансформаторов в пространстве — любое.

Изоляция трансформатора класс нагревостойкости В по ГОСТ 8865-93, литая, на основе эпоксидной смолы. Главная изоляция обеспечивается изоляцией высоковольтного кабеля на напряжение 10 кВ, пропущенного через окно трансформатора.

Читайте также:  Ударит током цепочка ток человеку

Изоляция вторичной обмотки трансформатора должна выдерживать в течение 1 мин воздействие испытательного напряжения 3 кВ частотой 50 Гц.

Наименование параметра Значение параметра
Номинальное напряжение, кВ 0,66
Номинальная частота, Гц 50
Односекундный ток термической стойкости, А 140
Тип реле РТ-140 РТЗ-51
Используемая шкалы реле, А 0,1-0,2 0,02-0,1
Уставка тока срабатывания, А ТЗЛК-СЭЩ-0,66-1;2 ТЗЛКР-СЭЩ-0,66-1;2 0,1 0,03
ТЗЛК-СЭЩ-0,66-3 0,032
ТЗЛК-СЭЩ-0,66-4 0,03
Чувствительно защиты (первичный ток, А), не более при работе с одним трансформатором ТЗЛК-СЭЩ-0,66-1; 2 8,5 2,8
ТЗЛК-СЭЩ-0,66-3; 4 2,8
ТЗЛРК-СЭЩ-0,66-1; 2; 3; 4 25 3
при последовательном соединении трансформаторов ТЗЛК-СЭЩ-0,66-1; 2 10,2 3,2
ТЗЛК-СЭЩ-0,66-3 3,2
ТЗДРК-СЭЩ-0,66-1; 2; 3; 4 30 4
при параллельном соединении двух трансформаторов ТЗЛК-СЭЩ-0,66-1; 2 12,5 4,8
ТЗЛК-СЭЩ-0,66-3 4,8
ТЗЛРК-СЭЩ-0,66-1; 2; 3; 4 45 4,5

Трансформаторы ТЗЛК-СЭЩ-0,66 выполнены опорными, трансформаторы ТЗЛКР-СЭЩ-0,6 — опорной разъемной конструкции. Контактные выводы вторичной обмотки трансформатора должны соответствовать требованиям ГОСТ 10434-82.

Сторона трансформатора, соответствующая линейному вводу первичной цепи, обозначена рельефной литерой Л1. Вводы вторичной обмотки трансформатора обозначаются И1-И2, выполнены рельефными при заливке трансформатора.

При монтаже следует учитывать, что при направлении тока в первичной цепи от Л1 к Л2, вторичный ток во внешней цепи (приборам) направлен от И1 к И2.

Трансформатор не подлежит заземлению, так как его корпус выполнен из эпоксидной смолы и не имеет подлежащих заземлению металлических частей.

Источник

Что такое напряжение нулевой последовательности? Схемы, применение, физический смысл

Система трехфазных напряжений в нормальном режиме работы является симметричной. Но, стоит произойти короткому замыканию, как симметрия нарушается. Для удобства распознавания видов КЗ и проведения расчетов применяется метод симметричных составляющих. Согласно ему любую трехфазную систему с момента КЗ можно, для удобства расчетов, представить в виде суммы напряжений трех симметричных систем:

  • прямой последовательности;
  • обратной последовательности;
  • нулевой последовательности.

Все они являются мнимыми величинами, не существующими на самом деле. Но с помощью некоторых ухищрений их можно сделать реально осязаемыми, и применить на практике.

Устройства, выделяющие из системы трехфазных напряжений напряжение нужной последовательности, называют фильтрами. Рассмотрим одно из таких устройств, применяемое на практике для фиксации замыканий на землю.

Назначение дополнительных обмоток ТН

Особенностью напряжения нулевой последовательности (3Uo) является тот факт, что оно не появляется в результате междуфазных замыканий, а является только следствием КЗ на землю. Причем, не важно, где происходит замыкание: в электроустановке с изолированной или глухозаземленной нейтралью.

Фильтром для выделения этой величины являются специальные обмотки трансформаторов напряжения (ТН).

Этот процесс происходит по-разному в зависимости от конструкции трансформаторов. Если используются три одинаковых ТН, у каждого из них имеется специальная обмотка, выводы которой обозначены буквами «Ад» и «Хд». Эти обмотки соединяются между собой последовательно, с обязательным соблюдением направления. Провод от вывода «Хд» фазы «А» идет на вывод «Ад» фазы «В» и так далее. Такая схема включения называется разомкнутым треугольником.

napryg 3

В итоге на оставшихся разомкнутыми выводах «Ад» первой фазы и «Хд» последней в любого случае повреждения в сети, связанного с замыканием на землю, появится 3Uo. Можно его измерить, а также использовать для работы сигнализации, подключив к обмотке реле напряжения. Можно использовать и для работы защит, но об этом – немного позднее.

В трансформаторах напряжения, объединяющих обмотки трех фаз в одном корпусе, не требуется выполнять внешние соединения для фильтра 3Uo. Все уже выполнено заранее, внутри корпуса трансформатора.

napryg 2

Если в предыдущем случае выделение 3Uo происходит путем последовательного сложения векторов напряжений за счет коммутации проводников, то внутри трехфазного ТН это происходит за счет сложения магнитных потоков в сердечнике. Поэтому, в зависимости от его формы, внутренняя схема соединений обмоток Ад-Хд может отличаться.

napryg 4

Но сути это не меняет: в итоге на корпусе рядом с выводами основных обмоток, использующихся для учета, измерения и защиты, появляется выводы от объединенной дополнительной обмотки 3Uo. Обозначается она точно так же, как и на однофазных ТН.

Интересное видео о ТЗНП смотрите ниже:

Сигнализация о замыкании на землю

В сетях 6-10 кВ, где нейтраль изолирована, работа с «землей» возможна некоторое время. Но замыкание нужно активно искать. И чем раньше начнется поиск, тем лучше.

Для контроля изоляции используются вольтметры, подключенные к обмоткам ТН на фазные напряжения.

В сети без повреждений все они показывают одинаковую величину. Стоит случиться однофазному замыканию, как показания вольтметра поврежденной фазы снизятся. Вольтметр покажет ноль при полном устойчивом КЗ. Так определяется фаза с повреждением.

Но, чтобы взглянуть на вольтметры, нужно сгенерировать предупредительный сигнал.

Для этого используется контроль величины 3Uo с помощью реле.

При его срабатывании зажигается табло, привлекающее к себе внимание.

Величину 3Uo принято регистрировать с помощью самопишущих приборов, а также она обязательно записывается аварийными осциллографами или микропроцессорными терминалами в момент любой аварии, даже не связанной с замыканиями на землю.

Еще один пример применения сигнализации, работающей от 3Uo, связан с эксплуатацией установок компенсации емкостных токов.

Отключать разъединитель дугогасящей катушки запрещено при наличии «земли» в сети. Для этого рядом с коммутационным устройством устанавливается индикаторная лампа, либо блок-замок рукоятки блокируется при наличии 3Uo системой автоматики.

Использование 3Uo в составе защит

В сетях с изолированной нейтралью совместное использование напряжений и токов нулевой последовательности позволяет определить направление на точку короткого замыкания. Но в настоящее время существуют более эффективные методы точного определения места повреждения в этих сетях.

Гораздо большую пользу подобная схема приносит в сетях в глухозаземленной нейтралью (ЛЭП-110 кВ и выше).

Подключение напряжения 3Uo (нулевой последовательности) и тока 3Io к обмоткам реле направления мощности позволяет определить, произошло ли однофазное КЗ в линии или вне ее. Так обеспечивается селективность работы защиты от однофазных замыканий на землю.

Источник