Ток холостого хода при нагрузке

Содержание
  1. Холостой ход электродвигателя
  2. Подписка на рассылку
  3. Параметры холостого хода электродвигателя
  4. § 8.3. Режимы холостого хода и работы трансформатора под нагрузкой
  5. Определение холостого хода трансформатора
  6. Общее устройство и виды
  7. Основные типы
  8. Особенности установок
  9. Методология проведения опыта
  10. Подход к проведению измерений
  11. Суть измерения
  12. Коэффициент трансформации
  13. Однофазные приборы
  14. Трехфазные приборы
  15. Применение коэффициента
  16. Измерение тока
  17. Измерение потерь
  18. Применение ваттметра
  19. Что такое холостой ход трансформаторов, формулы и схемы
  20. Общая конструкция и принцип работы трансформатора
  21. Понятие холостого хода
  22. Меры по снижению тока холостого хода
  23. Как проводится опыт холостого хода
  24. Коэффициент трансформации
  25. Однофазные трансформаторы
  26. Трехфазные
  27. Измерение тока
  28. Применение ваттметра
  29. Измерение потерь
  30. Схема замещения в режиме трансформатора
  31. От чего зависит магнитный поток взаимоиндукции в режиме ХХ
  32. Примеры расчетов и измерений в режиме ХХ
  33. Режим холостого хода трансформатора
  34. Что такое режим холостого хода
  35. Как проводится опыт холостого хода
  36. Для однофазного трансформатора
  37. Для трёхфазного трансформатора
  38. Для сварочного трансформатора
  39. Видео: измерение тока холостого хода
  40. Меры по снижению тока холостого хода

Холостой ход электродвигателя

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Электродвигатель переходит в режим холостого хода, когда с его вала снимают рабочую нагрузку. В этом случае можно определить такие важные параметры функционирования устройства, как намагничивающий ток, мощность и коэффициент потерь в элементах конструкции привода. Но главное – в режиме холостого хода можно определить исправность устройства.

Так, электродвигатель на холостом ходу греться не должен. Но в некоторых случаях температура привода повышается – и это сигнализирует о неполадках, которые впоследствии могут проявить себя.

Параметры холостого хода электродвигателя

Как было сказано выше, холостой ход – это режим работы асинхронного электродвигателя, при котором на валу нет нагрузки. В этом случае устройство с точки зрения электротехники схоже с трансформатором. Но главное – оно потребляет меньше электроэнергии, что особенно важно для контроля правильности работы мотора.

В частности, ток холостого хода асинхронного электродвигателя в зависимости от мощности и частоты вращения составляет в среднем 20-90% от номинального. Существует таблица, в которой указаны данные значения.

Так, например, ток холостого хода электродвигателя на 5 кВт при частоте вращения в 1000 оборотов в минуту составляет 70% от номинального (см. рис. 2). При частоте вращения 3000 оборотов в минуту – всего 45% от номинального (см. рис. 3). Это важно учесть, так как если фактическая сила тока значительно расходится с расчётной, то это сигнализирует о неполадках.

Стоит отметить, что параметры работы двигателя обычно указаны в прилагаемой к нему документации или могут быть получены посредством расчётов.

Что делать, если греется электродвигатель на холостом ходу
Электродвигатель на холостом ходу греться не должен. Допускается лишь незначительное увеличение температуры, обусловленное естественными причинами – появление трения в подшипниках на валу ротора и сопротивление в обмотке. А вот заметный нагрев сигнализирует в первую очередь о неполадках в устройстве.

Чаще всего нагревается асинхронный электродвигатель на холостом ходу из-за межвиткового замыкания в обмотках. Это требует срочного ремонта. Ведь при повышении нагрузок межвитковое замыкание может привести к перегреву и выгоранию обмотки – и, как следствие, повреждению как самого ЭД, так и конструкции, в которую он установлен.

Ещё одна возможная причина нагрева ЭД в этом режиме – эксплуатация в нештатных условиях. Например, превышение напряжения. В этом случае необходимо срочно отключить питание двигателя, так как из-за перегрева может возникнуть межвитковое замыкание в обмотках или замыкание обмотки на корпус двигателя.

Реже нагрев ЭД наблюдается из-за затруднённого движения ротора. Стоит убедиться, что подшипники работают нормально, а между обмотками ротора и статора не попали загрязнения.

Источник

§ 8.3. Режимы холостого хода и работы трансформатора под нагрузкой

При работе трансформатора в режиме холостого хода его вто­ричная обмотка разомкнута. По первичной обмотке, включенной в цепь переменного тока, протекает ток холостого хода /, равный

2-10%. номинального тока. Произведение этого тока на число

витков Wt первичной обмотки определяет м. д. с. первичной об­мотки, которая связана с максимальным магнитным потоком от­ношением

где RM— магнитное сопротивление.

В то же время при постоянной частоте магнитный поток зависит только от величины э. д. с

откуда

В каждой электрической цепи в любой момент времени должно быть соблюдено равновесие напряжений: приложенное напряжение должно уравновешивать э. д. с. самоиндукции, наводимую в. пер­вичной обмотке трансформатора, и потерю напряжения в обмотке.

При холостом ходе падение напряжения I Z1 очень мало, оно не превышает 0,5% от U1 и им можно пренебречь, тогда

Для первичной цепи напряжение

т. е. подведенное к трансформатору напряжение U1 уравновеши­вается практически только э. д. с. E1. Магнитный поток в этом случае

При разомкнутой вторичной обмотке трансформатора э. д. с. на зажимах этой обмотки E2=U20, откуда

где U20— напряжение на выводах вторичной обмотки трансфор­матора в режиме холостого хода; k — коэффициент трансформации.

Режим холостого хода позволяет определить величину магнит­ных потерь в магнитопроводе трансформатора. Потери в трансфор­маторе слагаются из потерь в стали на гистерезис и вихревые токи и потерь в меди. В современных трансформаторах потери в стали, в зависимости от мощности, составляют: при мощности трансфор­матора 5 ква 1,2—1,8%, при мощности 100 ква 0,6—0,9%, ‘при большей мощности 0,2—0,5% номинальной мощности.

Рис. 8.6. Векторная диа­грамма холостого хода трансформатора

Рис.8.7 Опыт холостого хода трансформатора

Работа трансформатора в режиме холостого хода наглядно ха­рактеризуется векторной диаграммой (рис. 8.6). Вектор э. д. с. Е1, наведенной магнитным потоком Ф, отстает от вектора магнит­ного потока Ф на 90° и откладывается вниз. Вследствие явления гистерезиса и вихревых токов магнитный поток отстает на неко­торый угол от тока холостого хода /. Угол называется углом магнитных потерь или углом магнитного запаздывания. Угол по­терь обычно невелик и угол сдвига фаз между током и напряжением приближается к 90°. Коэффициент мощности при холостом ходе мал ().

Ряд характерных для трансформатора величин: потери холос­того хода, ток холостого хода и коэффициент трансформации могут быть получены из опыта холостого хода. Опыт холостого хода проводят по схеме, приведенной на рис. 8.7, а; при этом по показаниям измерительных приборов определяют: напряжение первичной це­пи, ток холостого хода / и мощность холостого хода Р.

Порядок измерений следующий. С помощью потенциал-регуля­тора ПР постепенно повышая напряжение, подводимое к первичной обмотке трансформатора Тр,от U=0,5 UH до U1= 1,2 UH, делают ряд измерений величин тока, напряжения и мощности. По данным измерений строят кривые зависимостей /=/( U1) (рис. 8.7, б) и P=f (U1) (рис. 8.7, в). Зависимость P=f (U1) имеет параболический характер, так как (, а при холос­том ходе E1=U1).

Значения P, I и , соответствующие номинальному нап­ряжению, находят по построенным кривым. Ток холостого хода I в трансформаторах большой мощности составляет 2—4% от IH а в трансформаторах средней и малой мощности достигает 10%-40% от IH.

При работе трансформатора под нагрузкой его вторичная обмотка замкнута на внешнее сопротивление, и по цепи проходит ток I2. Ток вторичной обмотки I2 создает в ней м. д. с, которая действует в том же магнитопроводе и направлена в соответствии с законом Ленца против м. д. с. первичной обмотки. Результирующий маг­нитный поток будет создаваться совместными действиями обеих м. д. с. Первичный ток намагничивает сердечник трансформатора, ток вторичной обмотки его размагничивает.

Читайте также:  С помощью чего можно преобразовать переменный ток в постоянный

Однако уменьшение общего магнитного потока вызывает умень­шение э. д. с. E1 наводимой в первичной обмотке. С уменьшением этой э. д. с. увеличивается ток I1 величина которого ограничивается действием E1 а это вызывает увеличение, намагничивающего по­тока Ф до его прежней величины. Таким образом, намагничивающий магнитный поток при изменении нагрузки практически остается неизменным.

При работе трансформатора под нагрузкой магнитный поток Ф в сердечнике создается по закону полного тока магнитодвижущими силами обеих обмоток. Поэтому можно написать следующее урав­нение магнитодвижущих сил

При номинальных нагрузках ток I мал и им можно прене­бречь, считая I≈0. Тогда,

Источник

Определение холостого хода трансформатора

Трансформаторы представляют собой сложное оборудование, которое предназначено для изменения параметров тока в цепи. Они могут повышать или понижать мощность, напряжение электричества в соответствии с требованиями потребителей.

В оборудовании при работе определяются некоторые потери мощности. Поэтому не вся электроэнергия, которая поступила на первичную обмотку, доходит к потребителю. При этом греется трансформатор (магнитопривод, обмотки и прочие детали). В различных конструкциях этот показатель неодинаков.

Режим холостого хода трансформатора

Холостой ход трансформатора позволяет определить токовые потери. Эта методика применяется в сочетании с определением напряжения в режиме короткого замыкания трансформатора. Этот процесс называется опытом агрегата. Он выполняется по определенной схеме.

  • 1 Общее устройство и виды
    • 1.1 Основные типы
    • 1.2 Особенности установок
  • 2 Методология проведения опыта
    • 2.1 Подход к проведению измерений
    • 2.2 Суть измерения
  • 3 Коэффициент трансформации
    • 3.1 Однофазные приборы
    • 3.2 Трехфазные приборы
    • 3.3 Применение коэффициента
  • 4 Измерение тока
  • 5 Измерение потерь
    • 5.1 Применение ваттметра

Общее устройство и виды

Чтобы понять, что такое опыт холостого хода различных трансформаторов, необходимо рассмотреть, что собой представляет подобное оборудование.

Основные типы

Трансформаторами называются машины неподвижного типа, которые работают благодаря электрическому току. Они меняют входное напряжение. Существует несколько видов подобных аппаратов:

  1. Силовые.
  2. Измерительные.
  3. Разделительные.
  4. Согласующие.

Чаще всего в энергетическую цепь требуется подключение силового трансформатора. Они могут иметь две или более обмоток. Аппарат может быть однофазный (бытовая сеть) или многофазный (промышленная сеть).

Особенности установок

Отдельно выделяются автотрансформаторы. В них есть только одна совмещенная обмотка. Также бывает сварочный аппарат. Они имеют определенную сферу применения.

В однофазном и многофазном оборудовании может устанавливаться различная номинальная мощность. Она может определяться в диапазоне от 10 до 1000 кВА и более. Маломощные однофазные и многофазные приборы могут быть в диапазоне до 10 кВА. Средние разновидности будут иметь мощность 20 кВА, 250 кВА, 400 кВА, 630 кВА и т. д. Если же этот показатель больше 1000 кВА, это установка высокой мощности.

Методология проведения опыта

Потери холостого хода трансформатора определяются при создании определенного режима. Для этого прекращается снабжение током всех обмоток. Они остаются разомкнутыми. После этого производится снабжение цепей электричеством. Оно определяется только на первом контуре. Аппаратура должна работать под напряжением, которое устанавливается при его производстве производителем.

Через первичный контур силовой, сварочной или прочей установки протекают токи, которые носят название ХХ. Их величина равняется не более 3-9% от заданного производителем показателя. При этом на обмотке вторичного контура электричество отсутствует. На первичном контуре ток производит магнитный поток. Он пересекает витки обеих обмоток. При этом возникает ЭДС самоиндукции на контуре первичном и взаимоиндукции – на обмотке вторичного типа.

Например, напряжение холостого хода сварочного трансформатора небольшой и средней мощности представляет собой ЭДС взаимоиндукции.

Подход к проведению измерений

Замер потерь холостого хода может производиться в двух аспектах. Их называют потерями в стали и меди. Второй показатель говорит о рассеивании тепла в обмотках (они начинают греться). В процессе проведения опыта этот показатель очень мал. Поэтому им пренебрегают.

Данные о потере тока холостого хода трансформатора представляются в виде таблицы. В ней рассчитаны параметры для стали определенных сортов и толщины. Ток холостого хода трансформатора рассматривается в аспекте мощности, которая создается в магнитом потоке и именуется потерей в стали. Она затрачивается на нагрев листов из специального сплава. Они изолируются друг от друга лаковым покрытием. При создании таких магнитоприводов не используется метод сварки.

Таблица значений холостого хода

Суть измерения

Если по какой-то причине нарушается изоляционный слой между пластинами магнитопривода, между ними возрастают вихревые токи. При этом система начинает нагреваться. Лаковый слой постепенно разрушается. Потери при работе установки возрастают, его эксплуатационные характеристики ухудшаются.

В таком случае потери мощности в стали увеличиваются. При проведении расчетов этих характеристик в режиме холостого хода можно выявить возникшие нарушения в работе агрегата. Именно по этой причине производится соответствующий расчет.

Коэффициент трансформации

При определении работы установки применяется такое понятие, как коэффициент трансформации. Его формула представлена далее:

Отсюда следует, что напряжение на вторичном контуре будет определяться соотношением количества витков. Чтобы иметь возможность регулировать выходное электричество, в конструкцию установки вмонтирован специальный прибор. Он переключает число витков на первичном контуре. Это анцапфа.

Для проведения опыта на холостом ходу регулятор ставится в среднее положение. При этом измеряется коэффициент.

Однофазные приборы

Для проведения представленного опыта, при использовании понижающего или повышающего бытового агрегата, в расчет берется представленный коэффициент. При этом используют два вольтметра. Первый прибор подключается к первичной обмотке. Соответственно второй вольтметр подсоединяется к вторичному контуру.

Схема трансформатора при холостом ходе

Входное сопротивление измерительных приборов должно соответствовать номинальным характеристикам установки. Она может работать в понижающем или повышающем режиме. Поэтому при необходимости провести ремонтные работы, на нем измеряют не только подачу низкого, но и высокого напряжения.

Трехфазные приборы

Для трехфазных агрегатов в ходе проведения опыта исследуются показатели на всех контурах. При этом потребуется применять сразу 6 вольтметров. Можно использовать один прибор, который будет подключаться поочередно ко всем точкам измерения.

Если установленное производителем значение на первичной обмотке превышает 6 кВ, на нее подают ток 380 В. При измерении в высоковольтном режиме нельзя определить показатели с требуемым классом точности. Поэтому замер производят в режиме низкого напряжения. Это безопасно.

Применение коэффициента

В процессе проведения измерения анцапфу перемещают во все установленные производителем положения. При этом замеряют коэффициент трансформации. Это позволяет определить наличие в витках замыкания.

Если показания по фазам будут иметь разброс при замерах больше, чем 2%, а также их снижение в сравнении с предыдущими данными, это говорит об отклонениях в работе агрегата. В первом случае в системе определяется короткое замыкание, а во втором – нарушение изоляции обмоток. Агрегат не может при этом работать правильно.

Такие факты требуют подтверждения. Например, это может быть измерение сопротивления. Влиять на увеличение разброса показателей коэффициента могут возрастание сопротивления между контактами анцапфы. При частом переключении возникает такая ситуация.

Измерение тока

При опытном измерении тока холостого хода мастер применяет амперметры. Их необходимо подсоединять к первичной обмотке последовательно. Напряжение в контуре должно равняться номинальному значению.

Если проводится исследование работы трехфазного промышленного агрегата, замер выполняет для всех фаз одновременно или последовательно. При этом испытания производятся только для установок от 1000 кВА.

Измерение потерь

Потери в магнитоприводе замеряют исключительно при использовании мощной установки. При этом можно брать для расчетов пониженное напряжение, которое подключено к первичному контуру через ваттметр. Это прямой метод измерения.

Читайте также:  Длительно допустимый ток кабеля ввг 5х10

При учете показателей вольтметра или амперметра потребуется умножить их мощности друг на друга. Это косвенный метод. При этом результат имеет определенную погрешность. Искажение происходит из-за невозможности учесть при таком расчете коэффициент мощности. Это конус угла, который образуется в векторной схеме между напряжением и током. В режиме холостого хода между ними появляется угол 90º.

Применение ваттметра

Ваттметр позволяет произвести замер с учетом коэффициента мощности. Это дает возможность получить более точный результат. Расчет выполняется по следующей формуле:

Далее необходимо создать на основе полученного результата векторную диаграмму. По каждой фазе учитываются установленные потери. Для этого чаще всего строится таблица. При этом используется схема, которая изначально применялась производителем при создании оборудования.

Полученный результат не подлежит сравнению с нормативами. Показатели сравнивают только с характеристиками предыдущих проверок. Если потери с течением времени только возрастают, это говорит о нарушении изоляции пластин магнитопривода или появлении иных нарушений. Обратить этот процесс невозможно.

Проведение замеров холостого хода позволяет оценить состояние аппаратуры, а также определить потребность в необходимости планового или аварийного ремонта. Поэтому регулярные испытания позволяют правильно спланировать работу установки, предотвратить ее непредвиденное отключение.

Интересное видео: Описание основ работы трансформатора.

Источник

Что такое холостой ход трансформаторов, формулы и схемы

Трансформатор электрического тока является устройством преобразования энергии. Ток холостого хода трансформатора характеризует потери при отсутствии подключенной нагрузки. Величина данного параметра зависит от нескольких факторов:

  1. Конструктивного исполнения.
  2. Материала сердечника.
  3. Качества намотки.

При изготовлении преобразователей стремятся к максимально возможному снижению потерь холостого хода с целью повышения КПД, снижения нагрева, а также уменьшения паразитного поля магнитного рассеивания.

Общая конструкция и принцип работы трансформатора

Конструктивно трансформатор состоит из следующих основных частей:

  1. Замкнутый сердечник из ферромагнитного материала.
  2. Обмотки.

Обмотки могут быть намотаны на жестком каркасе или иметь бескаркасное исполнение. В качестве сердечников трансформаторов напряжения промышленной частоты используется специальным образом обработанная сталь. В некоторых случаях встречаются устройства без сердечника, но они используются только в области высокочастотной схемотехники и в рамках данной темы рассматриваться не будут.

Конструкция трансформаторов

Принцип действия рассматриваемой конструкции заключается в следующем:

  1. При подключении первичной обмотки к источнику переменного напряжения она формирует переменное электромагнитное поле.
  2. Под воздействием данного поля в сердечнике формируется магнитное поля.
  3. Магнитное поле сердечника, в силу электромагнитной индукции, создает во всех обмотках ЭДС индукции.

ЭДС индукции создается, в том числе, в первичной обмотке. Ее направление противоположно подключенному напряжению, поэтому они взаимно компенсируются и ток через обмотку при отсутствии нагрузки равен нулю. Соответственно, потребляемая мощность при отсутствии нагрузки равна нулю.

трансформатор электрического тока

Понятие холостого хода

Приведенные выше рассуждения справедливы для идеального трансформатора. Реальные конструкции обладают следующими потерями (недостатками) на:

  • намагничивание сердечника;
  • магнитное поле рассеивания сердечника;
  • электромагнитное рассеивание обмотки;
  • междувитковую емкость проводов обмотки.

В результате, в реальных конструкциях трансформатора наводимая ЭДС индукции отличается от номинального напряжения первичной обмотки и не в состоянии его полностью скомпенсировать. В обмотке возникает некоторый ток холостого хода. При подключении нагрузки данное значение суммируется с номинальным током и характеризует общие потери в электрической цепи.

Потери снижают общий КПД трансформатора, в результате чего растет потребление мощности.

Меры по снижению тока холостого хода

Основным источником возникновения тока холостого хода является конструкция магнитопровода. В ферромагнитном материале, помещенном в переменное электрическое поле, наводятся вихревые токи электромагнитной индукции – токи Фуко, которые нагревают материал сердечника.

Для снижения вихревых потерь материал сердечника изготавливают из тонких пластин, отделенных друг от друга изолирующим слоем, которую выполняет оксидная пленка на поверхности. Сам материал производится по специальной технологии, с целью улучшения магнитных свойств (увеличения значения магнитного насыщения, магнитной проницаемости, снижения потерь на гистерезис).

Обратная сторона использования большого количества пластин состоит в том, что в местах стыков происходит разрыв магнитного потока, в результате чего возникает поле рассеивания. Поэтому для наборных сердечников важна тщательная подгонка отдельных пластин друг к другу. В ленточных разрезных магнитопроводах отдельные части подгоняются друг к другу при помощи шлифовки, поэтому при сборке конструкции нельзя менять местами части сердечника.

От указанных недостатков свободны О-образные магнитопроводы. Магнитное поле рассеивания у них стремится к нулю.

Поле рассеивания обмотки и междувитковую емкость снижают путем изменения конструкции обмоток и пространственного размещения их частей относительно друг друга.

Снижение потерь также достигается при возможно более полном заполнении свободного окна сердечника. При этом масса и габариты устройства стремятся к оптимальным показателям.

Холостой ход

Как проводится опыт холостого хода

Опыт холостого хода подразумевает подачу напряжения на первичную обмотку при отсутствии нагрузки. При помощи подключенных измерительных приборов измеряются электрические параметры конструкции.

Для проведения опыта холостого хода первичную обмотку включают в сеть последовательно с прибором для измерения тока- амперметром. Параллельно зажимам подключается вольтметр.

Следует иметь в виду, что предел измерения вольтметра должен соответствовать подаваемому напряжению, а при выборе амперметра нужно учитывать ориентировочные значения измеряемой величины, которые зависят от мощности трансформатора.

Опыт холостого хода

Коэффициент трансформации

Наиболее просто определяется коэффициент трансформации. Для этого сравнивается входное и выходное напряжение. Расчет производится по следующей формуле:

Данное отношение справедливо для всех обмоток трансформатора.

характеристики трансформаторов

Однофазные трансформаторы

В однофазных трансформаторах показания амперметра характеризуют потребляемый ток при отсутствии нагрузки. Данные показания являются конечными и нет необходимости в дальнейших вычислениях.

Трехфазные

Чтобы проверить трехфазный трансформатор, требуется усложнение схемы подключения. Необходимо наличие следующих приборов:

  • амперметры для измерения тока в каждой фазе;
  • вольтметры для измерения междуфазных напряжений первичной обмотки;
  • вольтметры для измерения междуфазных напряжений вторичной обмотки.

При проведении опыта холостого хода производятся следующие вычисления:

  • рассчитывается среднее значение тока по показаниям амперметра;
  • среднее значение напряжения первичной и вторичной обмоток.

Коэффициент трансформации вычисляется по полученным значениям напряжения аналогично однофазной системе.

Трехфазный трансформатор

Измерение тока

При измерении тока можно определить только величину электрических потерь. Более полно определить параметры конструкции позволяет более сложная схема измерений.

Применение ваттметра

Подключив в первичную цепь ваттметр, можно определить мощность потерь трансформатора в режиме холостого хода. Суммируясь с мощностью нагрузки, найденная величина определяет габаритную мощность трансформатора.

Измерение потерь

При измерениях тока холостого хода и мощности потребления, можно сделать выводы о общих потерях холостого хода, которые приводят к следующему:

  1. Нагрев проводов обмоток.
  2. Нагрев сердечника.
  3. Снижение КПД.
  4. Появление магнитного поля рассеивания.

Ваттметр

Схема замещения в режиме трансформатора

Прямой электрический расчет трансформатора сложен по той причине, что он представляет собой две электрических цепи, связанных между собой магнитной цепью.

Для упрощения расчетов удобнее пользоваться упрощенной эквивалентной схемой. В схеме замещения вместо обмоток используются комплексные сопротивления:

  • для первичной обмотки комплексное сопротивление включается последовательно в цепь;
  • для вторичной обмотки параллельно нагрузке.

Каждое комплексное сопротивление состоит из последовательно соединенного активного сопротивления и индуктивности.

Активное сопротивление – это сопротивление проводов обмотки.

Схема замещения в режиме трансформатора

От чего зависит магнитный поток взаимоиндукции в режиме ХХ

Магнитный поток взаимоиндукции в трансформаторе зависит от способа размещения обмоток на сердечнике и их конструктивного исполнения.

Читайте также:  Что опасно для жизни человека сила тока или напряжение

Важную роль играет коэффициент заполнения окна магнитопровода, который показывает отношение общего пространства, к месту, занятому обмоткой.

Чем ближе данный коэффициент к единице, тем выше будет взаимоиндукция обмоток и меньше потери в трансформаторе.

Трансформатор

Примеры расчетов и измерений в режиме ХХ

Измеряя ток, напряжение и мощность трансформатора в опыте холостого хода, можно рассчитать следующие дополнительные данные:

  • активное сопротивление первичной цепи r1=Pхх/U 2 ;
  • полное сопротивление первичной цепи z1=U/Iхх;
  • индуктивное сопротивлении е x1=√(z 2 -r 2 ).

Найти ток холостого хода без применения амперметра можно по показаниям вольтметра и ваттметра:

Источник

Режим холостого хода трансформатора

Одно из наиболее используемых электротехнических устройств – трансформатор. Данное оборудование используется для изменения величины электрического напряжения. Рассмотрим особенности режима холостого хода трансформатора, с учётом правил определения характеристик для различных видов устройств.

Трансформатор состоит из первичной и вторичной обмоток, расположенных на сердечнике. При подаче напряжения на входную катушку, образуется магнитное поле, индуцирующее ток на выходной обмотке. Разница характеристик достигается, благодаря различному количеству витков в катушках входа и выхода.

Принцип работы трансформатора

Принцип работы трансформатора

  1. Что такое режим холостого хода
  2. Как проводится опыт холостого хода
  3. Для однофазного трансформатора
  4. Для трёхфазного трансформатора
  5. Для сварочного трансформатора
  6. Видео: измерение тока холостого хода
  7. Меры по снижению тока холостого хода

Что такое режим холостого хода

Под режимом холостого хода понимают состояние устройства, при котором во время подачи переменного электротока на входную катушку выходная находится в разомкнутом состоянии. Данная ситуация характерна для агрегата, подключённого к электросети, при условии, что нагрузку к выходному контуру ещё не включили.

режимы работы

Режим короткого замыкания

Режим короткого замыкания

В процессе эксперимента можно найти:

  • электроток холостого хода (замеряется амперметром) – обычно его значение невелико, не больше 0,1 от номинального показателя тока первой обмотки;
  • мощность, теряемую в магнитопроводе прибора(или другими словами потери в стали);
  • показатель трансформации напряжения – примерно равен значению в первичной цепи, деленному на таковое для вторичной (оба значения – данные вольтметров);
  • по результатам замеров силы тока, мощности и напряжения первичной электроцепи можно высчитать коэффициент мощности: мощность делят на произведение двух других величин.

Как проводится опыт холостого хода

При проведении опыта холостого хода появляется возможность определить следующие характеристики агрегата:

  • коэффициент трансформации;
  • мощность потерь в стали;
  • параметры намагничивающей ветви в замещающей схеме.

Для опыта на устройство подаётся номинальная нагрузка.

При проведении опыта холостого хода и расчёте характеристик на основе данной методики необходимо учитывать разновидность устройства.

В данном состоянии трансформатор обладает нулевой полезной мощностью по причине отсутствия на выходной катушке электротока. Поданная нагрузка преобразуется в потери тепла на входной катушке I02×r1 и магнитные потери сердечника Pm. По причине незначительности значения потерь тепла на входе, их в большинстве случае в расчёт не принимают. Поэтому общее значение потерь при холостом ходе определяется магнитной составляющей.

Далее приведены особенности расчёта характеристик для различных видов трансформаторов.

Для однофазного трансформатора

Опыт холостого хода для однофазного трансформатора проводится с подключением:

  • вольтметров на первичной и вторичной катушках;
  • ваттметра на первичной обмотке;
  • амперметра на входе.

Приборы подключаются по следующей схеме:

1

Для определения электротока холостого хода Iо используют показания амперметра. Его сравнивают со значением электротока по номинальным характеристикам с использованием следующей формулы, получая итог в процентах:

Iо% = I0×100/I10.

Чтобы определить коэффициент трансформации k, определяют величину номинального напряжения U1н по показаниям вольтметра V1, подключённого на входе. Затем по вольтметру V2 на выходе снимают значение номинального напряжения U2О.

Коэффициент рассчитывается по формуле:

K = w1/w2 = U1н/ U2О.

Величина потерь составляет сумму из электрической и магнитной составляющих:

P0 = I02×r1 + I02×r0.

Но, если пренебречь электрическими потерями, первую часть суммы можно из формулы исключить. Однако незначительная величина электрических потерь характерна только для оборудования небольшой мощности. Поэтому при расчёте характеристик мощных агрегатов данную часть формулы следует учитывать.

потери-хх

Потери холостого хода для трансформаторов мощностью 30-2500 кВА

Для трёхфазного трансформатора

Трёхфазные агрегаты испытываются по аналогичной схеме. Но напряжение подаётся отдельно по каждой фазе, с соответствующей установкой вольтметров. Их потребуется 6 единиц. Можно провести опыт с одним прибором, подключая его в необходимые точки поочерёдно.

При номинальном напряжении электротока обмотки более 6 кВ, для испытания подаётся 380 В. Высоковольтный режим для проведения опыта не позволит добиться необходимой точности для определения показателей. Кроме точности, низковольтный режим позволяет обеспечить безопасность.

Применяется следующая схема:

2

Работа аппарата в режиме холостого хода определяется его магнитной системой. Если речь идёт о типе прибора, сходного с однофазным трансформатором или бронестержневой системе, замыкание третьей гармонической составляющей по каждой из фаз будет происходить отдельно, с набором величины до 20 процентов активного магнитного потока.

В результате возникает дополнительная ЭДС с достаточно высоким показателем – до 60 процентов от главной. Создаётся опасность повреждения изолирующего слоя покрытия с вероятностью выхода из строя аппарата.

Предпочтительнее использовать трехстержневую систему, когда одна из составляющих будет проходить не по сердечнику, с замыканием по воздуху или другой среде (к примеру, масляной), с низкой магнитной проницаемостью. В такой ситуации не произойдёт развитие большой дополнительной ЭДС, приводящей к серьёзным искажениям.

Для сварочного трансформатора

Для сварочных трансформаторов холостой ход – один из режимов их постоянного использования в работе. В процессе выполнения сварки при рабочем режиме происходит замыкание второй обмотки между электродом и металлом детали. В результате расплавляются кромки и образуется неразъёмное соединение.

После окончания работы электроцепь разрывается, и агрегат переходит в режим холостого хода. Если вторичная цепь разомкнута, величина напряжения в ней соответствует значению ЭДС. Эта составляющая силового потока отделяется от главного и замыкается по воздушной среде.

Чтобы избежать опасности для человека при нахождении аппарата на холостом ходу, значение напряжения не должно превышать 46 В. Учитывая, что у отдельных моделей значение данных характеристик превышает указанное, достигая 70 В, сварочный агрегат выполняют со встроенным ограничителем характеристик для режима холостого хода.

Блокировка срабатывает за время, не превышающее 1 секунду с момента прерывания рабочего режима. Дополнительная защитная мера – устройство заземления корпуса сварочного агрегата.

Видео: измерение тока холостого хода

Меры по снижению тока холостого хода

Ток при нахождении трансформатора в режиме холостого хода возникает, благодаря конструктивным особенностям сердечника. Для ферромагнитного материала, попавшего в электрическое поле переменного тока, характерно наведение вихревых индуктивных токов Фуко, вызывающих нагревание данного элемента.

Чтобы снизить вихревые токи, сердечник изготавливают не в виде цельной детали, а набирают из пакета пластин небольшой толщины. Между собой пластины изолируются. Дополнительная мера – изменение свойств самого материала, позволяющее увеличить порог магнитного насыщения.

Чтобы не допустить разрыва магнитного потока с возникновением поля рассеивания, пластины тщательно подгоняют в процессе набора. Отдельные элементы шлифуют, с получением гладкой, идеально прилегающей поверхности.

Также потери снижаются за счёт более полного заполнения окна магнитопровода. Это позволяет обеспечить оптимальные показатели массы и габаритов агрегата.

Холостой ход трансформатора – режим, при котором можно рассчитать важные характеристики. Это проводится для оборудования, находящегося в эксплуатации и на стадии проектирования.

Источник

Поделиться с друзьями
Блог электрика
Adblock
detector