Меню

Ток идет по поверхности проводника или по всему сечению



Что такое скин-эффект и где он применяется на практике

Скин-эффект представляет собой электромагнитное явление, которое означает, что на высокой частоте, электрический ток циркулирует только на поверхности проводников. Это явление электромагнитного происхождения существует для всех проводников, через которые проходят переменные токи. Это вызывает уменьшение плотности тока по мере удаления от периферии проводника.

Что такое скин-эффект и где он применяется

Итак, скин-эффект заключается в возникновении переменных токов, текущих только у поверхности проводника. Глубина проникания токов, выражается математически как

где f — частота изменения поля; μ — магнитная проницаемость; с — удельная электрическая проводимость и к — константа.

Чем выше частота тока, или больше скорость его изменения во времени, тем сильнее проявляется скин-эффект.

При микроволновых частотах токи текут в тонком поверхностном слое проводника, проникая на глубину, не превышающую нескольких межмолекулярных расстояний (магнитное поле внутри проводника отсутвует).

Скин-эффект приводит к уменьшению действующего сечения проводника и, как следствие, к увеличению сопротивления проводника, индуктивность проводника при этом уменьшается.

Распределение плотности тока в твердом проводнике при прохождении по нему

Распределение плотности тока в твердом проводнике при прохождении по нему: а) постоянного ток и б) переменного тока

Объяснение поверхностного эффекта

Электроны, движущиеся у поверхности проводника и вносящие свой вклад в электрический ток, подвержены действию магнитного потока от других движущихся электронов в меньшей степени, чем те электроны, которые находятся в проводнике на больших глубинах.

Это объясняется тем, что поверхностные электроны испытывают влияние соседних электронов только с одной стороны, тогда как глубинные электроны окружены соседними электронами со всех сторон. Поскольку глубинные электроны, участвующие в создании переменного тока, находятся под действием более сильного магнитного поля, к ним приложены большие силы Ленца.

Рассматривая эти условия под иным углом зрения, можно сказать, что глубинные электроны характеризуются большей взаимной индуктивностью по отношению к соседним электронам, чем поверхностные электроны.

Следовательно, для электронов легче изменить свое движение, если они находятся вблизи поверхности проводника, по сравнению с электронами, находящимися глубже.

Поскольку носители всегда выбирают оптимальную траекторию (соответствующую условию минимальной энергии), в данном случае носители, образующие переменный ток, под действием боковых сил Ленца перемещаются наружу, в область минимальной взаимной индукции, т. е. к поверхности проводника.

Градиент индуктивности внутри проводящего тела обусловливает изменение фазового угла вдоль поперечного сечения тела. Не исключается даже возможность противоположных направлений движения электронов в разных частях одного и того же тела.

Эквивалентная толщина проводящего слоя

Эквивалентная толщина проводящего слоя δ (а также глубина скин-слоя) и фактическое распределение тока в поперечном сечении проводника

Аналогичные явления наблюдаются при возникновении эффекта близости, в основе которого лежит перераспределение носителей, обусловливающих переменный ток, при сближении двух проводников.

Носители заряда, движущиеся в одном из проводников, создают силы, воздействующие на носители в другом проводнике, расположенном поблизости. В результате этого носители заряда в каждом из проводников перемещаются в положение, соответствующее минимуму взаимной индуктивности.

Как скин-эффект, так и эффект близости приводят к перераспределению носителей, эквивалентному уменьшению площади поперечного сечения проводника, через которое течет ток. Следствием этого является увеличение сопротивления проводника, причем сопротивление будет тем больше, чем выше частота переменного тока.

Применение поверхностного эффетка на практике

Снижение действия скин-эффекта в линиях электропередачи с расщепленными фазами:

Снижение действия скин-эффекта в линиях электропередачи с расщепленными фазами

На ВЛ напряжением 330 кВ и выше фазный провод составляется из нескольких проводов, подвешенных параллельно на некотором расстоянии друг от друга. Такие фазные провода называются расщепленными. Одиночный провод, использующий такое же количество металла на километр, будет иметь более высокие потери из-за скин-эффекта.

В пролетах на линиях электропередачи с расщепленными фазами применяют дистанционные распорки, которые предотвращают схлестывание, соударения и закручивание отдельных проводов фаз.

Также на благодаря скин-эффекту по воздушным линиям электропередачи организовывают передачу высокочастотных сигналов для работы систем телемеханики и связи (такие системы позволяют управлять оборудованием входящим в электрические сети на большом расстоянии).

Эти сигналы передаются на высоких частотах и, соответственно, идут по поверхности провода, а основная передача электроэнергии происходит на низкой частоте (50Гц) по внутренней части провода.

В современной технике сверхвысоких частот многие детали (волноводы, коаксиальные линии) покрывают тонким, хорошо проводящим слоем серебра, так как их сопротивление практически обусловлено только поверхностным слоем.

Промышленная индукционная закалка:

Промышленная индукционная закалка

Скин-эффект используется в работе индукционных закалочных установок, для того что бы можно было нагревать металл на нужную глубину. Этого добиваются путем регулирования частоты напряжения на индукторе (чем больше частота — тем меньший слой металла при закалке будет нагрет).

Эта статья предоставлена сайтом «Школа для электрика». Другие электрические и магнитные эффекты подробно и в доступном для понимания изложении рассмотрены здесь: Электрические эффекты и явления

Источник

Поверхностный эффект в проводнике. Скин-эффект. Частотные свойства.

Переменный ток сопровождается электромагнитными явлениями, которые приводят к вытеснению электрических зарядов с центра проводника на его периферию. Этот эффект называется — поверхностным эффектом, или скин-эффектом. В результате этого эффекта ток становится неоднородным. На периферии ток оказывается большим по величине, чем в центре. Это происходит из-за различия в плотности свободных носителей зарядов в перпендикулярном сечении проводника относительно направления тока.

Глубина проникновения тока определяется согласно выражению:

Расчет глубины проникновения тока

Используя приведённую выше формулу для медного проводника получаем, что при частоте тока в 50 Гц глубина проникновения составит приблизительно 9,2 мм. Фактически это означает, что имея проводник с круглым сечением с радиусом более 9,2 мм, ток в центре проводника будет отсутствовать, потому как там не будет свободных носителей зарядов.

Чем выше частота тока, тем меньше глубина проникновения. Увеличение частоты тока в два раза повлечет за собой уменьшение глубины проникновения в корень квадратный из двух. Если частота тока увеличится в 10 раз, то, соответственно, глубина проникновения уменьшится в корень из 10 раз.

Направление электрического тока

Направление движения заряженных частиц, образующих ток, зависит от знака их заряда. Положительно заряженные частицы будут двигаться от «плюса» к «минусу», а отрицательно заряженные — наоборот, от «минуса» к «плюсу». В электролитах и газах, например, присутствуют как положительные, так и отрицательные свободные заряды, и ток создаётся их встречным движением в обоих направлениях. Какое же из этих направлений принять за направление электрического тока?

Направлением тока принято считать направление движения положительных зарядов.

Попросту говоря, по соглашению ток течёт от «плюса» к «минусу» (рис. 1; положительная клемма источника тока изображена длинной чертой, отрицательная клемма — короткой).

Рис. 1. Направление тока

Данное соглашение вступает в некоторое противоречие с наиболее распространённым случаем металлических проводников. В металле носителями заряда являются свободные электроны, и двигаются они от «минуса» к «плюсу». Но в соответствии с соглашением мы вынуждены считать, что направление тока в металлическом проводнике противоположно движению свободных электронов. Это, конечно, не очень удобно.

Читайте также:  Как вырабатывается ток у ската

Тут, однако, ничего не поделаешь — придётся принять эту ситуацию как данность. Так уж исторически сложилось. Выбор направления тока был предложен Ампером (договорённость о направлении тока понадобилась Амперу для того, чтобы дать чёткое правило определения направления силы, действующей на проводник с током в магнитном поле. Сегодня эту силу мы называем силой Ампера, направление которой определяется по правилу левой руки) в первой половине XIX века, за 70 лет до открытия электрона. К этому выбору все привыкли, и когда в 1916 году выяснилось, что ток в металлах вызван движением свободных электронов, ничего менять уже не стали.

поле проводника, Поверхностный заряд, зарождение тока График плотности тока при скин-эффекте

Электроемкость уединенного проводника

Для начала рассмотрим понятие уединенный проводник. Это такой проводник, который удален от других заряженных проводников и тел. При этом потенциал на нем будет зависеть от его заряда.

Электроемкость уединенного проводника – это способность проводника удерживать распределенный заряд. В первую очередь, она зависит от формы проводника.

Если два таких тела разделить диэлектриком, например, воздухом, слюдой, бумагой, керамикой и т.д. – получится конденсатор. Его емкость зависит от расстояния между обкладками и их площади, а также от разности потенциалов между ними.

Формулы описывают зависимость емкости от разности потенциалов и от геометрических размеров плоского конденсатора. Подробнее узнать о том, что такое электрическая емкость, вы можете из нашей отдельной статьи.


Действия электрического тока

Как мы можем определить, протекает электрический ток или нет? О возникновении электрического тока можно судить по следующим его проявлениям.

1. Тепловое действие тока. Электрический ток вызывает нагревание вещества, в котором он протекает. Именно так нагреваются спирали нагревательных приборов и ламп накаливания. Именно поэтому мы видим молнию. В основе действия тепловых амперметров лежит тепловое расширение проводника с током, приводящее к перемещению стрелки прибора.

2. Магнитное действие тока. Электрический ток создаёт магнитное поле: стрелка компаса, расположенная рядом с проводом, при включении тока поворачивается перпендикулярно проводу. Магнитное поле тока можно многократно усилить, если обмотать провод вокруг железного стержня — получится электромагнит. На этом принципе основано действие амперметров магнитоэлектрической системы: электромагнит поворачивается в поле постоянного магнита, в результате чего стрелка прибора перемещается по шкале.

3. Химическое действие тока. При прохождении тока через электролиты можно наблюдать изменение химического состава вещества. Так, в растворе положительные ионы двигаются к отрицательному электроду, и этот электрод покрывается медью.

Электрический ток называется постоянным, если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд.

Постоянный ток наиболее прост для изучения. С него мы и начинаем.

Применение

Использование в электронике для питания схем – это не конечные варианты применения DC. Постоянный ток нашёл употребление в следующих случаях:

  • в электролизе – получение в промышленных масштабах металлов из солей и растворов;
  • гальванопластике и гальванизации – покрытие металлами электропроводящих поверхностей;
  • в сварочных работах – работа с нержавеющей сталью;
  • на транспорте – двигатели трамваев, электровозов, троллейбусов, ледоколов, подводных лодок;
  • в медицине – ввод лекарственных препаратов в организм при электрофорезе.

Для информации. В СССР начинали электрификацию железной дороги постоянным током на участках Баку – Сурамский перевал и Сабучини. До Великой Отечественной войны напряжение составляло 1,5 кВ, потом было переведено на 3 кВ. В общей сложности половина ж/д линий работало от этого вида тока.

Сила и плотность тока

Количественной характеристикой электрического тока является сила тока. В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда , прошедшего через поперечное сечение проводника за время , к этому самому времени:

Измеряется сила тока в амперах (A). При силе тока в А через поперечное сечение проводника за с проходит заряд в Кл.

Подчеркнём, что формула (1) определяет абсолютную величину, или модуль силы тока. Сила тока может иметь ещё и знак! Этот знак не связан со знаком зарядов, образующих ток, и выбирается из иных соображений. А именно, в ряде ситуаций (например, если заранее не ясно, куда потечёт ток) удобно зафиксировать некоторое направление обхода цепи (скажем, против часовой стрелки) и считать силу тока положительной, если направление тока совпадает с направлением обхода, и отрицательной, если ток течёт против направления обхода (сравните с тригонометрическим кругом: углы считаются положительными, если отсчитываются против часовой стрелки, и отрицательными, если по часовой стрелке).

В случае постоянного тока сила тока есть величина постоянная. Она показывает, какой заряд проходит через поперечное сечение проводника за с.

Часто бывает удобно не связываться с площадью поперечного сечения и ввести величину плотности тока:

где — сила тока, — площадь поперечного сечения проводника (разумеется, это сечение перпендикулярно направлению тока). С учётом формулы (1) имеем также:

Плотность тока показывает, какой заряд проходит за единицу времени через единицу площади поперечного сечения проводника. Согласно формуле (2), плотность тока измеряется в А/м2.

Единица разности потенциалов

Что такое потенциал в электричестве

В честь ученого (Алессандро Вольта), впервые доказавшего существование разницы потенциалов, единица измерения названа Вольт. В международной системе единиц напряжение обозначается символами:

  • В – в русскоязычной литературе;
  • V – в англоязычной литературе.

Кроме этого, существуют кратные обозначения:

  • мВ – милливольт (0.001 В);
  • кВ – киловольт (1000 В);
  • МВ – мегавольт (1000 кВ).


Алессандро Вольта

Скорость направленного движения зарядов

Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.

Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсего доли миллиметра в секунду.

Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между свободными зарядами, и она близка к скорости света в вакууме. Скорость же, с которой сами заряды перемещаются внутри проводника, может быть на много порядков меньше.

Читайте также:  За что не возьмусь бьет током почему

Итак, подчеркнём ещё раз, что мы различаем две скорости.

1. Скорость распространения тока. Это — скорость передачи электрического сигнала по цепи. Близка к км/с.

2. Скорость направленного движения свободных зарядов. Это — средняя скорость перемещения зарядов, образующих ток. Называется ещё скоростью дрейфа.

Мы сейчас выведем формулу, выражающую силу тока через скорость направленного движения зарядов проводника.

Пусть проводник имеет площадь поперечного сечения (рис. 2). Свободные заряды проводника будем считать положительными; величину свободного заряда обозначим (в наиболее важном для практики случая металлического проводника это есть заряд электрона). Концентрация свободных зарядов (т. е. их число в единице объёма) равна .

Рис. 2. К выводу формулы

Какой заряд пройдёт через поперечное сечение нашего проводника за время ?

С одной стороны, разумеется,

С другой стороны, сечение пересекут все те свободные заряды, которые спустя время окажутся внутри цилиндра с высотой . Их число равно:

Следовательно, их общий заряд будет равен:

Приравнивая правые части формул (3) и (4) и сокращая на , получим:

Соответственно, плотность тока оказывается равна:

Давайте в качестве примера посчитаем, какова скорость движения свободных электронов в медном проводе при силе тока A.

Заряд электрона известен: Кл.

Чему равна концентрация свободных электронов? Она совпадает с концентрацией атомов меди, поскольку от каждого атома отщепляется по одному валентному электрону. Ну а концентрацию атомов мы находить умеем:

Положим мм . Из формулы (5) получим:

Это порядка одной десятой миллиметра в секунду.

Разность потенциалов на практике

С общепринятой точки зрения, разность потенциалов – это напряжение между двумя выбранными точками цепи. В то же время напряжение между каждой из этих точек и третьей точкой будет отличаться в полном соответствии с определением.

Наглядный пример:

  • Точка А в электрической схеме – напряжение 10 В относительно провода заземления;
  • В точке В напряжение составляет 25 В относительно того же провода.

Необходимо найти напряжение между точками А и В.

В данном случае искомая разность составляет:

UAB= ϕА-ϕВ=10-25=15 В.

Рассматриваемые понятия важны для минимального объема знаний в области электротехники и электроники, поскольку на них основываются все расчеты и практические решения. Без этих азов невозможно более углубленное изучение электрических дисциплин.

Преобразование

К бытовым приборам, требующим снабжение схем электричеством типа DC, его подают через блоки питания. Это схемы, включающие в себя понижающий трансформатор и выпрямляющий блок. При подключении блока питания к устройству следят за совпадением их параметров по напряжению и мощности. Параметры указаны на корпусе прибора.


Блок питания от сети 50 Гц

В настоящий момент оба вида электричества отлично уживаются в современном мире. Схемы смешанного питания потребителей только дополняют друг друга.

Толщина скин-слоя

Из рассмотренного в предыдущем разделе определения понятна обратная зависимость плотности тока от частоты сигнала. Следующая таблица демонстрирует наглядно «активный» слой медного проводника. При многократном уменьшении энергетического потока в глубине на определенном уровне нецелесообразно применение толстых линий электропередач.

Параметр Значения
Частота сигнала, Гц 50 60 10 000 100 000 1 000 000
Толщина скин слоя, мм 9,34 8,53 0,66 0,21 0,067

В первых двух столбцах приведены значения для стандартных сетей переменного тока. Эти данные демонстрируют, что сравнительно незначительное изменение частоты (10 Гц) делает бесполезным 1,62 мм диаметра проводника (медь). Нетрудно вычислить значительную экономию при создании длинной линии после соответствующей оптимизации параметров сигнала. Следует не забывать, что каждый металл отличается глубиной эффективного слоя. Какой выбрать вариант, будет понятно после тщательного изучения целевого назначения конструкции.

Краткая аннотация

Представленные вопросы составляют основу коллоквиумов и

экзаменационных билетов по курсу медицинской и биологической физики.

Они охватывают следующие шесть разделов курса, читаемого студентам

во втором семестре.

4. Электробиология. ……………………. 3-8

5. Медицинская техника. ………………. 9-14

6. Оптические методы исследований……15-21

7. Рентгеновское излучение………………22-30

8. Радиоактивность и дозиметрия………..31-36

Каждый раздел начинается с 20 теоретических вопросов, проработка которых необходима для решения последующих задач. Ответы на все теоретические вопросы даются в лекциях, которыми в первую очередь рекомендуем пользоваться при подготовке к экзамену

Рекомендовано к использованию методической комиссией

физико-химических дисциплин МГМСУ.

© Кафедра медицинской и биологической физики МГМСУ

© Е.В. Кортуков, А.А.Синицын, В.С.Воеводский , 2002

Способы подавления скин эффекта

Перечисленные методики имеют особое значение при работе с высокочастотными радиосигналами. В частности, для улучшения проводимости поверхностный слой создают из серебра, платины, других благородных металлов. Следующие рекомендации применяют на практике при создании качественной аудио аппаратуры:

  • для пропускания сигналов используют тонкие (0,25-0,35 мм) жилы;
  • плетением кабеля устраняют значительные искажения силовых линий магнитного поля;
  • надежной изоляцией предотвращают окисление меди;
  • проверяют наличие поблизости других линий, способных оказывать вредное взаимное влияние.


Оптоволоконная линия связи

При переходе в СВЧ диапазон сигналы передают по волноводам. Устраняют возможные негативные проявления с помощью передачи данных сигналами в оптическом диапазоне.

Источник

Скин эффект

Каждый опытный электротехник знает, что распределение плотности тока в проводнике нелинейно. Чем ближе к центральной оси, тем меньше амплитуда сигнала. При высокой частоте для корректного расчета вполне достаточно учитывать прохождение волн через определенный поверхностный слой. Это явление, скин эффект, способно выполнять полезные функции. Для успешного применения на практике, кроме общей теории, нужно изучить методику вычислений.

На основе скин эффекта создают экономичные системы обогрева трубопроводов

Объяснение поверхностного эффекта

Следует подчеркнуть одинаковую плотность тока при подключении проводника к источнику питания с постоянным напряжением. Однако ситуация изменяется при прохождении волнового сигнала.

Распределение плотности тока в проводнике

Физическая картина возникновения

Для объяснения причин явления можно использовать вторую часть пояснительной картинки выше. В графической форме показаны силовые воздействия, которые образуются переменным полем. Электрическая составляющая (Е) направлена противоположно току (I), что объясняет возникающее сопротивление и соответствующее уменьшение амплитуды. По мере приближения к поверхности будет проявляться обратный эффект. Он вызван совпадением векторов напряженностей.

Уравнение, описывающее скин-эффект

Для выражения амплитуды через плотность тока берут определяющие соотношения из классических уравнений закона Ома и формул Максвелла. Дифференциалом по заданному временному интервалу можно вычислить значения магнитной и электрической компонент поля. В упрощенном виде рассматривают бесконечный проводящий образец, созданный из однородного материала.

Формула определения частоты среза диаметра проводника

Для практических вычислений отдельными незначительными факторами пренебрегают. Например, чтобы определить частоту среза (Fср), цепь радиотехнического устройства рассчитывают по диаметру (D) соответствующего проводника. В формулу добавляют важнейшую характеристику определенного материала – удельное сопротивление (Rу) или проводимость (Sу). Зависимость отмеченных параметров показывает следующее выражение:

где μ – постоянная величина (μ = 4* Sу*10-7 Генри на метр).

Читайте также:  Определить частоту тока в обмотке ротора при р 1

Глубина проникновения

Аналогичным образом, в упрощенном виде, можно рассчитать критичное расстояние от поверхности. Подразумевается, что в соответствующей области плотность тока уменьшается до минимальной значимой величины (-8,69 дБ, по сравнению с номиналом). Этот параметр (Dпр) называют глубиной проникновения. Для вычислений применяют формулу:

Dпр = √( Sу/( π*μ*f)), где f – частота сигнала.

Толщина скин-слоя

Из рассмотренного в предыдущем разделе определения понятна обратная зависимость плотности тока от частоты сигнала. Следующая таблица демонстрирует наглядно «активный» слой медного проводника. При многократном уменьшении энергетического потока в глубине на определенном уровне нецелесообразно применение толстых линий электропередач.

Параметр Значения
Частота сигнала, Гц 50 60 10 000 100 000 1 000 000
Толщина скин слоя, мм 9,34 8,53 0,66 0,21 0,067

В первых двух столбцах приведены значения для стандартных сетей переменного тока. Эти данные демонстрируют, что сравнительно незначительное изменение частоты (10 Гц) делает бесполезным 1,62 мм диаметра проводника (медь). Нетрудно вычислить значительную экономию при создании длинной линии после соответствующей оптимизации параметров сигнала. Следует не забывать, что каждый металл отличается глубиной эффективного слоя. Какой выбрать вариант, будет понятно после тщательного изучения целевого назначения конструкции.

Аномальный скин-эффект

Внимательное изучение явления позволяет сделать несколько важных выводов. Как показано на конкретных примерах, скин слой отличается небольшой глубиной. Однако соответствующее расстояние намного меньше средних значений свободного пробега заряженных частиц. Следует не забывать, что на соответствующее перемещение нужно затратить определенную энергию. Преодоление электрического сопротивления материала сопровождается нагревом.

Если снижать температуру, проводимость увеличится. Одновременно станет больше свободный пробег, и уменьшится толщина рассматриваемой части проводника. При определенном уровне стандартный механизм волновых взаимодействий станет ничтожным. Аномальный скин эффект – это изменение размеров слоя, в котором обеспечивается достаточно высокая для практического использования плотность тока.

Применение

Поверхностный эффект позволяет обеспечить локальный нагрев части проводника при пропускании переменного тока. Этот принцип используют, чтобы обогреть трубопровод в зимний период. Правильное применение технологии подразумевает следующие преимущества:

  • отсутствие сопроводительных контрольных и функциональных устройств;
  • практически неограниченная длина трассы;
  • возможность безопасного применения высоких температур.

Частотное распределение плотности токов используют для передачи информационных сигналов по силовым линиям электропередач. При достаточном уменьшении длины волны близость центральной части проводника не будет помехой. Модулированная СВЧ составляющая проходит в поверхностном слое. Для создания пакетов данных и расшифровки применяют специальные кодирующие (декодирующие) устройства.

К сведению. Подобные механизмы используют в нефтяной отрасли для оценки продуктивности скважины. Скин фактор определяет сопротивление перемещению жидкости в близкой технологическому отверстию области пласта. По этому параметру делают оценку реального объема добычи, по сравнению с идеальными условиями.

Учёт эффекта в технике и борьба с ним

Это явление оказывает заметное влияние по мере увеличения частоты сигнала. Следует учитывать скин эффект при проектировании схем с переменными (импульсными) токами. В частности, делают коррекцию расчета катушки фильтра, колебательного контура, трансформатора.

Типовые способы решения обозначенных проблем:

  • уменьшение толщины проводника;
  • создание полых конструкций;
  • образование поверхностного слоя из металла с лучшей проводимостью;
  • устранение неровностей;
  • плетение из нескольких изолированных жил.

К сведению. Радикальное устранение вредных явлений организуют с помощью передачи электроэнергии постоянным током.

Способы подавления скин эффекта

Перечисленные методики имеют особое значение при работе с высокочастотными радиосигналами. В частности, для улучшения проводимости поверхностный слой создают из серебра, платины, других благородных металлов. Следующие рекомендации применяют на практике при создании качественной аудио аппаратуры:

  • для пропускания сигналов используют тонкие (0,25-0,35 мм) жилы;
  • плетением кабеля устраняют значительные искажения силовых линий магнитного поля;
  • надежной изоляцией предотвращают окисление меди;
  • проверяют наличие поблизости других линий, способных оказывать вредное взаимное влияние.

Оптоволоконная линия связи

При переходе в СВЧ диапазон сигналы передают по волноводам. Устраняют возможные негативные проявления с помощью передачи данных сигналами в оптическом диапазоне.

Видео

Источник

Как в реальности протекает электрический ток?

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Существование современного мира невозможно представить без электрического тока. Он обеспечивает функционирование огромного множества устройств и электроприборов, а также целых систем. Понятие «электрический ток» помогает провести аналогию между этим явлением и протеканием жидкости, что придает данному термину некоторую наглядность.
Электрический ток протекает благодаря тому, что электромагнитное поле движется вдоль проводящей среды со скоростью, примерно равной скорости света. Данное движение идет в направлении от большего потенциала к меньшему, то есть от «+» к «-». Одновременно с этим носители зарядов перемещаются с чуть медленнее и в разных направлениях (в зависимости от материала).

Как заряды движутся

Какие бывают носители зарядов?

Существуют два вида носителей зарядов – отрицательные и положительные. Заряд со знаком «минус» может иметь ионы и электроны, а положительный заряд в основном имеют только ионы. Отрицательные заряды перемещаются в направлении большему потенциала, а положительные – наоборот. Это движение и приводит к появлению электрического тока.
Данная неопределенность устранена в общепринятом правиле, которое гласит, что ток всегда протекает от «+» к «-», вне зависимости от типа зарядов.

заряды движутся

Как заряды движутся в металлах?

Почти все металлы, применяемые в электротехнике, не содержат ионов, поскольку пребывают в твердом состоянии.
Для них свойственна проводимость электронного типа. Это означает, что свободные электроны, выступающие в роли носителей зарядов, движутся в направлении, обратном току.

Металлы обладают относительно низким электрическим сопротивлением. Если разность потенциалов отсутствует, электрическое поле срывает электроны со своих орбит. По этой причине при небольшой разности потенциалов возникает значимое количество носителей зарядов.

ионы

Как заряды движутся в полупроводниках?

Полупроводники имеют гораздо более низкую проводимость, чем металлы (в условиях комнатной температуры). Существуют полупроводники двух типов – n и p. Полупроводники первого типа содержат избыток электронов. Когда они переходят к p-типу, возникает их недостаток. Остальные электроны без особых трудностей перемещаются по своим возможным местам внутри атома. Это равноценно движению зарядов со знаком «+».
Поскольку в полупроводниках электроны слабо связаны с атомами, при повышении температуры изменяется количество несвязанных электронов, и проводимость полупроводника быстро возрастает.
Вывод: в полупроводниках заряды могут двигаться в направлении протекания тока или же в противоположном направлении (p- и n-тип соответственно).

Как заряды движутся в газах и жидкостях?

В жидкостях и газах носителями зарядов выступают ионы, которые бывают отрицательными (так называемые катионы) и положительными (анионы). Если количество катионов больше, они движутся обратно направлению тока. Если же преобладают анионы, их движение совпадает с направлением тока.

Источник