Меню

Ток эмиссии в лампах



Ток эмиссии в лампах

Большое число применений имеет ток в высоком вакууме, когда носителями тока являются электроны, испускаемые катодом. Эмиссия (испускание) электронов из металла, как уже указывалось в § 45, может вызываться различными причинами. В вакуум-трубках при возникновении тлеющего разряда и при образовании катодных лучей электроны вышибаются из поверхностного слоя металла ударами положительных ионов. При глубоком вакууме, когда давление разреженного газа составляет миллионные доли миллиметра ртутного столба, число ионов, бомбардирующих катод, становится недо статочным для поддержания заметной эмиссии электронов, вырываемых из катода, и образования ощутимых катодных лучей не наблюдается. Но и при таком глубоком вакууме эмиссия электронов оказывается значительной, если катод накален (термоэлектронная эмиссия) или если на катод направлены достаточно интенсивные лучи света (фотоэлектронная эмиссия). Эмиссия электронов может быть также вызвана бомбардировкой поверхности некоторых тел потоком электронов (вторичная электронная эмиссия).

Кроме того, эмиссия электронов, как это уже указывалось в §45, может быть вызвана интенсивным электрическим полем (автоэлектронная, или холодная, эмиссия). Напряженность поля, способного вырывать электроны из металла, имеет порядок величины в несколько миллионов вольт на 1 см. Однако некоторая автоэлектронная эмиссия наблюдается и при относительно небольших напряженностях поля (эмиссия эффекта просачивания, или туннельного эффекта, § 45).

В различных электронных приборах применяются все виды эмиссии, но чаще всего используется наиболее удобно управляемая термоэлектронная эмиссия.

Выбрасывание электронов накаленным катодом происходит вследствие увеличения энергии движения полусвободных

электронов металла за счет притока тепла. При повышении температуры металла электроны незаполненной зоны (§ 35), переходя на высшие энергетические уровни, приобретают энергию, достаточную для преодоления работы выхода (§ 33).

Приложенное к электродам трубки напряжение не оказывает влияния на число электронов, выбрасываемых ежесекундно из вещества катода; при наличии электрического поя вырвавшиеся из вещества катода электроны движутся от катода под действием электрического поля; если же поля нет, они падают обратно, но на их место вылетают другие, и в пространстве над поверхностью накаленного металла образуется своеобразное электронное облако.

Образование электронного облака над поверхностью накаленного металла представляет собой явление, аналогичное испарению жидкости. Чем выше температура металла, тем большее количество электронов покидает поверхность накаленного металла. Каждый электрон, покидая металл, должен преодолеть притяжение со стороны положительных ионов металла. Поэтому из «электронного газа», содержащегося внутри металла, вырываются наружу только те электроны, кинетическая энергия которых превосходит «работу выхода».

Электронное облако представляет собой отрицательный заряд, расположенный в пространстве близ поверхности накаленного металла. В отличие от обычного поверхностного заряда электронное облако называют пространственным зарядом.

С повышением температуры поток электронов, выбрасываемых накаленным металлом, растет сперва медленно, а потом все быстрее и быстрее. Ричардсон вывел теоретически формулу, выражающую зависимость интенсивности испускания электронов от температуры испускающего тела. Если накаленный металл представляет собой катод вакуумной трубки, к которой приложено такое напряжение, что все испускаемые металлом электроны увлекаются электрическим полем, то интенсивность испускания электронов будет измеряться величиной тока эмиссии, приходящегося на каждый квадратный сантиметр накаленной поверхности металла. Указанную величину называют также плотностью тока эмиссии при токе насыщения. (Если к электродам приложено слишком малое напряжение, то не все испускаемые металлом электроны увлекаются полем, и плотность тока будет меньше, чем при токе насыщения, т. е. меньше, чем

Для пояснения формулы Ричардсона представим себе, что в накаленном металле у поверхности его имеется полуоткрытая полость (рис. 185). При статистическом равновесии концентрация

электронов в этой полости согласно -положению Больцмана (т. I, § 98) будет равна

где концентрация свободных (или, вернее, полусвободных) электронов в металле, А — работа выхода электрона из металла, равная разности потенциальных энергий электрона в металле и вне металла: постоянная Больцмана и абсолютная температура.

Число электронов, ежесекундно вылетающих из отверстия рассмотренной полости, отнесенное к площади отверстия, т. е. плотность тока термоэлектронной эмиссии, является величиной, пропорциональной произведению средней скорости теплового движения электронов в полости (а средняя скорость пропорциональна на концентрацию электронов в полости. Стало быть,

Это и есть формула Ричардсона.

Здесь абсолютная температура, основание натуральных логарифмов постоянные величины, имеющие различные значения для различных металлов.

Так как константа А стоит в показателе степени, то ее величина оказывает гораздо большее влияние на величину плотности тока эмиссии чем коэффициент чем меньше константа тем больше (при прочих равных условиях, т. е. при заданных плотность тока эмиссии.

По смыслу вывода формулы Ричардсона коэффициент В пропорционален числу электронов в единице объема электронного газа внутри металла. Эмиссионная константа А представляет собой работу выхода электрона.

Опыты показали, что ток эмиссии возрастает с повышением температуры несколько быстрее, чем следует по закону Ричардсона (1). При выводе формулы эмиссии Ричардсон исходил из представления, что скорости движения электронов в металле распределены по закону Максвелла. Однако в действительности (как было пояснено в § 30) электронный газ в металле уже при нормальных температурах находится в вырожденном состоянии и подчиняется статистике Ферми.

Основываясь на квантовой теории, Дёшмен (1923 г.) показал, что формула Ричардсона должна быть заменена следующей формулой:

В этой формуле константа В теоретически должна была бы быть одинаковой для всех металлов и равной

(здесь масса и заряд электрона, — постоянная Больцмана, h — постоянная Планка). Для некоторых чистых металлов эта константа действительно близка к указанному значению, но для других металлов она имеет величину, в некоторых случаях примерно в два раза меньшую в иных случаях — во много раз большую.

Константа А в законе Ричардсона — Дёшмена имеет тот же смысл и ту же величину, что в законе Ричардсона (1), а именно, А представляет собой работу выхода электрона из металла. Теоретически разность работы выхода электрона из двух каких-либо металлов должна быть равной контактной разности потенциалов этих металлов в вакууме, что в общем подтверждается на опыте в тех случаях, когда константы В для этих металлов одинаковы.

Если приводимые выше численные значения константы А умножить на авогадрово число, то получившиеся числа будут означать как бы скрытую теплоту испарения «грамм-атома электронов».

На рис. 186 показано, как возрастает с повышением температуры плотность тока эмиссии для вольфрама. При повышении температуры вольфрама от 2000 до 2100°, т. е. всего на 5%, плотность тока эмиссии увеличивается почти вчетверо.

Повышение температуры вольфрама от 2000 до 3000° приводит к увеличению плотности тока термоэлектронной эмиссии в миллионы раз.

Некоторые примеси оказывают чрезвычайно сильное влияние на величину электронной эмиссии. Это влияние примесей было подробно изучено многими учеными и в особенности Ленгмюром (1913-1923 гг.). Вольфрам, покрытый тончайшей пленкой тория, дает испускание электронов, которое при температурах порядка 1000—1500° К в миллионы и миллиарды раз превышает испускание чистого вольфрама. Такое же и еще большее увеличение эмиссии вызывается пленкой цезия, бария и окисей некоторых металлов. Ток эмиссии в на поверхности накаленного чистого вольфрама получается при температуре примерно 2300° при накаливании «оксидированного» вольфрама та же плотность тока эмиссии получается при температуре примерно 1300° К. Подвергнутый специальной обработке торированный и оксидированный вольфрам имеет широчайшее применение в приборах, основанных на явлении электронной эмиссии.

Рис. 186. График закона Ричардсона для вольфрама.

В целях сопоставления накаливаемые катоды характеризуют отношением полного тока эмиссии к мощности, расходуемой на накал катода. Вольфрамовые проволоки при температуре накала К дают ток эмиссии в на каждый ватт мощности тока накала. (Повышение температуры накала вольфрамовых нитей свыше 2600° чрезмерно сокращает срок их службы.) Катоды оксидированного вольфрама дают при нормальной для них температуре накала около 1000° К ток в почти такую же эмиссию дают катоды из торированного вольфрама при нормальной для них температуре накала 1850° К. Однако при высоких напряжениях между анодом и катодом оксидированные и торированные катоды быстрее разрушаются от бомбардировки катода положительными ионами остатков газа.

Для использования термоэлектронной эмиссии применяют катоды двух типов: прямого накала, накаляемые непосредственно током от аккумулятора или переменным током низкого напряжения от трансформатора, и косвенного накала (подогревные). В катодах косвенного накала (рис. 187) проволока, накаляемая током, помещена

внутри узкого керамического цилиндра и служит только для нагрева этого цилиндра; термоэлектронная эмиссия осуществляется внешней металлизированной поверхностью цилиндра (цилиндрик катода поверх слоя металла покрыт тонким слоем окиси кальция с прибавкой редких земель).

Термоэлектронная эмиссия получила наиболее широкую область применения в электронных лампах, которые имеют разнообразное радиотехническое назначение и различное устройство, но вместе с тем имеют одну общую черту. А именно, в электронных лампах в отличие от других термоэлектронных приборов так размещают электроды, чтобы создаваемое ими поле, налагаясь на поле пространственного заряда (облака электронов у поверхности накаленного катода), позволяло бы при небольших изменениях напряжения, подводимого к вспомогательным электродам, получать резкие и возможно большие изменения величины термоэлектронного тока, проходящего через лампу. С этой целью аноды и дополнительные сетчатые электроды электронных ламп устраивают обычно в виде коаксиальных цилиндров строго рассчитанных размеров и помещают накаливаемый катод по оси цилиндра. Действие электронных ламп разобрано в §§ 52 и 53.

Об одном из важных применений термоэлектронной эмиссии — об «электронной пушке», служащей для получения электронного луча в катодных осциллографах, — рассказано в § 68. В электронной пушке электроны, испускаемые накаленным катодом, получают значительное ускорение в электрическом поле между катодом и кольцевыми анодами. Этот метод ускорения электронного потока применяется во многих электронных приборах и, в частности, в высоковольтных (на миллионы вольт) электронных трубках, предназначенных для атомно-ядерных исследований.

Читайте также:  Дом 2 било током

Рис. 187. Катоды косвенного накала (подогревные).

Устройство этих трубок и других мощных ускорительных приборов атомно-ядерной физики, в которых также используется термоэлектронный ток (бетатронов), и методы расчета ускорительных и фокусирующих полей пояснены в разделах физики атома и электронной оптики в третьем томе курса.

Источник

Статьи об Hi-End аппаратуре, ламповых усилителях, акустике, радиолампах.

Зачем отбирать радиолампы? 15.06.2019 11:46

(А.Р.А спецвыпуск, источник VTV 1/1995. John Atwood)

Почему статья названа как «отбор ламп» а не «тестирование ламп»? Главным образом потому, что тестирование предполагает замеры параметров с помощью измерителей и дальнейшую браковку тех ламп, которые не прошли хотя бы по одному из них. В статье же затронуты вопросы более широкого характера, чем специфика измерений, здесь описаны наиболее важные дефекты и повреждения, встречаемые в лампах, обнаружив которые можно затем без труда отделить плохе приборы от пригодных к использованию.

Зачем отбирать лампы? Разве не все лампы, купленные в магазине, хороши? Или недостаточно поглядеть на упаковку, когда меняетесь с кем-то лампами? И да и нет. Порой новые лампы имеют дефекты, хотя их даже не доставали из коробочки, а техника, куда их поставят, выдвигает довольно строгие требования. В другой раз работавшая лампа безусловно хороша и долго еще прослужит. Даже старая, послужившая лампочка может оказаться лучше, чем новая с проблемным качеством. В третьем случае может статься, что лампы, не прошедшие жесткую отбраковку, вполне сгодятся для менее ответственных участков. В статье как раз вскрываются виды дефектов и повреждений, свойственные лампам, и показаны методы отбора по требованиям для данного устройства.

Типы отказов и повреждений

Отказы в ламповой технике можно разделить на две категории: 1) одни проявляются сразу же в новой лампе; 2) присущи только использованным, бывшим в работе лампам. В первом случае — отказ на совести производителя или вследствие плохого обращения, например при транспортировке или установке в панельку. Такие вещи случаются и с работавшими лампами, но кроме того у них есть своя специфика отказов.

Наиболее частые дефекты в новых лампах:

1. Короткое замыкание — чаще всего из-за отрыва какого-либо элемента: кусочка траверзы, пружины, распорки.
2. Нарушение геометрии и шага навивки сеток — следствие небрежности при сборке лампы. Сопровождается затянутой отсечкой анодного тока на Ia-Uc характеристиках, что в звуковых лампах приводит к повышению искажений.
3. Шумы и микрофонный эффект — вызваны недостаточной очисткой элементов или нарушением технологии сборки. «Микрофон» может кроме того являться следствием грубого обращения с лампой.
4. Неправильная маркировка — может быть нанесена умышленно или ошибочно. Часто такая лампа будет работать в схеме, но с большими искажениями. Классическим примером является маркировка 6ES8 (ECC189) как 6DJ8 (ECC88). Лампа по виду та же, но имеет длинную характеристику, приводящую к высоким искажениям.

Работавшие лампы с неизвестным ресурсом (вроде тех, что попадаются на развалах) могут иметь следующие деффекты:

1. Недостаточная эмиссия/низкая крутизна. Наиболее частый деффект в новых (моложе 1950г. в.) и особенно в пальчиковых лампах с высокой крутизной. Либо ресурс исчерпан, либо произошло «отравление» катода.
2. Обрыв нити накала. Частый случай в старых (старше 1950 г.в.) и в лампах батарейного питания.
3. Загазованность. Характерна для мощных ламп, особенно в тех, что были чрезмерно перегружены по мощности на аноде или высоким анодным напряжением.
4. Повышенная утечка на участке накал-катод или «коротыш».
5. Шум — часто связан с подсевшей эмиссией.
6. «Тугой» катод — сопровождается неспособностью катода отдавать нужный ток на пиках сигнала.

Визуальная оценка ламп

Внешняя оценка поможет избежать проблем и к тому же быстро выснить: на самом ли деле лампочка N.O.S. (New Old Stock — из старых запасов, но не работавшая).

Для начала гляньте на геттер — серебристый налет на стекле внутри баллона. Его назначение — поглощать молекулы газа в герметичной колбе лампы, как правило это зеркало из бария или магния. Если геттер полностью белый, это говорит о сильном натекании воздуха и лампа работать не будет. Если осталось небольшое пятнышко, то лампа до этого тяжело работала и может быть загазована. Может быть лампа и жива, но это маловероятно. Если же геттер «как новый», без потемнений и прозрачных пятен, то похоже, что лампа новая или мало работала. Однако другие проблемы вовсе не исключены, пойдем дальше.

Потрясите лампу. Если что-то дребезжит, приглядитесь внутрь ее. Не стоит беспокоиться, если это кусочек стекла, но если этот кусочек металлический, придется лампу выбросить. Порою у октальных ламп отламывается ключ на цоколе, растрескивается сам цоколь — это не так страшно, пока лампа вовсе не лишиться цоколя.

Можно отыскать лампу в новой упаковке и выглыдит все это вполне новым (N.O.S.). Но так ли это на самом деле? Возможно техник при замене подсевшей лампы просто сунул ее в коробку от новой. Внимательно приглядевшись, можно сказать про нее, работала она или нет. Во-первых, соответствует ли маркировка на стекле той, что на коробочке ? Если нет, вряд ли это лампа новая, не работавшая. Насколько чистыми, не затертыми выглядят надписи/штампы на стекле. У большинства ламп значок нанесен столь нестойкой краской, что она легко слетает при установке, или когда смахивают пыль. Есть ли отпечатки пальцев на стекле или въевшаяся грязь и пыль? Или стекло заметно потемнело? А может, геттер изрядно подношен, тогда он из блестящего непрозрачного становится дымчатым, полупрозрачным. Когда видна легкая дымка на стекле или геттер несколько посветлел по краям, это не страшно, такую лампу можно считать вполне свежей, хот и бывшей в работе. Вот после этого можно приступать к измерениям (как правило, меряют крутизну). И маленький совет: даже при едва заметных признаках того, что лампа не новая, не платите за нее полную цену!

Проверка эмиссии и крутизны лампы

Падение эмиссии является главным признаком выхода лампы из строя. Причиной этому могут быть отравление эмиттирующей поверхности газом, либо истощение материала покрытия катода. Этот факт проявит себя сам через снижение крутизны (возможно и усиления) и неспособность развить большой ток в нагрузке, каким бы ни было смещение на сетке. Обычно этот процесс идет равномерно и медленно по мере наработки, затем быстро ускоряется, что означает полный выход лампы из строя. Лампы с высокой плотностью эмиссии с катода, к примеру небольшие пальчиковые лампы для радиочастотного диапазона, теряют эмиссию быстрее, чем те где плотность тока низка и условия работы их гораздо легче предельно допустимых.

Дешевые ламповые тестеры, обычно именуемые «тестерами эмиссии», продавались раньше едва ли не в аптечных киосках. У них напряжение на катоде (при определенном автосмещении) запрпосто подавалось на сетку и нужно было смотреть, насколько велик был ток анода. Стрелка могла показать, что эмиссия слабая, но на самом деле такой «контроль» мог вполне повредить лампу из-за броска тока, вызвав осыпание катода или перегрев хрупких сеток лампы. Если тестер не назывался «Измерителем крутизны» и выглядел дешевкой, то скорей всего это тестер эмиссии. Не применяйте его.

В «Измерителях крутизны» небольшое переменное напряжение подавалось на сетку и стрелка показывала величину анодного тока. Это уже более реалистичный тест, да и лампа не испытывала стресса, как в случае с «тестерами эмиссии». В большинстве из них напряжение на анод подавалось нефильтрованным, просто выпрямленным, так что значение крутизны нельзя было считать истинным. Конечно, для лабораторных измерений такие тестеры не подходили, зато были достаточно удобны для грубой оценки эмиссионной способности катода лампы. При этом анодные характеристики лампы в расчет не шли, просто подавалось всегда одно и то же анодное. В более сложных измерителях, таких как «лабораторная» модель Hickok 123 Cardomatic анодное точно выставляется и производится довольно точный замер крутизны. И все-таки из-за того, что измерения проводятся на одной точке (обычно указанной в справочнике), а не в широком диапазоне анодных токов, то подсевшая эмиссия в области больших анодных токов почти не выявляется. (Та же картина и с нашими измерителями советского производства. Как правило, рабочая точка выставляется штырями в отверстиях на перфокарте. Так вот, мы для некоторых типов ламп делаем самодельные карты, в которых предусмотрено изменение режимов в широком диапазоне. Судя по описаниям западных Tubetster’ов, и сравнивая их с нашим Л3-3, кроме гордости за отечественный прибор, испытываешь чувство патриотизма за наши электронные лампы. — Ред. А.Р.А.) Таким образом, измерители ламп общего назначения как военный прибор TV-7/U, бытовой Heathkit TT-1, большинство измерителей фирмы Hickok и др. вполне прилично справляются с задачей.

Правда, за исключением действительно лабораторных приборов, все они проградуированы довольно произвольно. Так что, если лампа не показала удовлетворительных результатов при замерах крутизны, она либо изначально дефектная, либо сполна отработала свой срок. Если место на музейной полке уже занято такой же лампой и вы не собираетесь использовать ее в приборе даже с пустяковыми требованиями, лучшее место для нее — мусорное ведро.

Читайте также:  Как определить направление силы тока по рисунку

Наблюдение кривых на экране

Характериограф рисует на экране осцилоскопа семейство кривых зависимости анодного тока от смещения на сетке при различных напряжениях на аноде (анодные характеристики). Однако для цели отбора ламп больше подошла бы кривая изменения анодного тока от напряжения сетки при фиксированном анодном напряжении (анодно-сеточная характеристика). Она показывает кривизну передаточной характеристики и то, насколько хорошо лампа закрывается. Если кривизна большая, можно ожидать больших искажений. Если геометрия сетки нарушена при сборке, то анодный ток не будет исчезать при глубоком закрытии лампы (более отрицательном напряжении сетки). Если лампа с удлиненной характеристикой ошибочно отмаркирована как лампа с короткой (к примеру 6BA6 имеет значок 6AU6, или 6ES8 имеет значок 6DJ8), то при измерениях это сразу выяснится.

На Рис.1 показана анодно-сеточная характеристика лампы 12AT7 (в данном случае Raytheon JRP-12AT7, выпущенная в 60-е). Она выглядит, как нормальный образец, хотя и с кривизной, присущей 12AT7. На Рис.2 изображена характеристика другой половинки той же лампы, где отсечка тока не происходит даже при глубоком закрытии. Это пример, конечно, избыточен по своей показательности, но интересно, как лампа с таким деффектом оказалась в военном приборе. К счастью, такие пороки у ламп весьма редки.

Отбор ламп на характериографе представляет собой операцию скорее качественную, нежели количественную. Прогон ламп через этот прибор помогает быстро выявить дефекты производства или причину высоких искажений, но он не укажет на севшую эмиссию до тех пор, пока лампа еще хоть как-то дышит. Так что наблюдение характеристик на характериографе является, по сути, дополнением к измерениям крутизны.

Единственным характериографом, производившимся серийно, был Tektronix 570. Он выпускался с 1955 г. до начала 60-х. Но сделано их было немного, и найти его сейчас крайне сложно. На протяжении ряда лет в различной периодике публиковались статьи о том, как сделать характериограф. Сейчас при наличии дешевых АЦП и ЦАП на борту компьютера, не составляет никаких проблем построить характериограф упралемый машиной. Единственное, за чем дело стало — недорогой характериограф для измерения ламп.

Шум и «микрофон»

Шумы и микрофонный эффект являются, по сути, разными дефектами в лампе. Шум в виде шипения или треска может быть вызван: дробовым шумом (из-за неравномерности во времени выхода электронов с поверхности катода, количество таких электронов в каждый момент времени различно, и тогда ток эмиссии не является строго постоянной величиной), явлением фликер-эффекта (благодаря неравномерному изменению эмиссионной способности отдельных участков катода, активный слой катода все время пребывает в нестабильном состоянии, площадки с максимальной эмиссией как бы мигрируют по поверхности), и тепловым движением электродов относительно друг друга и проявляется при избыточных вибрациях или ударах по лампе. Рокот (не фон!) также есть разновидность шума, но в хорошо спроектированных и собранных лампах он может проявиться лишь при появлении утечки катод-накал. Большинство современных ламп с высоким усилением запитываются, как правило, постояным током, исключая таким образом проблему рокота.

Наилучшим тестом для проверки лампы на шум можно считать ее работу в оченьчувствительном усилителе, скажем в коректоре RIAA, остается только измерить шум на выходе. Щелчок по лампе или по шасси усилителя проявит наличие микрофонного эффекта. Альтернативой может служить специальный тест в усилителе с высоким усилением, где лампа включена с общей сеткой. Вообще-то померить шумы лампы и ее «микрофон» — задача не из легких, так что лучшим способом можно считать, когда переберешь массу ламп и выберешь самую «молчаливую». Однако, порой вам надо отобрать самые шумящие лампы (явно шумящие выше среднего). Это явится показателем того, что у иного производителя есть проблемы с качеством, и таких ламп надо держаться подальше.

Следует заметить, что и шум, и микрфонный эффект при том методе, который был описан выше, проявляются на низкой частоте (в аудио и видео диапазоне). Значение шумового напряжения на радиочастотах определено главным образом крутизной. «Микрофон» в радиодиапазоне практически не ощутим. Вот почему большинство высокочастотных ламп грешат жутким микрофонным эффектом. Исключением может оказаться генератор в FM тюнере. Здесь шумы и «микрофон» могут вызвать модуляционный шум, который наложится на FM сигнал.

Загазованность (эмиссия сетки)

Присутствие газа во внутреннем объеме баллона может бять довольно точно определено путем измерения сеточной эмиссии. Управляющая сетка способна излучать электроны, когда хоть сколько-нибудь молекул или атомов газа находятся внутри лампы или материал катода осел на сетке и она стоит под высокой температурой. Частым эффектом такого нежелательного поведения сетки окажется смещение рабочей точки в сторону более высоких анодных токов. Это может стать проблемой для мощных ламп или в схемах с большими сеточными резисторами. Если в усилителе мощности с фиксированным смещением есть возможность сеточной эмиссии в выходном каскаде, то увеличенный анодный ток вызовет увеличение сеточного, тот в свою очередь еще сдвинет рабочую точку в сторону большего анодного тока и так далее. Налицо эффект саморазогрева лампы вплоть до выгорания одного из элементов. Но когда саморазогрев остановится, лампа уже мертва. Усилители с автосмещением и со схемой слежения по постоянному току (DC servo) менее чувствительны к загазованности лампы, так как изменение сеточного смещения компенсируется изменением тока в цепи автосмещения и соответственно напряжением катода относительно сетки.

Сеточный ток обычно замеряется при нормированном (справочном) токе анода путем измерения падения напряжения на сеточном резисторе утечки. Большинство ламповых измерителей способны измерять токи сетки. Очень часто сеточная эмиссия никак не проявляет себя, пока лампа работает как обычно. Поэтому нужно довести лампу до предельного анодного тока, прогреть ее как следует на этой мощности, а уж затем измерять сеточный ток.

Короткие замыкания и утечки

Непрогнозируемые, случайные замыкания вызваны отрывом или прогибом элементов лампы. Утечка может образоваться из-за оседания атомов металла на стекле или слюде, расположенных между электродами. Наконец, эта утечка может произойти вследствие загрязнений между ножками лампы на цоколе. Многие ламповые тестеры имеют контроль короткого замыкания. Частенько «коротыши» блокируют проведение остальных измерений. Утечки становятся проблемой в очень чувствительных схемах, так что лучше для выяснения таких случаев тестировать лампы по месту, когда измеритель не способен ничего определить.

Источник

Термоэлектронная эмиссия. Электрический ток в вакууме.

Если сообщить электронам в металлах энергию, необходимую для преодоления работы выхода, то часть электронов может покинуть металл, в результате чего на­блюдается явление испускания электро­нов, или электронной эмиссии.В зависи­мости от способа сообщения электронам энергии различают термоэлектронную, фо­тоэлектронную, вторичную электронную и автоэлектронную эмиссии.

1. Термоэлектронная эмиссия —это испускание электронов нагретыми метал­лами. Концентрация свободных электро­нов в металлах достаточно высока, поэто­му даже при средних температурах вслед­ствие распределения электронов по скоро­стям (по энергии) некоторые электроны обладают энергией, достаточной для прео­доления потенциального барьера на гра­нице металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше ра­боты выхода, растет, и явление термоэлек­тронной эмиссии становится заметным.

Исследование закономерностей термо­электронной эмиссии можно провести с по­мощью простейшей двухэлектродной лам­пы — вакуумного диода,представляюще­го собой откачанный баллон, содержащий два электрода: катод К и анод А. В про­стейшем случае катодом служит нить из тугоплавкого металла (например, воль­фрама), накаливаемая электрическим то­ком. Анод чаще всего имеет форму ме­таллического цилиндра, окружающего ка­тод. Если диод включить в цепь, как это показано на рис. 13.1, то при накаливании катода и подаче на анод положительного напряжения (относительно катода) в анодной цепи диода возникает ток. Если поменять полярность батареи Ба, то ток прекращается, как бы сильно катод ни накаливали. Следовательно, катод ис­пускает отрицательные частицы — элек­троны. Если поддерживать температуру на­каленного катода постоянной и снять за­висимость анодного тока Iа от анодного напряжения Uaвольт-амперную харак­теристику(рис.13.2), то оказывается, что она не является линейной, т. е. для ваку­умного диода закон Ома не выполняется. Зависимость термоэлектронного тока I от анодного напряжения в области малых положительных значений U описывается законом трех вторых(установлен русским физиком С. А. Богуславским (1883— 1923) и американским физиком И. Ленгмюром (1881 — 1957)):

I=BU 3/2 ,

где В — коэффициент, зависящий от фор­мы и размеров электродов, а также их взаимного расположения.

При увеличении анодного напряжения ток возрастает до некоторого

максималь­ного значения Iнас, называемого током на­сыщения.Это означает, что почти все электроны, покидающие катод, достигают анода, поэтому дальнейшее увеличение на­пряженности поля не может привести к увеличению термоэлектронного тока. Следовательно, плотность тока насыщения характеризует эмиссионную способность материала катода.

Плотность тока насыщения определя­ется формулой Ричардсона — Дешмана,выведенной теоретически на основе кван­товой статистики:

где А — работа выхода электронов из ка­тода, Т — термодинамическая температу­ра, С — постоянная, теоретически одина­ковая для всех металлов. На рис.13.2 представлены вольт-ам­перные характеристики для двух темпера­тур катода: T1и Т2, причем T2>T1. С по­вышением температуры катода испуска­ние электронов с катода интенсивнее, при этом увеличивается и ток насыщения. При Ua=0 наблюдается анодный ток, т. е. некоторые электроны, эмиттируемые катодом, обладают энергией, достаточной для преодоления работы выхода и дости­жения анода без приложения электриче­ского поля.

Явление термоэлектронной эмиссии ис­пользуется в приборах, в которых необхо­димо получить поток электронов в вакуу­ме, например в электронных лампах, рен­тгеновских трубках, электронных микро­скопах и т. д. Электронные лампы широко применяются в электро- и радиотехнике, автоматике и телемеханике для выпрямле­ния переменных токов, усиления электри­ческих сигналов и переменных токов, гене­рирования электромагнитных колебаний и т. д. В зависимости от назначения в лампах используются дополнительные управляющие электроды.

Читайте также:  У сварочного не регулируется ток в чем может быть причина

2. Фотоэлектронная эмиссия —это эмиссия электронов из металла под действием света, а также коротковол­нового электромагнитного излучения (например, рентгеновского). Основные закономерности этого явления будут разобраны при рассмотрении фотоэлек­трического эффекта.

3. Вторичная электронная эмиссия —это испускание электронов поверхностью металлов, полупроводников или диэлек­триков при бомбардировке их пучком электронов. Вторичный электронный поток состоит из электронов, отраженных повер­хностью (упруго и неупруго отраженные электроны), и «истинно» вторичных элек­тронов — электронов, выбитых из металла, полупроводника или диэлектрика первич­ными электронами.

Отношение числа вторичных электро­нов n2 к числу первичных п1, вызвавших эмиссию, называется коэффициентом вто­ричной электронной эмиссии:

Он зависит от природы мате­риала поверхности, энергии бомбардиру­ющих частиц и их угла падения на поверх­ность. У полупроводников и диэлектриков его значение больше, чем у металлов. Это объясняется тем, что в металлах, где концентрация электронов проводимости велика, вторич­ные электроны, часто сталкиваясь с ними, теряют свою энергию и не могут выйти из металла. В полупроводниках и диэлектри­ках же из-за малой концентрации элек­тронов проводимости столкновения вто­ричных электронов с ними происходят гораздо реже и вероятность выхода вторич­ных электронов из эмиттера возрастает в несколько раз.

Явление вторичной электронной эмис­сии используется в фотоэлектронных ум­ножителях(ФЭУ), применяемых для уси­ления слабых электрических токов.

4. Автоэлектронная эмиссия —это эмиссия электронов с поверхности метал­лов под действием сильного внешнего электрического поля. Эти явления можно наблюдать в откачанной трубке, конфигу­рация электродов которой (катод — острие, анод — внутренняя поверхность трубки) позволяет при напряжениях при­мерно 10 3 В получать электрические поля напряженностью примерно 10 7 В/м. При постепенном повышении напряжения уже при напряженности поля у поверхности катода примерно 10 5 —10 6 В/м возникает слабый ток, обусловленный электронами, испускаемыми катодом. Сила этого тока увеличивается с повышением напряжения на трубке. Токи возникают при холодном катоде, поэтому описанное явление назы­вается также холодной эмиссией.Объяс­нение механизма этого явления возможно лишь на основе квантовой теории.

Дата добавления: 2015-04-15 ; просмотров: 3994 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

electro.rcl-radio.ru

Основы электроники и радиотехники

Виды электронной эмиссии

Для получения потока свободных электронов в электронных приборах имеется специальный металлический или полупроводниковый электрод — катод.

Для того чтобы электроны могли выйти за пределы катода, необходимо сообщить нм извне некоторую энергию, достаточную для преодоления противодействующих сил. В зависимости от способа сообщения электронам добавочной энергии различают такие виды электронной эмиссии:

  • термоэлектронную, при которой дополнительная энергия сообщается электронам в результате нагрева катода;
  • фотоэлектронную, при которой на поверхность катода воздействует электромагнитное излучение;
  • вторичную электронную, являющуюся результатом бомбардировки катода потоком электронов или ионов, двигающихся с большой скоростью;
  • электросатическую, при которой сильное электрическое поле у поверхности катода создает силы, способствующие выходу электронов за его пределы.

Рассмотрим более подробно каждый из перечисленных видов электронной эмиссии.

Термоэлектронная эмиссия. Явление термоэлектронной эмиссии было известно уже в конце ХVIII в. Ряд качественных закономерностей этого явления установили В. В. Петров (1812), Т. Л. Эдисон (1889) и др. К 30-м годам нашего столетия были определены основные аналитические зависимости термоэлектронной эмиссии.

При нагревании металла распределение электронов по энергиям в зоне проводимости изменяется (рис, 1, кривая 2). Появляются электроны с энергией, превышающей уровень Ферми. Такие электроны могут выйти за пределы металла, и результате чего возникает эмиссия электронов. Величина тока термоэлектронной эмиссии зависит от температуры катода, работы выхода и свойств поверхности (уравнение Ричардсона — Дэшмана):

где — плотность тока эмиссий, А/см²; А — эмиссионная постоянная, зависящая от свойств излучаощей поверхности и равная для большинства чистых металлов — 40…70 А/(см²•К²’); Т — абсолютная температура катода; е — основание натуральных логарифмов (е = 2,718); еφо — работа выхода электрона из металла, Дж; κ = 1,38•10‾²³ Дж/К — постоянная Больцмана.

Приведенное уравнение термоэлектронной эмиссии справедливо для металлов. Для примесных полупроводников существует несколько иная зависимость, однако качественно связь величины тока эмиссии с температурой и работой выхода остается такой же. Уравнение показывает, что величина тока эмиссии в наибольшей степени зависит от температуры катода. Однако при увеличении температуры резко возрастает скорость испарения материала катода и сокращается срок его службы. Поэтому катод должен работать в строго определенном интервале рабочих температур. Нижний предел температуры определяется возможностью получения требуемой эмиссии, а верхний — испарением или плавлением эмиттирующего материала.

Существенное влияние на величину тока эмиссии оказывает внешнее ускоряющее электрическое поле, действующее у поверхности катода. Это явление получило название эффекта Шоттки. На электрон, выходящий из катода, при наличии внешнего электрического поля действуют две силы — сила электрического притяжения, возвращающая электрон, и сила внешнего поля, ускоряющая электрон в направлении от поверхности катода. Таким образом, внешнее ускоряющее поле снижает потенциальный барьер, вследствие чего снижается работа выхода электронов из катода и увеличивается электронная эмиссия.

Фотоэлектронная эмиссия. Впервые явление фотоэлектронной эмиссии (или внешнего фотоэффекта) наблюдалось Г. Герцем в 1887 г. Экспериментальные исследования, позволившие установить количественные соотношения для фотоэлектронной эмиссии, были проведены А. Г. Столетовым в 1888 г. Основные закономерности фотоэффекта были объяснены А. Эйнштейном на основе фотонной теории света. В соответствии с этой теорией лучистая энергия может пропускаться и поглощаться не в виде непрерывного потока, а только определенными порциями (квантами), причем каждый квант обладает количеством энергии hv, где h — постоянная Планка, а v — частота излучения. Таким образом, электромагнитное излучение (видимый и невидимый свет, рентгеновское излучение и т. п.) представляет собой поток отдельных квантов энергии, получивших название фотонов. При падении на поверхность фотокатода энергия фотонов расходуется на сообщение электронам дополнительной энергии. За счет этой энергии электрон с массой me, совершает работу выхода Wo и приобретает начальную скорость Vo, что математически выражается уравнением Эйнштейна:

Электрон может выйти за пределы катода, если работа выхода меньше энергии кванта, так как лишь при этих условиях начальная скорость Vo, а следовательно и кинетическая энергия электрона:

Отметим основные особенности явления фотоэффекта:

  • При облучении поверхности фотокатода лучистым потоком постоянного спектрального состава ток фотоэлектронной эмиссии пропорционален интенсивности потока (закон Столетова):

где — величина фототока; Ф — величина лучистого потока; К — коэффициент пропорциональности, характеризующий чувствительность поверхности фотокатода к излучению.

  • Скорость электронов, испускаемых фотокатодом, тем больше, чем больше частота v поглощаемого излучения; начальная кинетическая энергия фотоэлектронов возрастает линейно с возрастанием частоты v.
  • Фотоэффект наблюдается только при облучении лучистым потоком с частотой V ≥ Vкр, где Vкр критическая частота, называемая «красной границей» фотоэффекта. Критическая длина волны:

, где с — скорость распространения электромагнитных волн. При λ > λк, фотоэлектронная эмиссия отсутствует.

  • Фотоэффект практически безынерционен, т. е. нет запаздывания между началом облучения и появлением фотоэлектронов (время запаздывания не превышает 3•10∧-9 с).

Как и в случае термоэлектронной эмиссии, увеличение напряженности внешнего электрического поля у фотокатода также увеличивает фотоэлектронную эмиссию за счет снижения потенциального барьера катода. При этом порог фотоэффекта смещается в сторону более длинных воли.

Чем меньше работа выхода металла, из которого изготовлен фотокатод, тем меньше величина пороговой частоты для данного фотокатода. Например, для того чтобы фотокатод был чувствителен к видимому свету, материал его должен иметь работу выхода меньше 3,1 эВ. Такая работа выхода характерна для щелочных и щелочноземельных металлов (цезий, калий, натрий). Для увеличения чувствительности фотокатода к другим диапазонам лучистых потоков используют более сложные типы полупроводниковых фотокатодов (щелочно-водородные, кислородно-цезиевые, сурьмяно-цезиевые и др.).

Вторичная электронная эмиссия. Механизм вторичной электронной эмиссии отличается от механизма термоэлектронной и фотоэлектронной эмиссии. Если при термоэлектронной и фотоэлектронной эмиссии электроны расположенные главным образом на уровнях зоны проводимости, то при бомбардировке поверхности катода первичными электронами или ионами их энергия может поглощаться и электронами заполненных зон. Поэтому вторичная эмиссия возможна как с проводников, так и с полупроводников и диэлектриков.

Наиболее важным параметром, характеризующим вторичную электронную эмиссию, является коэффициент вторичной эмиссии σ. Он представляет собой отношение числа вылетающих с поверхности катода вторичных электронов n2, к числу падающих на катод первичным электронов n1, или же отношение тока вторичной элеронной эмиссии I2 к току первичных электронов I1:

Вторичная электронная эмиссия применяется в некоторых электронным приборах — фотоумножителях, передающих телевизионных трубках, отдельным типах электронных ламп. Однако во многим случаям, в частности в большинстве электронных ламп, она нежелательна и ее стремятся уменьшить.

Электростатическая эмиссия. Если внешнее электрическое поле у поверхности катода имеет напряженность, достаточную для полной компенсации тормозящего действия потенциального барьера, то даже при низких температурах катода кожно получить значительную электронную эмиссию. Подсчитано, что для компенсации потенциального барьера напряженность у поверхности катода должка быть порядка 10∧8 В/см. Однако уже при напряженности поля порядка 10∧6 В/см наблюдается значительная электронная эмиссия с холодных поверхностей.

Техническое получение значений напряженности поля, достаточных для возникновения электростатической эмиссии, представляет значительные трудности. Поэтому электростатическая эмиссия в основном применяется в ионных приборах с жидким ртутным катодом. В этом случае достаточную напряженность поля кожно получить за счет создании вблизи поверхности катода слоя ионизированных паров ртути.

Источник — Гершунский Б.С. Основы электроники (1977)

Источник