Меню

Ток для тяги поездов



Электрификация железных дорог

Железнодоро́жная электрифика́ция — комплекс мероприятий, выполняемых на участке железной дороги для возможности использовать на нём электроподвижной состав: электровозы, электросекции или электропоезда.

Для тяги поездов на электрифицированных участках железных дорог используются электровозы. В качестве пригородного транспорта используются электросекции или электропоезда.

Содержание

Системы электрификации

Системы электрификации можно классифицировать:

  • по виду проводников:
    • с контактной подвеской
    • с контактным рельсом
  • по напряжению
  • по роду тока:
    • постоянный ток
    • переменный ток
      • частота тока
      • число фаз

Обычно используют постоянный (=) или однофазный переменный (

) ток. При этом в качестве одного из проводников выступает рельсовый путь

Использование трёхфазного тока требует подвески как минимум двух контактных проводов,которые не должны соприкасаться ни при каких условиях (как у троллейбуса), поэтому эта система не прижилась, в первую очередь из-за сложности токосъема на больших скоростях.

При использовании постоянного тока напряжение в сети делают довольно низким, чтобы включать электродвигатели напрямую. При использовании переменного тока выбирают гораздо более высокое напряжение, поскольку на электровозе напряжение можно легко понизить с помощью трансформатора.

Система постоянного тока

В данной системе тяговые электродвигатели постоянного тока питаются напрямую от контактной сети. Регулирование осуществляется подключением резисторов, перегруппировкой двигателей и ослаблением возбуждения. В последние десятилетия стало распространяться импульсное регулирование, позволяющее избежать потерь энергии в резисторах.

Вспомогательные электродвигатели (привод компрессора, вентиляторов и др.) обычно также питаются напрямую от контактной сети, поэтому они получаются очень большими и тяжёлыми. В некоторых случаях для их питания используют вращающиеся или статические преобразователи (например, на электропоездах ЭР2Т, ЭД4М, ЭТ2М используется мотор-генератор, преобразующий постоянный ток 3000 В в трёхфазный 220 В 50 Гц).

На Железных дорогах России и стран бывшего Советского Союза участки электрифицированные по системе постоянного тока, сейчас в основном используют напряжение =3000 В (на старых участках — =1500 В). В начале 70-х в СССР на Закавказской железной дороге были проведены практические исследования с возможностью электрификации на постоянном токе напряжением =6000 В, однако в дальнейшем все новые участки электрифицировались переменным током более высокого напряжения.

Простота электрооборудования на локомотиве, низкий удельный вес и высокий КПД обусловили широкое распространение этой системы в ранний период электрификации.

Недостатком данной системы является сравнительно низкое напряжение контактной сети, поэтому для передачи одинаковой мощности требуется бОльший ток по сравнению с более высоковольтными системами. Это вынуждает:

  • использовать большее суммарное сечение контактных проводов и подводящих кабелей;
  • увеличивать площадь контакта с пантографом электровоза за счет увеличения числа проводов в подвеске контактной сети до 2-х и даже 3-х (например, на подъемах);
  • уменьшать расстояния между тяговыми подстанциями для минимизации потерь тока в проводах, что дополнительно приводит к увеличению стоимости самой электрификации и обслуживания системы (подстанции хоть и автоматизированы, но требуют обслуживания). Расстояние между подстанциями на грузонапряженных участках, особенно в сложных горных условиях, может быть всего лишь несколько километров.

Трамваи, троллейбусы используют постоянное напряжение =550 (600) В, метрополитен =750 (825) В.

Система переменного тока пониженной частоты

В ряде европейских стран (Германия, Швейцария и др.) используется система однофазного переменного тока 15 кВ 16⅔ Гц, а в США на старых линиях 11 кВ 25 Гц. Пониженная частота позволяет использовать коллекторные двигатели переменного тока. Двигатели питаются от вторичной обмотки трансформатора без каких-либо преобразователей. Вспомогательные электродвигатели (для компрессора, вентиляторов и др.) также обычно коллекторные, питаются от отдельной обмотки трансформатора.

Недостатком системы является необходимость преобразования частоты тока на подстанциях или строительство отдельных электростанций для железных дорог.

Система переменного тока промышленной частоты

Использование тока промышленной частоты наиболее экономично, но его внедрение встретило много трудностей. Поначалу использовали коллекторные электродвигатели переменного тока, преобразующие мотор-генераторы (однофазный синхронный электродвигатель плюс тяговый генератор постоянного тока, от которого работали тяговые электродвигатели постоянного тока), вращающиеся преобразователи частоты (дающие ток для асинхронных тяговых электродвигателей). Коллекторные электродвигатели на токе промышленной частоты работали плохо, а вращающиеся преобразователи были слишком тяжёлыми и неэкономичными.

Система однофазного тока промышленной частоты (25 кВ 50 Гц) начала широко применяться только после создания во Франции в 1950-х годах электровозов со статическими ртутными выпрямителями (игнитронами; позже они заменялись на более современные кремниевые выпрямители — из экологических и экономических соображений); затем эта система распространилась и во многих других странах (в том числе в СССР).

При выпрямлении однофазного тока получается не постоянный ток, а пульсирующий, поэтому используются специальные двигатели пульсирующего тока, а в схеме имеются сглаживающие реакторы (дроссель), снижающий пульсации тока, и резисторы постоянного ослабления возбуждения, включенные параллельно обмоткам возбуждения двигателей и пропускающие переменную составляющую пульсирующего тока, которая лишь вызывает ненужный нагрев обмотки.

Для привода вспомогательных машин используют либо двигатели пульсирующего тока, питающиеся от отдельной обмотки трансформатора (обмотка собственных нужд) через выпрямитель, либо промышленные асинхронные электродвигатели, питающиеся от расщепителя фаз (такая схема была распространена на французских и американских электровозах, а с них была перенесена на советские) или фазосдвигающих конденсаторов (применена, в частности, на российских электровозах ВЛ65, ЭП1, 2ЭС5К).

Недостатками системы являются значительные электромагнитные помехи для линий связи, а также неравномерная нагрузка фаз внешней энергосистемы. Для повышения равномерности нагрузки фаз в контактной сети чередуются участки с разными фазами; между ними устраивают нейтральные вставки — короткие, длиной несколько сотен метров, участки контактной сети, которые подвижной состав проходит с выключенными двигателями, по инерции. Они сделаны для того, чтобы пантограф не перемыкал находящийся под высоким линейным (межфазным) напряжением промежуток между секциями в момент перехода с провода на провод. При остановке на нейтральной вставке на неё возможна подача напряжения от передней по ходу секции контактной сети.

Железные дороги России и стран бывшего Советского Союза, электрифицированные по системе переменного тока используют напряжение

25000 В) частотой 50 Гц.

Стыкование систем электроснабжения

Разнообразие систем электроснабжения вызвало появление пунктов стыкования (систем тока, напряжений, частоты тока). При этом возникло несколько вариантов решения вопроса организации движения через такие пункты. Выявились 3 основные направления:

1. Оборудование станции стыкования переключателями, позволяющими подавать на отдельные участки контактной сети тот или иной род тока. Например, поезд прибывает с электровозом постоянного тока, затем этот электровоз отцепляется и уезжает в оборотное депо или тупик для отстоя локомотивов. Контактную сеть на этом пути переключают на переменный ток, сюда заезжает электровоз переменного тока и отправляется с поездом. Недостатком такого способа является удорожание электрификации и содержание устройств электроснабжения, а также требует смены локомотива.

2. Использование многосистемного подвижного состава. При этом стыкование по контактной сети делается за пределами станции. Данный способ позволяет проходить пункты стыкования без остановки (хоть и, как правило, на выбеге). Но стоимость таких электровозов выше, а содержание дороже, кроме того, многосистемные электровозы имеют больший вес (что, однако, малоактуально на железной дороге, где нередка добалластировка локомотивов для увеличения сцепного веса). В СССР и странах СНГ были выпущены мелкими сериями такие типы подвижного состава, как электровозы ВЛ82 и ВЛ82 м , ВЛ61 д (постоянный ток напряжением 3000 В и однофазный 25 000 В), ВЛ19 и С р (постоянный ток напряжением 3000 В и 1500 В). В Западной Европе встречается четырёхсистемный ЭПС (постоянный ток 1500 В, постоянный ток 3000 В, переменный ток 25 кВ 50 Гц, переменный ток 15 кВ 16⅔ Гц). В настоящее время в России налажено производство только пассажирских двухсистемных электровозов ЭП10 (постоянный ток 3000 В и переменный ток 25 кВ 50 Гц), которые выпускает НЭВЗ.

3. Применение тепловозной вставки — оставление между участками с разными системами электроснабжения небольшого тягового плеча, обслуживаемого тепловозами. На практике применяется на участке Кострома — Галич протяженностью 126 км: в Костроме постоянный ток (= 3000 В), в Галиче — переменный (

25 000 В); транзитом курсируют поезда Москва — Хабаровск и Кострома — Шарья, а также Самара — Оренбург: в Самаре постоянный ток (= 3000 В), в Оренбурге — переменный (

25 000 В), транзитом проходят поезда на Орск, Алма-Ату, Бишкек. При таком способе «стыкования» значительно ухудшаются условия эксплуатации линии: в два раза повышается время стоянки составов, снижается эффективность электрификации из-за содержания и пониженной скорости тепловозов.

История электрификации железных дорог в бывшем СССР

Первой электрифицированной линией на территории бывшего СССР (здесь и далее рассматриваются границы 1945-1991 гг.) была пригородная линия Таллинн — Пяэскюла длиной 11,2 км в независимой Эстонии. Электромотрисы с прицепными вагонами начали работу в 1924 году. Существенная реконструкция узла и расширение полигона электрификации было осуществлено в 1950-х гг.

В 1926 году электротяга была внедрена на пригородных линиях в Баку.

С 1929 года электрификация начала внедряться на магистральных железных дорогах, в основном для пригородного движения, где электропоезда заменяли пригородные поезда на паровой тяге. Первым участком стала линия Москва — Мытищи длиной 18 км. В 1930-х гг. на московском узле были электрифицированы Ярославское (Москва — Загорск, Мытищи — Монино), Горьковское (Москва — Обираловка, Реутово — Балашиха), Рязанское (Москва — Раменское), Курское (Москва — Подольск) направления. Использовался постоянный ток напряжением 1500 В. На участке Загорск — Александров в 1937 году использовался постоянный ток напряжением 3000 В, электропоезда следовавшие из Москвы на станции Загорск переключали группы двигателей и продолжали движение дальше. Электрификация узла продолжилась во время Великой Отечественной войны и во второй половине 1940-х гг.

В 1932-1933 гг. электротяга была внедрена на магистральной железной дороге Хашури — Зестафони (63 км) на тяжёлом Сурамском перевале. Здесь, в отличие от Москвы и Баку, электротяга использовалась для грузовых и пассажирских перевозок. Впервые на железнодорожных линиях СССР стали работать электровозы.

С 1933 года обозначился курс на первоочередное внедрение электрификации в трёх случаях:

1. Интенсивное пригородное движение, при котором использование паровозной тяги крайне неэффективно. Так электротяга появилась в Ленинграде (Балтийское направление), в КавМинВодах (Минводы — Кисловодск), Куйбышеве (Самара — Безымянка), ответвления от магистральной электрифицированной железной дороги в Грузии (Сурами, Боржоми, Кутаиси, Гардабани и т.п.), где ввиду наличия электрификации под грузовое движение было невыгодно держать паровозы для пригородного и местного сообщения. В таких случаях как правило электрификация осуществлялась на постоянном токе напряжением 1500 В (в Грузии сразу 3000 В).

Читайте также:  Запуск асинхронного двигателя от постоянного тока

2. На перевальных железных дорогах, где электротяга позволяла существенно увеличить пропускную и провозную способность линий. Так было в Грузии, на Урале (Кизел — Чусовская и дальнейшее развитие электротяги в растущем промышленном регионе, в 1945 Челябинск — Златоуст). Электрификация велась на постоянном токе напряжением 3000 В.

3. На напряжённых железнодорожных линиях в новых промышленных районах (Пермско-Свердловский регион, Запорожье — Кривбасс, Лоухи — Мурманск, Новокузнецк — Белово).

Такой курс сохранялся примерно до 1950 года. Во время войны на многих электрифицированных линиях временно производились демонтажи контактной сети и эвакуация электроподвижного состава. Линия Лоухи — Мурманск, несмотря на прохождение рядом линии фронта, продолжала работать. Во время войны электротяга получила развитие на московском узле и на Урале, а после войны была полностью восстановлена на всех участках, где имели место быть демонтажи.

В 1950-1955 гг. началось первое, ещё осторожное расширение полигона электрификации. Начался переход с напряжения 1500 В на 3000 В на всех пригородных узлах, дальнейшее развитие пригородных узлов, удлинение электрифицированных линий до соседних областных центров с внедрением электролокомотивной тяги для пассажирских и грузовых поездов. «Островки» электрификации появились в Риге, в Куйбышеве, в Западной Сибири, Киеве.

С 1956 года начался новый этап массовой электрификации железных дорог СССР, который стремительно вывел электротягу и тепловозную тягу с 15% доли в перевозках в 1955 году до 85% доли в 1965 году. В течение десяти лет были введены самые длинные электрифицированные дороги Москва — Куйбышев — Челябинск — Новосибирск — Иркутск, Ленинград — Москва — Харьков — Ростов — Сочи — Тбилиси — Ереван, Москва — Горький — Киров — Пермь, Москва — Рязань — Воронеж — Ростов — Минводы, существенно возросли локальные полигоны электротяги в Восточной Украине, Азербайджане, Горьком, появились новые «островки» в Минске, Волгограде, Владивостоке, в Западной Украине, в основном завершена электрификация в Грузии (1969 год). В эти годы электрификация продолжалась как на уже хорошо себя зарекомендовавшем постоянном токе напряжением 3000 В, так и на переменном токе частоты 50 Гц напряжением 25 кВ. Первый опытный участок на переменном токе (напряжением 20 кВ) был Ожерелье — Михайлов — Павелец с 1955-1956 гг. После проведения испытаний было решено увеличить напряжение до 25 кВ, а в 1957 году такой тип был внедрён на линии Горький — Заволжье (47 км), где впервые начали работать электропоезда переменного тока. С 1959 года переменный ток начал внедряться на больших полигонах, где требовалась электрификация, но поблизости не было полигонов постоянного тока (Красноярская и Восточно-Сибирская железные дороги, Горьковский узел и далее в Киров, ход Рязань — Воронеж — Северный Кавказ, узлы во Владивостоке, Минске, Барнауле, на Центральной и Западной Украине).

См. также

  • Токоприёмник
  • Электропоезд
  • Линейный двигатель
  • Тяговая подстанция
  • Съёмная вышка

Источники

Moody, G T «Part One». Southern Electric. — 3rd edition ed. — Лондон: Ian Allan Ltd., 1960 год.

Источник

Электрическая тяга поездов

Знакомство с основными этапами составления принципиальной схемы электрических соединений тяговой подстанции. Анализ способов определения количества и типа выпрямителей. Рассмотрение особенностей и проблем выбора преобразовательных трансформаторов.

Рубрика Транспорт
Вид контрольная работа
Язык русский
Дата добавления 16.10.2017
Размер файла 996,7 K
  • посмотреть текст работы
  • скачать работу можно здесь
  • полная информация о работе
  • весь список подобных работ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Внедрение электрической тяги поездов в большей степени, чем другие реконструктивные мероприятия, проводившиеся с тридцатых годов двадцатого века, преобразило облик железных дорог или инициировало также преобразования. Трудом нескольких поколений отечественных ученых, инженеров и рабочих, проектировщиков, строителей, монтажников и эксплуатационников, конструкторов и изготовителей электроподвижного состава (ЭПС). Россия добилась впечатляющих успехов в области электрической тяги поездов. Так протяженность электрифицированных железных дорог России — давно наибольшая в мире. Сегодня она составляет почти сорок три тысячи километров — половину эксплуатационной длины сети. Созданы грандиозные электрифицированные транспортные коридоры, являющиеся международными. На электрической тяге выполняется более 80 процентов сетевого грузооборота.

Однако эти достижения можно считать лишь количественными. Не менее значителен перечень качественных показателей, позволивших в своё время отечественной науке и технике занять передовые позиции в мире. Назовем лишь некоторых из них.

В области тягового электроснабжения к достижениям мирового уровня, в частности относится перевод в сороковых, шестидесятых годах линий постоянного тока 1,5 на 3кВ, создание на переходный период электросекций на оба напряжения. Это позволило не только с повышение мощности электровозов, массы поездов и размеров движения, но и избежать затруднений, которые испытывают сейчас, например, дороги Франции и Нидерландов, сохранившие у себя давно устаревшую систему 1,5кВ. Перевод участков с 1,5 на 3кВ способствовал снижению потерь электроэнергии в контактной сети, переносу на более позднее время так называемого усилия системы тягового электроснабжения и другое.

Оперативная замена в шестидесятых, семидесятых годах на тяговых подстанциях постоянного тока ртутных выпрямителей силовыми полупроводниковыми приборами, обеспечивающая наряду со снижение потерь электроэнергии коренное улучшение условий труда дежурного персонала подстанций. Решилась проблема возврата энергии рекуперации в сеть внешнего электроснабжения, а также снижение влияния пульсаций выпрямленного напряжения на воздушные линии связи.

Создание электронных систем автоматики и телеуправления тяговыми подстанциями, постами секционирования и секционными разъединителями контактной сети, а также современной быстродействующей релейной защиты тяговых сетей позволили поднять на высокий уровень организацию эксплуатации устройств тягового электроснабжения, уменьшить число повреждений и ущерб от них.

В дальнейшем видятся широкие перспективы как в электрификации не электрифицированных линии, так и в совершенствовании методов, норм и технических средств эксплуатации систем электроснабжения.

1. Составление принципиальной схемы электрических соединений тяговой подстанции

1.1 Отпаечная тяговая подстанция включена на отпайкаx к линии 110 кВ. РУ

110 кВ имеет два ввода W1 и W2.Разъединители QS3 и QS4 типа РНДЗ-1-110, при нормальной работе отключены, и включается для ремонта одного из ввода. Трансформаторам тока ТА1 и ТА2 типа ТФЗМ-110 подключаются приборы и реле. Трансформаторы напряжения TV1 и ТV2 тип НКФ-110 используется для питания обмоток напряжения измерительныx приборов и реле. Питание на трансформаторы Т1 и Т2 поступает от линии электропередачи по вводам на которыx установлены разъединители QS5 и QS6 типа РНДЗ-2-110 с дистанционными приводами типа ПДН-1. На первичной стороне трансформаторов установлены выключатели ВМТ- 110- Б. Разрядники FV1 и FV2 защищают изоляцию РУ-110 кВ от перенапряжения.

РУ- 10 кВ предусматривает использование ординарной секционированной выключателем Q8 системы шин. Размещает оборудования РУ в закрытыx помещенияx или в шкафаxнаружной установки. В обоиx случаяx используют комплектные устройства, в которыx размещаются выключатели Q3 и Q14 типа ВВЭ- 10 и трансформаторы тока ТА3 и ТА14. Выключатели установлены на выкатныx тележкаx, что позволяет обxодиться без разъединителей. На каждом присоединении РУ используются стационарные заземляющие ножи от шин 10 кВ отxодят пять линии, питающие потребители, W3-W7. Потребители первой категории получают питание по двум линиям, отxодящим от разныx секций шин. При повреждении или отключении одной линии от второй секции. Для питания потребителей собственныx нужд предусмотрена установка двуx трансформаторов собственныx нужд (ТСН) Т5 и Т6. К секциям шин РУ- 10 кВ присоединяются трансформаторы напряжения TV1 и TV2 типа НТМИ-10, и разрядник FV5 и FV6 типа РВП-10, защищающие изоляцию РУ- 10 кВ от перенапряжений.

Сxема РУ-3,3 кВ выполняется с рабочей (РШ), запасной (ЗАП) и минусовой (МШ) шинами. Рабочая и запасная шины состоят из треx секций, минусовая не секционируется. К первой секции присоединяется преобразовательный агрегат ПА1, состоящий из тягового трансформатора ТЗ и выпрямителей UD1 и UD2, питающие линии контактной сети Ф1 и Ф2. К третей секции шин подключается преобразовательный агрегат ПА2 и фидеры контактной сети Ф3 и Ф4. Ко второй секции шин подключен разрядник, запасной выключатель и слаживающее устройство. От минусовой шины отxодят рельсовый фидер РФ, называющийся так же отсасывающей линией, так как по ней ток возвращается на подстанцию из тягового рельса.

Секционирование рабочей и запасной шины двумя разъединителями QS10 и QS11 позволяет поочередно выводить в ремонт первую и третью секции без полного отключения РУ-3,3 кВ. На фидере используются однополюсные разъединители типа РВРЗ или РВКЗ- 10 на 4000А. Для вывода выключателя QF3 в ремонт ,необxодимо предварительно обеспечить питание фидера от запасной шины через обxодной разъединитель QS. В нормальном режиме на запасной шине напряжение отсутствует . Для подачи напряжения на запасную шину от рабочей предусмотрен запасной выключатель QF5 c разъединителем QS17.

Фидерные выключатели обычно однотипные ВАБ-43 или ВАБ-49. Выключатели выводов изоляции РУ-3,3 кВ от амосферныx перенапряжений разрядники типа РМВУ-3,3. Они дополняются роговыми разрядниками с плавкой вставкой.

Для защиты изоляции оборудования от коммутационныx перенапряжений ко второй секции подключается разрядник FV19 типа РВПК-3,3. В ячейке запасного выключателя устанавливается разъединитель QS16 для плавки гололеда.

Сглаживающее устройство (СУ) тяговой подключается ко второй секции шин РУ-3,3 кВ с помощью разъединителя QS24, к шинам подключается вольтметр PV, защищаемый предоxранителем. Для двенадцатипульсовыx сxем выпрямления применяют более простые и экономичные сглаживающие устройства в основном однозвездные.

При определенныx условияx СУ могут наблюдаться резонансные явления на частотаx от 50 до 150 Гц, при которыx резко возрастут токи гормоник в СУ и рельсовыx цепяx, что может стать причиной ложной работы устройств железнодорожной сигнализации. Для демпфирования резонансныx явлений параллельно емкости С4 включен резонансный LC контур, настроенный на частоту 100 Гц.

Читайте также:  Как устроено реле тока 1

Защищается сглаживающее устройство предоxранителем, а для работы токового реле устанавливаются трансформатор тока ТА. Реле необxодимо для подачи сигнала обслуживающему персоналу об увеличении тока СУ.

2. Определение количества и типа выпрямителей

Определим расчетное количество рабочих преобразовательных агрегатов по формуле

где — эффективный ток подстанции, А;

— номинальный ток полупроводникового выпрямителя, А.

Выбираем к установке на проектируемой тяговой подстанции полупроводниковый выпрямитель типа ТПЕД-3150-3,3кВ-У1 работающий по трехфазной мостовой шестипульсовой схеме выпрямления.

Таблица 2.1. Основные параметры выпрямителя

Источник

Почему РЖД мечтает отказаться от 3000V постоянного тока в пользу 27000V переменного?

Опубликовано 15.08.2019 · Обновлено 04.02.2021

Эра постоянного тока на железной дороге началась с самого появления подвижного составов на электрической тяге. На тот момент тяговые электродвигатели (собственно рабочие лошади электротяги) использовали для своей работы только постоянный ток. Человечеству уже были известны двигатели переменного тока, как асинхронные так и синхронные, вот только из-за сложной системы управления их использование для нужд любого вида транспорта было вопросом наглухо закрытым. А двигатели постоянного тока легко управлялись как в диапазоне скоростей так и в диапазоне мощностей.

Максимальное напряжение, пригодное для использования в узлах двигателей постоянного тока, а именно в щеточном аппарате коллектора, составляло около 3000 Вольт, что и было принято за максимальное напряжение для контактной сети. Дальнейшее повышение напряжение приводило бы к совсем скорому износу электродвигателей.

Почему я собственно заговорил вдруг о повышении напряжения, как известно и сейчас электровозы тягают тысячетонные составы именно на этом напряжении, и ничего? А дело все в том, что электрическая мощность является величиной, находящейся в прямой зависимости от напряжения или силы тока в контактной сети (P=U*I). C ростом грузоперевозок и числа пассажирских поездов, возрастала и потребность в мощности контактной сети, а ввиду того, что напряжение более 3000 Вольт повышать, как мы уже выяснили, невозможно, остается эту мощность увеличивать за счет повышения силы тока. С ростом последней ложится огромная нагрузка на инфраструктуру контактной сети — это и провода с постоянно увеличивающимся сечением, это и увеличение числа трансформаторных подстанций, и, соответственно, сокращение расстояния между ними, это и огромные потери электроэнергии на этапе её передачи до электродвигателя. Закладывать в такую инфраструктуру дальнейший рост грузо- и пассажиропотока просто некуда, он достиг своего предела. Мощность электровозов постоянного тока на сегодняшний день находится на своем максимуме, и при развитии мощностей будет однозначно проигрывать электровозам переменного тока.

Электровоз переменного тока ЭП1

Электровоз переменного тока ЭП1

Пока электрификация постоянным током, испытывая описанные трудности, все же разрасталась, технический прогресс изобрел средства выпрямления переменного тока, пригодные для использования на электровозах. Напряжение в контактной сети можно было значительно увеличить, так еще и снизить силу тока при сохранении мощности. На каждый такой электровоз переменного тока устанавливается трансформатор, который может с высоким КПД дать на выходе напряжение любого значения, пригодное для дальнейшего выпрямления и питания тяговых электродвигателей.
В итоге тяговые двигатели остались работать на постоянном токе (или пульсирующем токе), сохраняя широкий диапазон и простоту регулирования, а контактная сеть могла перейти на переменный ток повышенного напряжения. Но к сожалению разрастание постоянного тока к тому моменту уже достигло существенных масштабов и было принято решение действующие сети оставить как есть, а все последующие строить исключительно на токе переменном. Так и получилось, что у нас запад России электрифицирован на постоянном токе, а Сибирь и Дальний восток на переменном.

Зацеперы совершенно не боятся постоянного тока

Напряжение переменного тока в контактной сети РЖД составляет на сегодняшний день 25 тысяч Вольт непосредственно на контактном проводе и 27,5 кВольт на шинах трансформатора на подстанции. Сами подстанции расположены далеко друг от друга, на расстоянии до 50 километров, и при этом остается ещё большой запас мощности сетей.

Поддержка постоянного тока все равно сохраняется, но модернизация и растущие потребности в мощности, серьезно наступают такой поддержке на «пятки», а в части мощностных потребностей для высокоскоростных поездов, уже не то, что на «пятки», а на самое «горло». Многие электрические сети дорог, после очередной модернизации, были переведены на переменный ток, а все вновь электрифицированные участки, как говорилось ранее, поддерживают только переменный ток. Переменный ток в РЖД принят теперь за основу в электрической тяге.

Постоянный ток морально и физически устарел для нужд ЖД, причем очень давно, и продолжает поддерживаться исключительно из-за высоких затрат на одномоментное перепрофилирование инфраструктуры и самое главное тяговых единиц подвижного состава. Были конечно изобретены электровозы, способные работать на обоих родах тока, и на перспективное будущее активно составляются сметы и планы по переходу на переменный ток, но парадокс остается на виду — поддержка инфраструктуры постоянного тока уже потребовала в десятки раз больше средств, чем требовалось для одномоментного изменения профиля тока на всей ЖД. А теперь, с ростом нагрузок и скоростей, мы имеем дело уже не с перспективностью использования переменного тока, а его неизбежностью.

Источник

yelkz

Yelkz

. уютный фотобложек для фотовсячины

Заметки о железнодорожном транспорте: Об электрификации ЖД в СССР и видах токов в контактных сетях yelkz 13 апреля, 2018

Одной из особенностей железнодорожного транспорта в России является высокая доля электрифицированных дорог. По протяжённости электрифицированных магистралей на конец 2014-го года Россия занимает 1-е место в мире — 43,4 тыс. км (2-е место Китай — 38,5 тыс. км) — где-то около половины дорог общего пользования. Ну то что много магистралей электрифицировано — это в общем ни для кого не секрет, а вот то что в контактных сетях используется токи разного рода многие узнают с удивлением. Тем ни менее факт: в контактных сетях используется либо постоянный электрический ток номинальным напряжением 3 кВ или переменный однофазный ток промышленной частоты 50 Гц номинальным напряжением 25 кВ. Я об этом сам долгое время не задумывался — узнал когда получал третью группу электробезопасноти (работа в конторе связанной с РЖД как-то обязывала вникать и разбираться). Ну и в общем долгое время я этот факт («есть постояннка 3 кв, есть переменка 25 кВ/50 Гц») принимал как должное — «потому что так принято исторически». А некоторое время всё-таки в вопрос захотелось вникнуть и как-то разобраться — а почему собственно так.

Сразу хочу оговориться — очень глубоко к физику электропитания я копать не буду, ограничиваясь какими-то общими фразами и где-то специально утрируя. Мне иногда высказывают, что вот я упрощаю — а специалисты-то читают и понимаю, что там «всё не так». Это я в курсе, но специалисты то о чём я пишу думаю и так знают — и вряд ли для себя что-то новое почерпнут.

Итак, собственно начать следует с того, что впервые применение электричества в качестве источника энергии для тяги поездов было продемонстрировано на промышленной выставке в Берлине в 1879 году, где был представлен макет электрической железной дороги. По участку протяженностью менее 300 м со скоростью 7 км/ч двигался поезд, состоящий из локомотива мощностью 2,2 кВт и трех вагончиков, в каждом из которых могло разместиться до 6 пассажиров. Создателями нового вида тяги были знаменитый немецкий учёный, изобретатель и промышленник Эрнст Вернер фон Сименс (Werner von Siemens, 1816-1892) и инженер Хальске. К началу 20 века сомнений в эффективности электрической тяги не оставалось. В короткий срок в различных странах было реализовано несколько проектов электрификации жд. На первом этапе электрификация применялась в горных местностях на линиях с тяжелым профилем, с большим количеством тоннелей, а также на пригородных участках, т.е. на тех участках, где преимущества электрической тяги были очевидны.

Соответственно два главных направления применения электрификации: пригородное сообщение и горные магистрали. О пригородном сообщении (суть электропоездах) хочется рассказать отдельно, сейчас же надо заметить лишь, что как раз пригородное железнодорожное сообщение в плане электрификации явилось приоритетным в СССР (в Российской Империи этот проект довести до ума не успели — помешала первая мировая война и революция), в СССР же за это взялись с размахом (тут план ГОЭЛРО конечно очень поспособствовал) — электропоезда начали заменять пригородные поезда на паровой тяге.

В качестве системы электроснабжения была принята система постоянного тока с номинальным напряжением 1500 В. Система постоянного тока была выбрана потому, что при однофазном переменном токе требовались бы более тяжелые и дорогие моторные вагоны из-за необходимости постановки на них трансформаторов. Кроме того, тяговые двигатели постоянного тока имеют при прочих равных условиях более высокий вращающий момент и более приспособлены для пуска по сравнению с двигателями однофазного тока. Это особенно важно для моторных вагонов, работающих на пригородных участках с большим числом остановочных пунктов, где требуется высокое ускорение при трогании с места. Напряжение 1500 В было выбрано в связи с тем, что требуется значительно меньше меди для контактной сети по сравнению с системой 600-800 В (использовалось для электрификации трамваев-троллейбусов). Одновременно появилась возможность создать надежное электрооборудование моторного вагона, на что нельзя было в то время рассчитывать при напряжении 3000 В (первые линии пригородного сообщения, электрифицированные постоянным током 3000 В появились только в 1937 году, однако в дальнейшем на такое напряжение перевели все уже построенные линии).

Параллельно с развитием пригородного сообщения в 1932—1933 гг. электротяга была внедрена на магистральной железной дороге Хашури — Зестафони (63 км) на тяжёлом Сурамском перевале. Здесь, в отличие от Москвы и Баку, электротяга использовалась для грузовых и пассажирских перевозок. Впервые на железнодорожных линиях СССР стали работать электровозы (собственно по месту применения их так и стали называть «сурамские электровозы» или «или электровозы сурамского типа»):

Основной чертой всех электровозов сурамского типа явилось наличие переходных площадок по концам кузова, что по существовавшим в то время нормам было обязательным для всех электровозов с электрооборудованием для работы по СМЕ. Экипажная часть локомотива состоит из двух сочленённых трёхосных тележек (осевая формула 0- 3-0 + 0-3-0). Кузов вагонного типа с несущей главной рамой. Рессорное подвешивание выполнено преимущественно на листовых рессорах. Подвешивание тягового электродвигателя — опорно-осевое.

Читайте также:  Примеры взаимодействия электрического тока

И вот тут надо сделать важное замечание. В противовес паровозам, двигателем которого является паровая машина, железнодорожный транспорт следующих поколений начал приводиться в действие электродвигателями: так называемые ТЭД-ы (тяговые электродвигатели) — для многих кстати неочевидно, что ТЭД-ы используются как в электровозах/электропоездах, так и в тепловозах (последние просто питают ТЭД-ы размещенным в локомотиве дизель-генератором). Так вот на заре электрификации ЖД использовались ТЭД-ы исключительно постоянного тока. Это связано с их конструктивными особенностями, возможностью достаточно простыми средствами регулировать скорость и вращающий момент в широких пределах, возможностью работать с перегрузкой и т.д. Говоря техническим языком, электромеханические характеристики двигателей постоянного тока идеально подходят для целей тяги. Двигатели же переменного тока (асинхронные, синхронные) имеют такие характеристики, что без специальных средств регулирования их применение для электротяги становится невозможным. Таких средств регулирования на начальном этапе электрификации еще не было и поэтому, естественно, в системах тягового электроснабжения применялся постоянный ток. Строились тяговые подстанции, назначением которых является понижение переменного напряжения питающей сети до необходимого значения, и его выпрямление, т.е. преобразование в постоянный.

Но использование контактной сети постоянного тока создавало другую проблему — большой расход меди в контактной сети (по сравнению с переменным током), ибо для передачи большой мощности (мощность равна произведению тока на напряжение) при постоянном напряжении напряжении нужно обеспечить большую силу тока, ну то есть нужно больше провода и большего сечения (напряжение неизменно — надо понижать сопротивление).

Ещё в конце 1920-х гг., когда только начинали электрифицировать Сурамский перевал, многие специалисты хорошо понимали, что в будущем электрическая тяга на постоянном токе с номинальным напряжением 3 кВ не позволит рационально решить вопрос увеличения провозной способности линий путём повышения веса поездов и скорости их движения. Простейшие расчёты показывали, что при ведении поезда массой 10 000 т на подъёме 10 ‰ при скорости 50 км/ч тяговый ток электровозов будет составлять более 6000 А. Это требовало бы увеличения сечения контактных проводов, а также более частого расположения тяговых подстанций. После сравнения около двухсот вариантов сочетаний рода тока и величин напряжений было принято решение, что оптимальным вариантом является электрификация на постоянном или переменном (50 Гц) токе напряжением 20 кВ. Первая система на тот момент в мире нигде не была испытана, а вторая была хоть и очень мало, но изучена. Поэтому на первой Всесоюзной конференции по электрификации железных дорог было принято решение о сооружении опытного участка, электрифицированного на переменном токе (50 Гц) напряжением 20 кВ. Требовалось создать электровоз для испытаний, которые бы позволили выявить преимущества и недостатки электровозов переменного тока в условиях нормальной эксплуатации.

В 1938-м году был создан электровоз ОР22 (однофазный с ртутным выпрямителем, 22 — нагрузка от колёсных пар на рельсы, в тоннах). Принципиальная схема электровоза (трансформатор—выпрямитель—ТЭД, то есть с регулированием напряжения на низкой стороне) оказалась настолько удачной, что её стали использовать при проектировании подавляющего большинства советских электровозов переменного тока. На этой модели было опробовано ещё множество других идей, нашедших потом воплощение в более поздних проектах, но к сожалению дальше вмешалась война. Экспериментальная машина была разобрана, её выпрямитель использован на тяговой подстанции постоянного тока. А к идеям электровозов переменного тока вернулись только в 1954-м году с серией НО (или ВЛ61) уже на Новочеркасском электровозостроительном заводе.

Первым на переменном токе (напряжением 20 кВ) был электрифицирован опытный участок Ожерелье — Михайлов — Павелец в 1955—1956 гг. После проведения испытаний было решено увеличить напряжение до 25 кВ. Результаты эксплуатации опытного участка электрической тяги на переменном токе Ожерелье — Павелец Московской железной дороги позволили рекомендовать эту систему переменного тока к широкому внедрению на железных дорогах СССР (постановление Совета Министров СССР № 1106 от 3 октября 1958 г.). С 1959 года переменный ток напряжением 25 кВ начал внедряться на длинных участках, где требовалась электрификация, но поблизости не было полигонов постоянного тока.

В 1950—1955 гг. началось первое, ещё осторожное расширение полигона электрификации. Начался переход с напряжения 1500 В на 3000 В на всех пригородных узлах, дальнейшее развитие пригородных узлов, удлинение электрифицированных линий до соседних областных центров с внедрением электролокомотивной тяги для пассажирских и грузовых поездов. «Островки» электрификации появились в Риге, в Куйбышеве, в Западной Сибири, Киеве. С 1956 года (которой ознаменовал собой конец эпохи паровозов) начался новый этап массовой электрификации железных дорог СССР, который стремительно вывел электротягу и тепловозную тягу с 15 % доли в перевозках в 1955 году до 85 % доли в 1965 году. Массовая электрификация шла преимущественно на уже хорошо себя зарекомендовавшем постоянном токе напряжением 3000 В, хотя где-то уже начинал вводиться и переменный токе частоты 50 Гц напряжением 25 кВ. Параллельно с развитием сети линий на переменном токе велась разработка подвижного состава переменного тока. Так, первые электропоезда переменного тока ЭР7 и ЭР9 начали работу в 1962 г., а для Красноярской железной дороги в 1959 г. были приобретены французские электровозы типа Ф, так как производство советских электровозов переменного тока (ВЛ60 и ВЛ80) задерживалось.

В общем постоянным током были электрифицированы линии, вводимые в эксплуатацию раньше — более поздние линии электрифицировались уже переменным током. Также в 90-е/2000-е произошёл масштабный перевод ряда линий с постоянного тока на переменный. Споры о преимуществах систем не прекратились до сих пор. На заре внедрения переменного тока считалось, что эта система электропитания более экономичная, но сейчас однозначного решения нет:
— подвижной состав постоянного тока в полтора раза дешевле
— удельный расход у ЭПС на холмистом профиле, типичном для большей части нашей страны на 30% ниже.
Так или иначе, новые линии электрификации сейчас строятся только на переменном токе, а также некоторые старые переводятся с постоянного на переменный ток. Единственный в истории электрификации советских и российских железных дорог случай перевода участка с переменного тока на постоянный произошёл в 1989 году на Павелецком направлении Московской железной дороги. После электрификации на постоянном токе участка Рыбное — Узуново участок Ожерелье — Узуново (та самая исторически первая магистраль переменного тока) с переменного тока переведён на постоянный ток:

К слову сказать, сейчас есть тенденция к внедрению более надежных и экономичных асинхронных ТЭД-ов (на локомотивах нового поколения ЭП20, ЭС10, 2ТЭ25А ставятся именно они). Так что в сильно отдаленном будущем по причине перехода на такие ТЭД-ы от постоянного тока можно будет отказаться совсем. Пока что же отлично используются оба рода тока:

Осталось прояснить последний вопрос. Разнообразие систем электроснабжения вызвало появление пунктов стыкования (систем тока, напряжений, частоты тока). При этом возникло несколько вариантов решения вопроса организации движения через такие пункты. Выявились три основные направления:
1) Оборудование станции стыкования переключателями, позволяющими подавать на отдельные участки контактной сети тот или иной род тока. Например, поезд прибывает с электровозом постоянного тока, затем этот электровоз отцепляется и уезжает в оборотное депо или тупик для отстоя локомотивов. Контактную сеть на этом пути переключают на переменный ток, сюда заезжает электровоз переменного тока и ведет поезд далее. Недостатком такого способа является удорожание электрификации и содержание устройств электроснабжения, а также требует смены локомотива и связанных с этим дополнительных материальных, организационных и временны́х затрат. При этом значительное время занимает не столько смена электровоза, сколько опробование тормозов

2) 2. Использование многосистемного подвижного состава (в данном случае — двухсистемного — хотя в Европе например бывают и четырёхсистемные локомотив). При этом стыкование по контактной сети может делаеться за пределами станции. Данный способ позволяет проходить пункты стыкования без остановки (хоть и, как правило, на выбеге). Применение двухсистемных пассажирских электровозов сокращает время следования пассажирских поездов, и не требует сменять локомотив. Но стоимость таких электровозов выше. Дороже такие электровозы и в эксплуатации. Кроме того, многосистемные электровозы имеют больший вес (что, однако, малоактуально на железной дороге, где нередка добалластировка локомотивов для увеличения сцепного веса).

3) Применение тепловозной вставки — оставление между участками с разными системами электроснабжения небольшого тягового плеча, обслуживаемого тепловозами. На практике применяется на участке Кострома — Галич протяженностью 126 км: в Костроме постоянный ток (=3 кВ), в Галиче — переменный (

25 кВ). Транзитом курсируют поезда Москва—Хабаровск и Москва—Шарья, а также Самара—Кинель—Оренбург (прицепка тепловоза к пассажирским поездам происходит в Самаре, а к грузовым — в Кинеле). В Самаре и в Кинеле постоянный ток (=3 кВ), в Оренбурге — переменный (

25 кВ), транзитом проходят поезда на Орск, Алма-Ату, Бишкек. При таком способе «стыкования» значительно ухудшаются условия эксплуатации линии: вдвое удлиняется время стоянки составов, снижается эффективность электрификации из-за содержания и пониженной скорости тепловозов.

На практике же у нас в основном встречается первый способ — со станциями стыкования родов тяги. Скажем если я еду из Саратова в Москву такой станцией будет Узуново, если в Санкт-Петербург — Рязань-2, если в Самару — Сызрань-1, ну а если в Сочи или Адлер — Горячий Ключ (всегда кстати удивлялся тому факту, что в Сочи до сих пор используется постоянный ток, хотя все Северо-Кавказские ЖД на переменке — но говорят там надо чтоб на переменку перевести туннели где-то расширять, есть в общем проблемы).

А вообще могу ещё порекомендовать отличную карту-схема с где обозначена электрификация железных дорог России и Европы. Очень я люблю в эту карту позалипать:
>>> смотреть

Источник

Adblock
detector