Таблица зависимости сечения от тока пуэ

Содержание
  1. ПУЭ-7 п.1.3.10 ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ ДЛЯ ПРОВОДОВ, ШНУРОВ И КАБЕЛЕЙ С РЕЗИНОВОЙ ИЛИ ПЛАСТМАССОВОЙ ИЗОЛЯЦИЕЙ
  2. Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами
  3. Таблица 1.3.5. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами
  4. Таблица 1.3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных
  5. Таблица 1.3.7. Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных
  6. Таблица 1.3.8. Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами
  7. Таблица 1.3.9. Допустимый длительный ток для переносных шланговых с медными жилами с резиновой изоляцией кабелей для торфопредприятий
  8. Таблица 1.3.10. Допустимый длительный ток для шланговых с медными жилами с резиновой изоляцией кабелей для передвижных электроприемников
  9. Таблица 1.3.11. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией для электрифицированного транспорта 1,3 и 4 кВ
  10. Таблица 1.3.12. Снижающий коэффициент для проводов и кабелей, прокладываемых в коробах
  11. ПУЭ 7. Правила устройства электроустановок. Издание 7
  12. Раздел 1. Общие правила
  13. Глава 1.3. Выбор проводников по нагреву, экономической плотности тока и по условиям короны
  14. Допустимые длительные токи для проводов, шнуров и кабелей с резиновой или пластмассовой изоляцией
  15. Выбор сечения кабеля по току – таблица ПУЭ, расчеты и нюансы
  16. Расчет сечения провода
  17. Соотношение тока и сечения
  18. Трехфазное подключение
  19. Алюминиевый провод
  20. Выбор провода
  21. Заключение по теме
  22. Выбираем сечение кабеля по току с помощью таблиц ПУЭ и ГОСТ, особенности расчетов
  23. Таблицы ПУЭ и ГОСТ
  24. Плотность тока
  25. Проведение расчетов сечения по току
  26. Расчет по току с применением дополнительных параметров
  27. Выбор сечения кабеля
  28. Критерии выбора
  29. Какой длительно допустимый электроток проводника в соответствии с Правилами Устройства Электроустановок
  30. Что представляют собой таблицы Правил Устройства Электроустановок

ПУЭ-7 п.1.3.10 ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ ДЛЯ ПРОВОДОВ, ШНУРОВ И КАБЕЛЕЙ С РЕЗИНОВОЙ ИЛИ ПЛАСТМАССОВОЙ ИЗОЛЯЦИЕЙ

Допустимые длительные токи для проводов с резиновой или поливинилхлоридной изоляцией, шнуров с резиновой изоляцией и кабелей с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках приведены в табл. 1.3.4-1.3.11. Они приняты для температур: жил +65, окружающего воздуха +25 и земли + 15°С.

Узнать, где применяется кабель в резиновой изоляции, и посмотреть все марки данного кабеля можно здесь: http://cable.ru/cable/kabel-rezinovaya.php

При определении количества проводов, прокладываемых в одной трубе (или жил многожильного проводника), нулевой рабочий проводник четырехпроводной системы трехфазного тока, а также заземляющие и нулевые защитные проводники в расчет не принимаются.

Данные, содержащиеся в табл. 1.3.4 и 1.3.5, следует применять независимо от количества труб и места их прокладки (в воздухе, перекрытиях, фундаментах).

Допустимые длительные токи для проводов и кабелей, проложенных в коробах, а также в лотках пучками, должны приниматься: для проводов — по табл. 1.3.4 и 1.3.5 как для проводов, проложенных в трубах, для кабелей — по табл. 1.3.6-1.3.8 как для кабелей, проложенных в воздухе. При количестве одновременно нагруженных проводов более четырех, проложенных в трубах, коробах, а также в лотках пучками, токи для проводов должны приниматься по табл. 1.3.4 и 1.3.5 как для проводов, проложенных открыто (в воздухе), с введением снижающих коэффициентов 0,68 для 5 и 6; 0,63 для 7-9 и 0,6 для 10-12 проводников.

Для проводов вторичных цепей снижающие коэффициенты не вводятся.

Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами

Ток, А, для проводов, проложенных в одной трубе

Таблица 1.3.5. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

Ток, А, для проводов, проложенных

Таблица 1.3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных

Ток *, А, для проводов и кабелей

* Токи относятся к проводам и кабелям как с нулевой жилой, так и без нее.

Таблица 1.3.7. Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

Ток, А, для кабелей

Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по табл. 1.3.7, как для трехжильных кабелей, но с коэффициентом 0,92.

Таблица 1.3.8. Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами

Сечение токопроводящей жилы, мм2

Ток *, А, для шнуров, проводов и кабелей

* Токи относятся к шнурам, проводам и кабелям с нулевой жилой и без нее.

Таблица 1.3.9. Допустимый длительный ток для переносных шланговых с медными жилами с резиновой изоляцией кабелей для торфопредприятий

Сечение токопроводящей жилы, мм 2

Ток *, А, для кабелей напряжением, кВ

* Токи относятся к кабелям с нулевой жилой и без нее.

Таблица 1.3.10. Допустимый длительный ток для шланговых с медными жилами с резиновой изоляцией кабелей для передвижных электроприемников

Сечение токопроводящей жилы, мм 2

Ток *, А, для кабелей напряжением, кВ

Сечение токопроводящей жилы, мм 2

Ток *, А, для кабелей напряжением, кВ

* Токи относятся к кабелям с нулевой жилой и без нее.

Таблица 1.3.11. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией для электрифицированного транспорта 1,3 и 4 кВ

Сечение токопроводящей жилы, мм 2 Ток, А Сечение токопроводящей жилы, мм 2 Ток, А Сечение токопроводящей жилы, мм 2 Ток, А
1 20 16 115 120 390
1,5 25 25 150 150 445
2,5 40 35 185 185 505
4 50 50 230 240 590
6 65 70 285 300 670
10 90 95 340 350 745
Читайте также:  Ток утечки для ауди 80

Таблица 1.3.12. Снижающий коэффициент для проводов и кабелей, прокладываемых в коробах

Количество проложенных проводов и кабелей

Снижающий коэффициент для проводов, питающих группы электро приемников и отдельные приемники с коэффициентом использования более 0,7

Источник

ПУЭ 7. Правила устройства электроустановок. Издание 7

Раздел 1. Общие правила

Глава 1.3. Выбор проводников по нагреву, экономической плотности тока и по условиям короны

Допустимые длительные токи для проводов, шнуров и кабелей с резиновой или пластмассовой изоляцией

1.3.10. Допустимые длительные токи для проводов с резиновой или поливинилхлоридной изоляцией, шнуров с резиновой изоляцией и кабелей с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках приведены в табл. 1.3.4-1.3.11. Они приняты для температур: жил + 65, окружающего воздуха + 25 и земли + 15°С. ¶

При определении количества проводов, прокладываемых в одной трубе (или жил многожильного проводника), нулевой рабочий проводник четырехпроводной системы трехфазного тока, а также заземляющие и нулевые защитные проводники в расчет не принимаются. ¶

Данные, содержащиеся в табл. 1.3.4 и 1.3.5, следует применять независимо от количества труб и места их прокладки (в воздухе, перекрытиях, фундаментах). ¶

Допустимые длительные токи для проводов и кабелей, проложенных в коробах, а также в лотках пучками, должны приниматься: для проводов — по табл. 1.3.4 и 1.3.5 как для проводов, проложенных в трубах, для кабелей — по табл. 1.3.6-1.3.8 как для кабелей, проложенных в воздухе. При количестве одновременно нагруженных проводов более четырех, проложенных в трубах, коробах, а также в лотках пучками, токи для проводов должны приниматься по табл. 1.3.4 и 1.3.5 как для проводов, проложенных открыто (в воздухе), с введением снижающих коэффициентов 0,68 для 5 и 6; 0,63 для 7-9 и 0,6 для 10-12 проводников. ¶

Для проводов вторичных цепей снижающие коэффициенты не вводятся. ¶

Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами

Источник

Выбор сечения кабеля по току – таблица ПУЭ, расчеты и нюансы

Выбор сечения кабеля по току

Провода и кабели

В Правилах управления электроустановок четко расписано, сколько тока должна суммарно потреблять городская квартира, а, значит, кабель какого сечения должен быть в ней использован. Его параметры: площадь сечения 2,5 мм², диаметр 1,8 мм, токовая нагрузка 16 А. Конечно, увеличение количества бытовых приборов изменяет эти показатели, поэтому совет – использовать медный кабель площадью 4 мм², диаметром 2,26 мм, который будет выдерживать токовую нагрузку в 25 А.

Выбор сечения кабеля

Для частного дома эти эксплуатационные показатели также приемлемы. Но необходимо учитывать тот момент, что в квартире или доме электрическая схема разбивается на контуры (шлейфы), которые будут подвергаться различным нагрузкам в зависимости от мощности потребителя. Поэтому придется производить выбор сечения кабеля по току (таблица ПУЭ в данном случае хороший помощник).

Расчет сечения провода

Начнем не с таблицы, а с расчета. То есть, каждый человек, не имея под рукой интернет, где в свободном доступе ПУЭ с таблицами имеется, может самостоятельно провести расчет сечения кабеля по току. Для этого потребуется штангенциркуль и формула.

Если рассмотреть сечение кабеля, то это круг с определенным диаметром. Существует формула площади круга:

S= 3,14*D²/4, где 3,14 – это Архимедово число, «D» – диаметр измеренной жилы. Формулу можно упростить: S=0,785*D².

Формула расчета сечения кабеля

Если провод состоит из нескольких жил, то замеряется диаметр каждой, вычисляется площадь, затем все показатели суммируются. А как вычислить сечение кабеля, если каждая его жила состоит из нескольких тоненьких проводков? Процесс немного усложняется, но не сильно. Для этого придется подсчитать количество проводков в одной жиле, измерить диаметр одного проводка, вычислить его площадь по описанной формуле и умножить данный показатель на количество проводков. Это и будет сечение одной жилы. Теперь необходимо это значение умножить на количество жил.

Если нет желания считать проводки и измерять их размеры, надо просто замерить диаметр одной жилы, состоящий из нескольких проводов. Снимать размеры надо аккуратно, чтобы не смять жилу. Обратите внимание, что этот диаметр не является точным, потому что между проводками остается пространство. Поэтому полученную величину надо умножить на снижающий коэффициент – 0,91.

Соотношение тока и сечения

Чтобы понять, как работает электрический кабель, необходимо вспомнить обычную водопроводную трубу. Чем больше ее диаметр, тем больше воды через нее будет проходить. То же самое и с проводами. Чем больше их площадь, тем большей силы ток, через них пройдет. При этом кабель не будет перегреваться, что является самым важным требованием правил пожарной безопасности.

Поэтому связка сечение – ток является основным критерием, который используется в подборе электрических проводов в разводке. Поэтому вам необходимо сначала разобраться, сколько бытовых приборов и какой общей мощности будет подключены к каждому шлейфу. К примеру, на кухне обязательно устанавливается холодильник, микроволновка, кофемолка и кофеварка, электрочайник иногда посудомоечная машина. То есть, все эти прибору могут в один момент быть включены одновременно. Поэтому в расчетах и используется суммарная мощность помещения.

Мощность некоторых приборов

Узнать потребляемую мощность каждого прибора можно из паспорта изделия или на бирке. Для примера обозначим некоторые из них:

  • Чайник – 1-2 кВт.
  • Микроволновка и мясорубка 1,5-2,2 кВт.
  • Кофемолка и кофеварка – 0,5-1,5 кВт.
  • Холодильник 0,8 кВт.

Узнав мощность, которая будет действовать на проводку, можно подобрать ее сечение из таблицы. Не будем рассматривать все показатели данной таблицы, покажем те, которые преобладают в быту.

  • Сила тока 16 А, сечение кабеля 2,7 мм², диаметр провода 1,87 мм.
  • 25 А – 4,2 – 2,32.
  • 32 А – 5,3 – 2.6.
  • 40 А – 6,7 – 2,92.

Сечение провода для электроприборов

Но тут есть нюансы. К примеру, вам необходимо подключить стиральную машину. Специалисты рекомендуют к таким мощным приборам из распределительного щита проводить отдельный контур, запитав его на отдельный автомат. Так вот потребляемая мощность стиральной машины – 4 кВт, а это ток силой 18 А. В таблице ПУЭ этого показателя нет, поэтому необходимо доводить его до ближайшего большего, а это 20 А, к которому подходит контур сечением 3,3 мм² диаметром 2,05 мм. Опять-таки, провода с таким значением нет, значит, доводим и его до ближайшего большего. Это 4 мм². Кстати, таблица стандартных размеров электрических проводов также есть в интернете в свободном доступе.

Внимание! Если под рукой не оказалось кабеля нужного сечения, то можно его заменить двумя, тремя и так далее проводами меньшей площади, которые соединяются параллельно. При этом суммарное их сечение должно совпадать с сечением номинала. К примеру, чтобы заменить кабель сечением 10 мм², можно вместо него использовать или два провода по 5 мм², или три по 2, 3 и 5 мм², или четыре: два по 2 и два по 3.

Трехфазное подключение

Трехфазная сеть – это три провода, по которым и движется ток. Соответственно нагрузка прибора, подключенного на три фазы, уменьшается в три раза на каждой фазе. Поэтому для каждой фазы можно использовать кабель меньшего сечения. Здесь тоже соотношение – в три раза. То есть, если сечение кабеля в однофазной сети равно 4 мм², то для трехфазной можно брать 4/1,75=2,3 мм². Переводим в стандартный больший размер по таблице ПУЭ – 2,5 мм².

Читайте также:  Мост постоянного тока для трансформатора

Алюминиевый провод

В достаточно большом количестве домов и квартир еще присутствует электрическая разводка алюминиевым кабелем. Ничего плохого о нем сказать нельзя. Алюминиевый кабель прекрасно служит, и как показала жизнь, срок его эксплуатации практически ничем не ограничен. Конечно, если правильно подобрать его по току и грамотно провести соединение.

Так же как и в случае с медным кабелем, проведем сравнение алюминиевого по сечению, силе тока и мощности. Опять-таки, не будем рассматривать все, возьмем только ходовые параметры.

Алюминиевый провод

  • Кабель сечением 2,5 мм² выдерживает силу тока, равную 16 А, и мощность потребителя 3,5 кВт.
  • 4 мм² – 21 А – 4,6 кВт.
  • 6 – 26 – 5,7.
  • 10 – 38 – 8,4.

Выбор провода

Делать внутреннюю разводку лучше всего из медных проводов. Хотя алюминиевые им не уступят. Но тут есть один нюанс, который связан с правильно проведенном соединении участков в распределительной коробке. Как показывает практика, места соединений часто выходят из строя из-за окисления алюминиевого провода.

Еще один вопрос, какой провод выбрать: одножильный или многожильный? Одножильный имеет лучшую проводимость тока, поэтому именно его рекомендуют к применению в бытовой электрической разводке. Многожильный имеет высокую гибкость, что позволяет его сгибать в одном месте по несколько раз без ущерба качеству.

Выбор кабеля по маркам. Тут оптимальный вариант – кабель ВВГ. Это медные провода с двойной пластиковой изоляцией. Если вам встретится марка «NYM», то считайте, что это все тот же ВВГ, только зарубежного исполнения.

Одножильный и многожильный кабель

Одножильный и многожильный кабель

Внимание! Использовать сегодня провода марки ПУНП запрещено. Для этого есть постановление Главгосэнергонадзора, которое действует аж с 1990 года.

Заключение по теме

Как видите, провести выбор сечения кабеля по силе тока, действующего в потребительской сети, не очень сложно. Практически нет необходимости заниматься какими-то сложными математическими манипуляциями. Для удобства всегда можно воспользоваться таблицами из правил ПУЭ. Главное – правильно подсчитать общую мощность всех потребителей, установленных на одном электрическом контуре.

Источник

Выбираем сечение кабеля по току с помощью таблиц ПУЭ и ГОСТ, особенности расчетов

Используя таблицу ПУЭ можно правильно выбрать сечение кабеля по току. Так, например если кабель будет меньшего сечения, то это может привести к преждевременному выходу из строя всей системы проводки или порче включённого оборудования. Так же неправильный выбор толщины кабеля может стать причиной пожара, который произойдёт из-за плавления изоляции провода при его перегреве из-за высокой мощности.

При обратном процессе, когда толщина кабеля будет взята со значительным запасом по мощности, может произойти лишняя трата денег для приобретения более дорогостоящего провода.

Как показывает практика, в большинстве случаев выбирать сечение кабеля по току следует исходя из показателя его плотности.

Таблицы ПУЭ и ГОСТ

 ПУЭ, Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами

ПУЭ, Таблица 1.3.5. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

ПУЭ, Таблица 1.3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных

ПУЭ, Таблица 1.3.7. Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

ПУЭ, Таблица 1.3.8. Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами

ГОСТ 16442-80, Таблица 23. Допустимые токовые нагрузки кабелей до 3КВ включ. с медными жилами с изоляцией из полиэтилена и поливинилхлоридного пластиката, А*

ГОСТ 16442-80, Таблица 24. Допустимые токовые нагрузки кабелей до 3КВ включ. с алюминиевыми жилами с изоляцией из полиэтилена и поливинилхлоридного пластиката, А*

Плотность тока

При проведении выбора сечения провода необходимо знать некоторые показатели. Так, например величина плотности тока в таком материале как медь составляет от 6 до 10 А/мм2. Такой показатель является результатом многолетних наработок специалистов и принимается исходя из основных правил регламентирующих устройство электрических установок.

В первом случае при плотности в шесть единиц предусмотрена работа электрической сети в длительном рабочем режиме. Если же показатель составляет десять единиц, то следует понимать, что работа сети возможна не длительное время во время периодических коротких включений.

Поэтому производить выбор толщины необходимо именно по данному допустимому показателю.

Приведенные выше данные соответствуют медному кабелю. Во многих электрических сетях до сих пор применяются и алюминиевые провода. При этом медный кабель в сравнении с последним типом провода имеет свои неоспоримые преимущества.

К таковым можно отнести следующее:

  1. Медный кабель обладает намного большей мягкостью и в тоже время показатель его прочности выше.
  2. Изделия, изготовленные из меди более длительное время не подвержены процессам окисления.
  3. Пожалуй, самым главным показателем медного кабеля есть его более высокая степень проводимости, а значит и лучший показатель по плотности тока и мощности.

К самому главному недостатку такого кабеля можно отнести более высокую цену на него.

Показатель плотности тока для алюминиевого провода находится в диапазоне от четырёх до шести А/мм2. Поэтому его можно применять в менее ответственных сооружениях. Так же данный тип проводки активно применялся в прошлом веке при строительстве жилых домов.

Проведение расчетов сечения по току

При расчете рабочего показателя толщины кабеля, необходимо знать какой ток будет протекать по сети данного помещения. Например, в самой обычной квартире необходимо суммировать мощность всех электрических приборов, которые подключаются к сети.

В качестве примера для расчета можно привести стандартную таблицу потребляемой мощности основными бытовыми приборами, использующимися в обычной квартире.

Стандартная таблица потребляемой мощности основными бытовыми приборами

Исходя и суммарной мощности, производится расчет тока, который будет течь по кабелям сети.

В этой формуле Р означает общую мощность, измеряемую в Ваттах, К1 – коэффициент, который определяет одновременную работу всех бытовых приборов (его величина обычно равняется 0,75) и U – напряжение в домашней сети равное обычно 220 Вольтам.

Читайте также:  Физика что такое источник тока тест

Данный показатель расчета тока поможет сделать оценку нужного сечения для общей сети. При этом необходимо так же учитывать и рабочую плотность тока.

Такой расчет можно принимать как приблизительный выбор. При этом более точные показатели могут быть получены с использованием выбора из специальной таблицы ПУЭ. Такая таблица ПУЭ является элементом специальных правил устройства электрических установок.

Ниже приведен пример таблицы ПУЭ, по которой возможно производить выбор сечения.

Таблица ПУЭ

Как видно такая таблица ПУЭ кроме зависимости сечений от показателя по току ещё предусматривает и учёт материала, из которого изготавливаются провода, а так же и его расположение. Кроме этого в таблице регламентируется количество жил и величина напряжения, которая может быть как 220, так и 380 Вольт.

Расчет по току с применением дополнительных параметров

При расчете сечения на основе тока с использованием таблицы ПУЭ можно пользоваться и дополнительными параметрами.

Например, есть возможность учитывать диаметр жилы. Поэтому при определении сечения жилы применяют специальное оборудование под названием микрометр. На основе его данных определяется толщина каждой жилы. Потом с использованием значений ранее полученных токов и специальной таблицы производится окончательный выбор величины сечения жилы провода.

Если же кабель состоит из нескольких жил, то следует произвести замер одной из них и посчитать её сечение. После этого для нахождения окончательного значения толщины, показатель, полученный для одной жилы, умножается на их количество в проводе.

Полученное таким образом с использованием расчетов и таблицы ПУЭ значение сечения кабеля позволит создать в доме или квартире проводку, которая будет служить хозяевам на протяжении довольно долгого периода времени без возникновения аварийных или внештатных ситуаций.

Источник

Выбор сечения кабеля

Время на чтение:

Диаметр кабеля по току определяется через величину допустимого нагрева, учитывая нормальный и аварийный режимы эксплуатации электроустановки, а также неравномерное распределение токов на линиях. Более подробно о ПУЭ сечение кабеля по току, критериях выбора геометрических характеристик проводника и показателях длительного предельного электротока провода рассказывается ниже.

Критерии выбора

Существует несколько основных принципов, по которым подбирается площадь поперечного среза кабеля, что помогает обеспечить подачу электроэнергии потребителям. В список основных критериев входят такие свойства, как нормативный показатель расчетного тока на линиях по соответствующей таблице, способ прокладки, проводниковый материал и температурные условия при эксплуатации установок.

Сечение кабеля

Среди второстепенных критериев, помогающих подобрать оптимальное сечение кабеля, можно выделить следующие свойства и требования:

  • Допустимый габарит сечения, определяемый для токовой проходимости без перегрева металлического сердечника;
  • Исключение опасности падения электронапряжения провода с подобранным диаметром ниже нормативных значений;
  • Соблюдение механической прочности и надежности кабеля посредством выбора минимальной площади сечения и качества материала изоляционного слоя. Соблюдая это требование, можно поддерживать оптимальный показатель мощности и обеспечить безопасность электрификации.

Обратите внимание! Допустимое значение нагрева проводника – 60 градусов, и данного показателя необходимо придерживаться, чтобы предотвратить преждевременный износ изоляции, для чего требуется применять только провода с достаточным для прохождения тока сечениями. При перегреве провода гарантировать надежность контакта в местах присоединения к электрическим приборам невозможно, из-за чего возникает опасность возникновения аварийных ситуаций, например, выгорания проводки, после которой придётся править всю ЭЦ.

Таким образом, для того, чтобы выбрать оптимальный диаметр проводника по току, необходимо иметь навыки и опыт в корректном использовании нормативной информации, о предельных токовых нагрузках.

Какой длительно допустимый электроток проводника в соответствии с Правилами Устройства Электроустановок

Для надёжности и безопасности эксплуатации электроустановок к их монтажу предъявляются высокие требования. Любой профессионал знает, что все работы по кабельной прокладке, выбору проводников по длительно допустимому току и сбору цепей, должны быть строго регламентированы правилами устройства электроустановок, сокращённо – ПУЭ.

Предельный длительно допустимый электроток проводника в поливинилхлоридной или резиновой оболочке в соответствии с таблицей ПУЭ равен 11–830 ампер, на что пропорционально влияет габарит сечения сердечника. Предельная величина длительного тока у проводника, проложенного в кабельном канале при однорядном расположении (без наложений элементов друг на друга), следует определять, как для проводящих элементов цепи, которые проложены открыто.

Длительный электроток в коробе необходимо считать с применением понижающих коэффициентов, как для одиночных проводников, которые проложены открыто. Выбирая понижающие коэффициенты, контрольные и резервные провода считать нецелесообразно.

Предельно допустимый токовый показатель

Что представляют собой таблицы Правил Устройства Электроустановок

Показатели, отображённые в таблице, относятся к устройствам с обеспечением нулевого потенциала как через заземляющую жилу, так и без нее. Диаметры приняты из расчета предельного нагрева сердечников до 60 градусов. Определяя количество проводов, которые прокладываются в одной трубе или в едином лотке, следует учесть, что заземляющий или нулевой рабочие проводники не рассчитываются.

Электротоковые нагрузки на провода, проложенные в лотках, должны быть такими же, как и для проводящих элементов цепи, проложенных в открытом исполнении, то есть, по воздуху.

Если в трубах, лотках или коробах показатель нагрузки единый, так как все элементы связаны единой цепью, то диаметр проводника следует подбирать по аналогичному с открытой прокладкой алгоритму. Однако, здесь необходимо вводить специальные коэффициенты, обеспечивающие запасы численных показателей в зависимости от геометрических характеристик и количества жил: 0,68 при 5–6 проводниках, 0,63 при 7–9 проводниковых элементах или 0,6 при 10–12 кабелях в едином лотке или канале.

Обратите внимание! Чтобы правильно рассчитать сечение и облегчить выбор проводников, отталкиваясь от показателя длительно допустимого тока и добавочных условий, следует использовать специальную онлайн-форму расчета. Токовые значения для малых диаметров проводников из меди, представленные в таблице, получены по правилам экстраполяции, и их всегда можно откорректировать.

Таблица токовых нагрузок к сечению медных кабелей

В целом, кабельный диаметр принимается по току, в зависимости от достаточной площади сердечника, падения напряжения и площади поперечного среза металлического сердечника кабеля. Это необходимо для максимального обеспечения механической прочности и общей надежности проводки. Допустимый кабельный ток по ПУЭ равен от 11 до 645 ампер.

Источник

Поделиться с друзьями
Блог электрика
Adblock
detector