Меню

Светодиодная лампа постоянного тока или переменного тока



Освещение на постоянном токе — «хорошо забытое старое»?

Известный экспериментатор и предприниматель Томас Эдисон в XIX веке предложил систему электроснабжения на постоянном токе. К началу XX века на смену ей пришли электрические сети на переменном токе, которые предложили Никола Тесла и Джордж Вестингауз. Переменный ток повсеместно вытеснил постоянный, но, как известно, наука и техника развиваются по спирали. И уже в XXI веке предлагается делать в офисах и производственных цехах отдельную проводку для светодиодного освещения, по которой потечет постоянный ток.

Главная причина, по которой постоянный ток не выдержал конкуренции — малая дальность передачи электроэнергии. Из-за невозможности использования трансформаторов напряжение в линии электропередачи приблизительно соответствовало напряжению в розетке. Применительно к реалиям США конца XIX века — это напряжение было около 110 В. В итоге электростанция не могла размещаться далее 1,5 км от потребителя. Это было значительным недостатком в XX веке, но сейчас ситуация изменилась.

Для выработки электроэнергии все чаще используются альтернативные источники: солнце, ветер и некоторые другие. Общей особенностью таких источников является нестабильность количества вырабатываемой энергии в данный момент, что требует использовать аккумуляторы. Кроме этого, сейчас предлагается и такое решение — накапливать электроэнергию, получаемую из сети, в аккумуляторах в те промежутки времени суток, когда она стоит дешево, а потом отдавать ее в часы, когда тарифы высокие.

Для накопления энергии повсеместно применяются аккумуляторы, использующие преобразование электрической энергии в химическую и обратно. Эти аккумуляторы дают постоянный ток. При этом многие приборы, потребляющие электроэнергию, изначально устроены таким образом, что питаются от постоянного тока (например, компьютеры), а чтобы они могли питаться от переменного тока, приходится добавлять в конструкцию дополнительно блоки питания. Тогда зачем нужны преобразования постоянного тока в переменный и обратно, если можно непосредственно с аккумулятора подавать постоянный ток потребителю? Значительно упростится конструкция многих устройств, подключаемых к электросети, а также централизованную систему бесперебойного питания. К тому же, не будет потерь в проводке, связанных с излучением электромагнитного поля проводником, через который проходит переменный ток. Исходя из этого, в тех случаях, когда внутренняя сеть использует альтернативные источники энергии, а также систему бесперебойного питания, в ней предпочтительно передавать постоянный ток.

Но не все так просто, как может показаться. Огромное количество приборов изначально спроектировано на питание переменным током и на постоянный ток их так просто не переделать. В первую очередь, речь идет об устройствах, в которых установлены моторы. Но даже электрочайник, рассчитанный на переменный ток, нельзя питать от постоянного, хотя там, казалось бы, только резистивная нагрузка. При размыкании контактов в цепи переменного тока гашение дуги происходит быстрее, чем в цепи постоянного. Термореле, которое размыкает цепь при кипении, рассчитано на переменный ток и большая длительность дуги на постоянном токе выведет его из строя.

Производить технику широкого применения под новый стандарт питания постоянным током слишком расточительно, если учесть, что доля альтернативных источников в общем объеме производимой в мире электроэнергии пока не превышает 3%. Поэтому на момент написания статьи основной отраслью, где наблюдается массовый переход на внутренние электрические сети постоянного тока, являются гигантские центры обработки данных. В них сервера питаются от постоянного напряжения 380 В. Данное значение напряжения позволяет использовать серийно выпускаемые кабели для 230 В переменного тока [1]. Тем не менее, электропитание ЦОД — довольно узкий сегмент рынка.

Другим применением внутренних сетей на постоянном токе, которое, по прогнозам ряда авторитетных ученых действительно может стать массовым, является освещение. Естественно, светодиодное, так как светодиод по своему принципу работы может питаться только от постоянного тока. Необходимость преобразования переменного тока в постоянный является одной из причин, почему светодиодные светильники до сих пор стоят значительно дороже аналогов с традиционными источниками света.

Существующие примеры питания ламп от постоянного тока

Накопленный светотехникой опыт еще с первых ламп Томаса Эдисона показывает, что питание традиционных источников света от постоянного тока не меняет их технические характеристики или же ведет к ухудшению параметров. В то же время, питание ламп на основе светодиодов постоянным током улучшает качество их работы.

Существует множество легенд, согласно которым при питании лампы накаливания от постоянного тока, она служит дольше. Или, наоборот, питание от переменного тока продлевает срок службы лампы по сравнению с постоянным. Но, на самом деле, питание лампы накаливания что от постоянного тока, что от переменного тока частотой 50 или 60 Гц, не влияет само по себе на срок службы.

При питании люминесцентных ламп от постоянного тока возникает так называемый «трамвайный эффект», выражающийся в потемнении в процессе эксплуатации одного из концов трубки. Даже если лампа закрыта молочным рассеивателем, такой работающий светильник выглядит некрасиво. С этим эффектом борются, периодически вынимая лампу из светильника и вставляя обратно ее с другой полярностью. Название «трамвайный эффект» связано с тем, что его впервые обнаружили при переводе освещения в салонах трамваев с ламп накаливания на люминесцентные. Электрооборудование трамвая работает от постоянного тока, соответственно, от постоянного тока решили питать и лампы, освещающие салон. В современных транспортных средствах используются люминесцентные лампы, питающиеся через ЭПРА переменным током с частотой порядка единиц или десятков кГц.

Светодиодные лампы-ретрофиты типоразмера MR16 выпускаются с питанием от напряжения 12 В. Данные лампы поддерживают питание какпеременным, таки постоянным током. Каждая модель лампы совместима с трансформаторами для галогенных ламп из определенного списка. При замене галогенных ламп MR16 совместимость светодиодных ламп, подходящих по светотехническим параметрам и цене, с уже установленными трансформаторами, зачастую отсутствует. Поэтому вместо трансформатора устанавливают блок питания, дающий напряжение 12 В постоянного тока. Так же рекомендуется поступать и в случае, когда изначально устанавливаются светодиодные лампы MR16. Практика показывает, что питание светодиодных ламп MR16 от постоянного тока обеспечивает более стабильную работу и более высокий КПД по сравнению с питанием от переменного тока. Питание от постоянного тока позволяет также полностью избавиться от пульсаций светового потока.

Снижение потерь в системе электроснабжения

Структурные схемы организации электропитания светодиодных светильников на переменном и постоянном токе в типичном офисном здании показаны на рис. 1.

Как видно на рисунке, в системе на переменном токе потери в проводах составляют 3%, а на постоянном — всего 1%, что обусловлено законами физики. Снижение потерь в блоке питания с 5% до 2% связано скорее с экономическими факторами, так как на группу светильников уже выгодно использовать более дорогой блок питания с повышенным КПД. Итого за счет перехода с переменного тока на постоянный теоретически можно получить снижение потерь на 5%.

Профессор Эбберхард Ваффеншмидт из Кельнского университета прикладных исследований совместно с Philips Research создали систему электроснабжения, питающую 54 светодиодных ламп мощностью 37 Вт каждая от солнечной батареи, а при отсутствии в достаточном количестве солнечного света — брать электроэнергию из распределительной сети [1]. Система работала на постоянном токе 380 В.

Испытания показали, что снижение энергопотребления по сравнению с аналогичной системой энергоснабжения составило всего 2,24%. По мнению автора данной статьи, столь скромный результат был достигнут во многом потому, что использовались лампы для переменного тока, драйвера которых были доработаны для питания от постоянного тока, а не лампы, изначально спроектированные под постоянный ток. Но даже у такой системы есть как минимум два преимущества. Во-первых, это очередная возможность сделать себе PR компании, заботящейся об экологии, так как мысль о том, что использование постоянного тока в электрических сетях позволяет экономить энергию, уже проникла в умы продвинутых экологических активистов [2]. Во-вторых, при питании постоянным током значительно упрощается конструкция как питающей подстанции, так и светодиодных светильников.

Упрощение конструкции оборудования

Постоянный ток, поступающий от солнечных батарей и аккумуляторов, должен быть приведен к напряжению нужной величины (этим занимаются так называемые DC — DC преобразователи), а затем преобразован в переменный. Преобразование в переменный ток выполняется, так называемыми, инверторами. В отличие от бытовых инверторов (например, в индивидуальных ИБП для настольных компьютеров), дающих лишь приближение к синусоидальному напряжению, профессиональные модели, обслуживающие целое здание или даже комплекс строений, должны давать «чистую» синусоиду, иначе возникнут проблемы с электромагнитной совместимостью оборудования и много других проблем. Соответственно, профессиональные инверторы — дорогостоящие агрегаты, исключение которых из схемы энергоснабжения при использовании постоянного тока позволит снизить общую стоимость системы, а заодно и повысить энергоэффективность за счет удаления как минимум одной ступени преобразования. Например, профессиональный инвертор, способный длительное время выдерживать нагрузку до 12 кВт стоит порядка 100 000 руб. (здесь и далее цены приводятся по состоянию на сентябрь 2015 г.) На самом деле, при переходе на постоянный ток удаляется и другая ступень преобразования, а, именно, выпрямитель в светодиодном светильнике.

В том случае, если светодиодный светильник работает в помещении, где постоянно находятся люди, тем более, где они выполняют работу, требующую сколь-нибудь значительного зрительного напряжения, надо не только выпрямить переменный ток, но и сгладить пульсации. Для этого используются электролитические конденсаторы большой емкости — дорогостоящие и при этом весьма капризные устройства. Как правило, основной причиной выхода из строя светильников является преждевременный отказ драйвера, который происходит, когда светодиоды еще не полностью выработали свой ресурс.

Зачастую этот отказ связан со сглаживающими конденсаторами. Причем электролитические конденсаторы имеют неприятную особенность деградировать от времени, даже если светильник не работает, а лежит на складе.

Встраиваемый светодиодный светильник для потолков типа «Армстронг» можно в среднем купить по цене от 1200 руб. (совсем дешевые низкокачественные модели рассматривать не будем) Причем в модели за 1200 руб. вполне могут использоваться «фирменные» светодиоды, такие же, как и в более дорогих моделях. Разница между дешевыми и дорогими светильниками заключается главным образом в уровне пульсации и надежности драйвера. При питании от постоянного тока конструкция драйвера становится более простой и надежной, в ней не присутствуют сглаживающие конденсаторы. Поэтому светильник за 1200 руб. будет работать практически так же хорошо, как и за 2200 руб. (столько стоит светильник с надежным драйвером без пульсации от известного российского бренда) Мало того, за счет уменьшения числа деталей вполне реально дополнительно снизить цену на качественный светильник.

Читайте также:  От чего зависит водный ток в растении

В итоге, переход на постоянный ток позволит снизить цены на светодиодные светильники примерно в 2 раза и добиться срока службы всего светильника, равного сроку службы установленных в нем светодиодов, то есть 50 000 ч. Весьма значительный выигрыш!

Технология РоЕ

Тем не менее, прокладывать отдельную проводку для питания светодиодных светильников выгодно лишь тогда, когда здание строится заново, либо в нем проводится капитальный ремонт. Избежать необходимости прокладывать отдельную проводку можно, используя технологию питания через Ethernet (англ. Power over Ethernet, сокращенно РоЕ).

По кабелям локальных компьютерных сетей Ethernet передается не только цифровая информация, но и электропитание для сетевых устройств. Напряжение питания 48 В постоянного тока. В сетях Ethernet Cat5 и выше используется стандарт РоЕ plus (IEEE 802.3at-2009), допускающий подключать к сети нагрузку мощностью до 25,5 Вт на одно устройство. На самом деле, по кабелю Ethernet физически можно передавать питание с мощностью до 60 Вт, но так как это не соответствует нормам IEEE802.3at-2009, возможны проблемы с совместимостью.

Технологию РоЕ можно использовать для питания светодиодных светильников постоянным током в офисных зданиях. Главная проблема заключается в том, что для типичного офисного светильника, устанавливаемого в потолки типа «Армстронг», световой поток должен быть не менее 3000 лм, значит, чтобы светильник без проблем подключался к стандартной компьютерной сети, его полная светоотдача должна быть не менее 120 лм/Вт.

Пока столь высокая светоотдача всего устройства возможна лишь для дорогих светильников, ценой более 3000 руб. Поэтому выигрыш можно получить лишь в «умных» системах управления освещением, когда к каждому светильнику и так подходят провода компьютерной сети и не нужно тратиться на прокладку кабелей электропитания. Именно такой принцип реализован в светильнике компании Philips «Световые решения» с питанием по технологии РоЕ, представленном в 2014 году.

Выбор напряжения для питания светильников постоянным током

Чем ниже напряжение, тем, при равной толщине проводов, выше потери при передаче электроэнергии. Это наглядно показано на диаграмме рис. 2.

Как видно из диаграммы, наиболее перспективным является использование для питания светодиодного освещения 380 В постоянного тока. Помимо меньших потерь, обеспечивается совместимость с электрооборудованием крупных ЦОД. Возможность принятия данного стандарта зависит и от того, насколько стандарт электропитания, изначально разработанный для ЦОД, приживется для серверов, устанавливаемых в офисах. Если для офисных серверов будут предусматривать отдельную электропроводку, ничто не мешает питать от нее еще и светильники. Единственная проблема — пока что светодиодные светильники на 380 В постоянного тока серийно не производятся.

Другой сценарий развития событий, который автор данной статьи считает вполне реалистичным, предусматривает создания стандарта электропитания «де-факто», как произошло с интерфейсом USB, который теперь чаще используется для зарядки и питания мобильных устройств, нежели для передачи данных. Точно так же стандартом для питания светодиодных светильников де-факто может стать напряжение 48 В постоянного тока, так как оно используется в технологии РоЕ plus. Недостатками являются необходимость использования дорогостоящих проводов с низким сопротивлением, а также невысокая дальность передачи электроэнергии — не более 100 м от питающей подстанции. Но развитие систем «умного» освещения делает указанные недостатки менее значимыми.

Литература:

  1. Waffenschmidt Е. Direct Current (DC) Supply Grids for LED Lighting // LED Professional N48, Mar/Apr 2015.
  2. Sinopoli J. Using DC power to save energy — and end the waroncurrents // http://www.greenbiz.com/news/2012/11/15/using-dc-power-save-energy-end-war-currents.

Источник: Алексей Васильев, материал опубликован в журнале «Электротехнический рынок», №№5-6 (65-66), 2015

Источник

Напряжение светодиодных ламп

Мы привыкли, что лампы накаливания работают от сети с переменным напряжением 220 вольт. Есть, конечно, и другие лампы накаливания, работающие от меньшего напряжения, но и свечение там тоже намного меньше. Здесь можно наблюдать зависимость — чем меньше напряжение светодиодного освещения, тем меньше света получаем от лампы. Но светодиодные лампы работают совсем по-другому. Для светодиода неважно напряжение, сила свечения зависит только от тока, проходящего через диод. В этой статье мы рассмотрим на каком напряжении могут работать светодиодные лампы, а также затронем ток светодиодных ламп.

Напряжение светодиодных ламп

Я думаю что большинство людей давно закончивших школу и не имеющих дела с электричеством еще тогда забыли чем принципиально отличается ток от напряжения. А это желательно понимать.

Во многих книгах для пояснения разницы между током и напряжением проводится аналогия с водопроводной трубой. Но мне не очень нравится это сравнение. Любой предмет, брошенный из определенной высоты будет падать и в определенный момент достигнет поверхности земли. Его притягивает гравитация. Так вот напряжение — это сила, которая заставляет двигаться ток, как и гравитация притягивает предметы. А вот сила тока, если продолжить аналогию, это размер предмета, чем больше, тем сильнее ударит. Гравитация, как и напряжение не убьет если не будет предмета (тока).

А теперь вернемся к светодиодным лампам. Один светодиод или светодиодный чип, это вид полупроводника, который может пропускать ток только в одном направлении. Светодиоды могут работать от напряжения 4-12 Вольт. И даже больше, светодиодам нужно постоянное напряжение для нормальной работы. Но в стандартной электрической сети совсем другие условия.

В светодиодных лампах несколько светодиодов объединяются последовательно в один массив, и все они получают ток светодиодной лампы от общего блока питания. У многих светодиодных ламп, работающих от напряжения сети внутри есть специальное устройство, драйвер, который включает выпрямитель для преобразования переменного тока в постоянный, трансформатор, чтобы снизить очень высокое входящее напряжение, а также, возможно, стабилизационный компонент, чтобы уменьшить колебания тока.

Большинство современных светодиодных ламп, которые предназначены для домашнего использования и промышленности предназначены для напряжения питания 110-220 Вольт. Это достигается путем объединения нескольких чипов, как сказано выше. За остальное понижение напряжения и получение постоянного тока отвечает драйвер, встроенный в каждую лампу.

Но если у такой лампочки нет встроенного драйвера, а вы хотите запустить ее от обычной сети, вам потребуется внешнее устройство, которое будет выполнять те же функции, обеспечит нужное напряжение светодиодных ламп и выпрямит ток светодиодной лампы.

Стандартные настенные адаптеры, рассчитанные для другого оборудования, не подойдут, они не спалят светодиоды, но использовать их не рекомендуется. Они могут вызвать мерцание из-за неправильной светодиодной нагрузки, а также сокращают срок службы лампы. Поэтому нужно использовать драйверы, разработанные только для вашего вида ламп.

В последнее время появились светодиоды, работающие от переменного напряжения. Но так как светодиоды пропускают ток только в одну сторону, по своей природе они все равно остались устройствами, работающими на постоянном токе. В них одна честь диода светится при положительном токе, вторая при отрицательном цикле. Таким образом, мы получаем однородное свечение. Но для таких ламп тоже нужен драйвер, если они не приспособлены для работы от 220 вольт.

Ток светодиодных ламп

Яркость свечения светодиодных ламп зависит от тока, который будет проходить через сам диод. Это позволяет очень легко управлять яркостью таких ламп. Здесь подходит тот же принцип регулировки яркости что и для обычных ламп накаливания, изменяем силу тока — изменяется яркость. Но тут возникает одна проблема, в каждой лампе, которая будет работать от сети переменного напряжения встроен драйвер, который будет препятствовать изменению яркости. Поэтому если драйвер не поддерживает такую опцию регулировать яркость нельзя.

Потребление лампой электричества тоже зависит от тока и пропускаемого напряжения. Сила тока, с которой может работать лампа обычно указана на упаковке. Это может быть от 10-100 мА. Если же не указано и вам нужно знать этот параметр, его очень просто рассчитать по формуле:

I=(Р/U)*1000

Здесь I — это сила тока, P — потребляемая мощность и напряжение. Например, лампа на 220 вольт с потребляемой мощностью 12 Ватт будет иметь силу тока 54 мА. Рассчитанная сила тока может быть ниже, чем указанная на упаковке, потому что некоторые производители указывают на упаковке потребляемую мощность не самой лампы, а светодиода. Кроме светодиода, там есть еще резистор и другие компоненты, которым тоже нужно питание.

Выводы

В этой статье мы рассмотрели что такое напряжение светодиодных ламп, а также как влияет сила тока на их работу.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Изучаем устройство светодиодных ламп на 220В

Уже на протяжении многих лет мы применяли обычные лампы накаливания для освещения дома, квартиры, офиса или промышленного предприятия. Однако с каждым днем цены на электроэнергию стремительно растут, что заставляет нас отдавать предпочтение более энергоэффективным устройствам, обладающим высоким КПД, длительным сроком службы и способными создавать необходимый световой поток с минимальными затратами. Именно к таким устройствам относятся светодиодные лампы на 220 вольт, преимущества которых мы постараемся раскрыть в полном объеме в данной статье.

Внимание! В этой публикации приводятся примеры схем, с питанием от опасного для жизни напряжения 220В. Собирать и испытывать такие схемы разрешается только лицам, имеющим необходимое образование и допуски!

Самая простая схема

Светодиодная лампа на 220 В — это одна из разновидностей ламп освещения, световой поток в которой создается за счет преобразования электрической энергии в световой поток с помощью кристалла светодиода. Для работы светодиодов от стационарной бытовой сети 220 В необходимо собрать самую простейшую схему, изображенную ниже на рисунке.

Читайте также:  Lv434210 клеммник питания 24 в пост тока

Схема светодиодной лампы

Схема светодиодной лампы на 220 вольт состоит из источника переменного напряжения 220–240 В, выпрямительного моста для преобразования переменного тока в постоянный, ограничительного конденсатора С1, конденсатора для сглаживания пульсаций С2 и светодиодов, подключаемых последовательно от 1-го до 80 штук.

Принцип работы

При подаче переменного напряжения 220 В переменной частоты (50 Гц) на драйвер светодиодной лампы, оно проходит через токоограничивающий конденсатор С1 на выпрямительный мост, собранный из 4-х диодов.

После этого на выходе моста мы получаем постоянное выпрямленное напряжение, требующееся для работы светодиодов. Однако для получения непрерывного светового потока, в драйвер необходимо добавить электролитический конденсатор C2 для сглаживания пульсаций, возникающих при выпрямлении переменного напряжения.

Глядя на устройство светодиодной лампы на 220 вольт, мы видим, что там присутствуют сопротивления R1 и R2. Резистор R2 служит для разрядки конденсатора для защиты от пробоя при выключенном питании, а R1 — для ограничения тока, подаваемого на светодиодный мост при включении.

Схема с дополнительной защитой

Схема светодиодной лампы2

Также в некоторых схемах есть дополнительное сопротивление R3, расположенное последовательно светодиодам. Оно служит для защиты от бросков тока в цепях светодиодов. Цепочка R3—C2 представляет классический фильтр низкой частоты (НЧ).

Схема с активным ограничителем тока

В этом варианте схемы ограничивающим ток элементом является сопротивление R1. Такая схема будет иметь показатель коэффициента мощности или cos φ близкий к единице, в отличие от предыдущих вариантов с токоограничивающим конденсатором, представляющих из себя реактивную нагрузку. Недостаток такого варианта в необходимости рассеивать значительное количество тепла на резисторе R1.

Схема светодиодной лампы3

Для разрядки остаточного напряжения конденсатора C1 до нуля в схеме применен резистор R2.

Устройство светодиодных ламп для цепей переменного тока напряжением 220В

Устройство светодиодных ламп

Светодиодные лампочки состоят из следующих компонентов:

  1. Цоколя (Е27, Е14, Е40 и так далее) для вкручивания в патрон светильника, бра или люстры;
  2. Диэлектрической прокладки между цоколем и корпусом;
  3. Драйвера, на котором собрана схема для преобразования переменного напряжения в постоянного необходимой величины;
  4. Радиатора, который служит для отвода тепла от светодиодов;
  5. Печатной платы, на которую впаиваются светодиоды (типоразмеров SMD5050, SMD3528 и так далее);
  6. Резисторов (чипы) для защиты светодиодов от пульсирующего тока;
  7. Светорассеивателя для создания равномерного светового потока.

Как подключить светодиодные лампы на 220 вольт

Самая большая хитрость при подключении светодиодных ламп на 220 в, что никакой хитрости нет. Подключение происходит абсолютно точно также, как вы это делали с лампами накаливания или компактными люминесцентными лампами (КЛЛ). Для этого: обесточьте цоколь, а затем вкрутите в него лампу. При установке никогда не касайтесь металлических частей лампы: помните, что иногда нерадивые электрики вместо фазы могут провести через выключатель ноль. В таком случае, фазное напряжение никогда не будет сниматься с цоколя.

Светодиодная лампа

Производители выпустили светодиодные аналоги всех, выпускавшихся ранее типов ламп с самыми разными цоколями: Е27, Е14, GU5.3 и так далее. Принцип установки для них остается такой же.

Цоколь

Если же Вы купили светодиодную лампочку, рассчитанную на 12 или 24 Вольта, тогда Вам не обойтись без блока питания. Подключение источников света производится параллельно: все «плюсы» лампочек вместе к плюсовому выходу блока питания, а все «минусы» вместе — к «минусу» блока питания.

Схема паралельного подключения

В данном случае, важно соблюдать полярность («плюс» — к «плюсу», «минус» — к «минусу»), поскольку светодиоды будут испускать световой поток только в том случае, если соблюдена полярность! Некоторые изделия при переполюсовке могут выйти из строя.

Внимание! Не перепутайте блок питания (источник питания) постоянного напряжения с трансформатором. Трансформатор дает на выходе переменное напряжение, в то время как источник питания — постоянное напряжение.

Например, у вас есть мебельная подсветка на кухне, в гардеробе или в другом месте, составленная из 4-х галогенных ламп мощностью 40 Вт и напряжением 12 В, запитанных от трансформатора. Вы решили заменить эти лампы на светодиодные 4 штуки по 4–5 Вт.

Внимание! В этом случае необходимо заменить используемый ранее трансформатор на источник постоянного напряжения 12 В мощностью не менее 16–20 Вт.

Иногда подобные светодиодные лампы для точечных светильников в большинстве случаев комплектуются блоком питания на заводе-изготовителе. При покупке таких ламп следует одновременно озадачиться и покупкой источника питания.

Как сделать простую светодиодную лампочку

Светодиодная лента

Для того, чтоб собрать светодиодную лампу нам потребуется старая люминесцентная лампа, точнее ее основание с цоколем, длинный кусок 12 В светодиодной ленты,и пустая алюминиевая 330 мл банка

Алюминиевые банки

Для питания такой лампы понадобится источник постоянного напряжение на 12 В такого размера, чтобы без проблем вошел внутрь банки.

Итак, теперь само изготовление:

  1. Обмотайте лентой банку, как показано на рисунке.
  2. Припаяйте провода от светодиодной ленты к выходу источника питания (ИП).
  3. Вход ИП проводами припаяйте к цоколю основания лампы.
  4. Сам источник надежно закрепите внутри банки, предварительно вырезав достаточное по размеру отверстие для пропускания ИП внутрь.
  5. Приклейте банку с лентой к основанию корпуса с цоколем и лампа готова.

Свеетодиодная лампа своими руками3

Конечно, такая лампа не шедевр дизайнерского искусства, но зато сделана своими руками!

Основные неисправности светодиодных ламп на 220 вольт

Исходя из многолетнего опыта, если не горит светодиодная лампа 220 в, то причины могут быть следующими:

1. Выход из строя светодиодов

Поскольку в светодиодной лампе все светодиоды подключены последовательно, если выходит хотя бы один из них, вся лампочка перестает светится поскольку возникает обрыв цепи. В большинстве случаев светодиоды в лампах на 220 применяются 2-х типоразмеров: SMD5050 и SMD3528.

Для устранения этой причины необходимо найти вышедший из строя светодиод и заменить его на другой, или же поставить перемычку (перемычками лучше не злоупотреблять — так как они могут увеличить ток через светодиоды в некоторых схемах). При решении проблемы вторым способом незначительно уменьшится световой поток, однако лампочка опять станет светить.

Чтоб найти поврежденный светодиод нам понадобится источник питания с низким током (20 мА) или мультиметр.

Светодиод

Для этого подаем «+» на анод, а «–» на катод. Если светодиод не засветится, значит он вышел из строя. Таким образом нужно проверить каждый из светодиодов лампы. Также вышедший из строя светодиод можно определить визуально, это выглядит примерно так:

Вышедший из строя светодиод

Причиной данной поломки в большинстве случаев является отсутствие какой-либо защиты светодиода.

2. Выход из строя диодного моста

В большинству случаев при таковой неисправности основная причина — заводской брак. И в таком в случае зачастую «вылетают» и светодиоды. Для решения данной проблемы необходимо заменить диодный мост (или диоды моста) и проверить все светодиоды.

Чтобы проверить диодный мост необходим мультиметр. Необходимо подать на вход моста переменное напряжение 220 В, и проверить напряжение на выходе. Если на выходе оно остается переменным, то значит диодный мост вышел из строя.

Проверка диода

Если диодный мост собран на отдельных диодах, их можно поочередно выпаять и проверить прибором. Диод должен пропускать ток только в одном направлении. Если он вообще не пропускает ток или пропускает при подаче на катод положительной полуволны значит он вышел из строя и требует замены.

3. Плохая пайка выводных концов

В данном случае нам будет необходим мультиметр. Нужно разобраться в схеме светодиодной лампы и далее проверять все точки, начиная со входного напряжения 220 В и заканчивая выводами светодиодов. Исходя из опыта, данная проблема присуща дешевым светодиодным лампам и чтоб ее устранить достаточно паяльником дополнительно пропаять все детали и компоненты.

Где купить лампу

Максимально быстро закрыть вопрос можно в ближайшем специализированном магазине. Оптимальным же, по соотношению цена-качество, остаётся вариант покупки в Интернет-магазине АлиЭкспресс. Обязательное длительное ожидание посылок из Китая осталось в прошлом, ведь сейчас множество товаров находятся на промежуточных складах в странах назначения: например, при заказе вы можете выбрать опцию «Доставка из Российской Федерации»:

Заключение

Светодиодная лампа 220 в — это энергоэффективное устройство, обладающее хорошими техническими характеристиками, простой конструкцией и легкой эксплуатацией, что позволяет их использования как в домашних, так и промышленных условиях.

Также стоит отметить, чтоб при наличии некоторых приспособлений, образования и опыта можно определить неисправности светодиодных ламп на 220 вольт и с минимальными затратами устранить их.

Видео по теме

Источник

Светодиодная лампа постоянного тока или переменного тока

От души благодарю всех откликнувшихся за ответы!

действительно путал, т.к. думал что эти лампы рассчитаны на включение от трансформатора и внутри нет никакой электроники, а просто спаяные параллельно светодиоды и от «просто светодиода» их(лампы) отличает только кол-во светодиодов.

Не совсем понятно, для чего тогда их подключать к трансформатору, если в них уже встроено все необходимое для их работы.

Описание взять не представляется возможным, так как лампы эти куплены давно и у разных продавцов ebay с целью сравнения и выбора наиболее подходящих. Все они довольно разные, есть с линзой, есть по три светодиода с рассеивателем, есть без, есть по несколько десятков диодов без рассеивателя, отличаются и температурой света. Есть с алюминиевыми радиаторами, есть просто пластиковые.
Но суть остается прежней, не совсем понимаю, почему везде рекомендуют для светодиодных ламп брать специальные трансформаторы, если они прекрасно работают и от обычных галогенных.
Единственным объяснением для себя вижу то, что, наверное, трансформатор для светодиодов выдает постоянный ток, в связи с чем отсутствует мерцание(которое, кстати говоря, незаметно и при подключении к обычному галогенному трансформатору). Но, телефоном в режиме видеосъемки с частотой кадров 120fps его удается обнаружить.

Читайте также:  Средство самообороны способное поразить током высокого напряжения сканворд 5 букв

Решил проверить ваше предположение, отключил галогенную лампу из цепи, оставив только 4 светодиодных, и они все же горели, единственное, что изменилось, мерцание как будто бы стало заметно глазом, и яркость двух ламп(те что подешевле, где много светодиодов без рассеивателя и свечение синевато-холодное) стала заметно меньше.
Вероятно, это и есть то самое негативное проявление использование не светодиодного трансформатора.

Спасибо еще раз ответившим!

Уважаемый Gades, большое вам человеческое спасибо за столь подробное и понятное объяснение! Думаю, многим ищущим ответы на подробные вопросы и, наткнувшимся на этот форум, ваше разъяснение еще не раз поможет.
Но, все-таки, к сожалению, остаются еще вопросы.

Такой выпрямитель, вероятно, стоит, т.к. я пробовал эти лампы подключать к бытовому адаптеру на 12 вольт и необходимости соблюдать полярность не было. Лампа одинаково горела и так и так.
Тем не менее, лампы эти(лампы разные, от совсем дешевых noname до средних по цене, каких-то китайских брендов) работают от трансформатора для галогенок уже довольно давно. Получается, этим можно пренебречь.

Мои лампы через камеру смартфона не пульсируют, хотя подключены к трансформатору с переменным 12v, однако пульсация становится заметна при 120fps на камере. Если же их подключаю к постоянному 12v, пульсация не заметна и на 120fps. Интересно, те лампы, о которых вы говорите, тоже на 120fps все-таки будет заметна пульсация. Тогда такие лампы все же не подойдут, т.к. влияние на здоровье этих мерцаний явно негативное, даже если и не заметна визуально. Сужу по своему монитору с LED подсветкой, хотя и с 400ГЦ ШИМ. Голова от него болит при длительном пользовании.
Да и потестить лампу через телефон не получится, т.к. покупать я их планирую не в магазине, а через интернет напрямую из страны производителя.

Вот с этим самая сложность.
Правильно ли я понимаю, что при использовании обычного диммера для ламп накаливания для СД ламп, просто нужно покупать СД лампы с возможностью диммирования, где необходимая электроника для этого установлена в самой лампе( и работает она по аналогии с диммером для СД ламп, преобразуя ток в постоянный и управляет яркостью с помощью ШИМ модуляции)? А для обычных СД ламп нужно покупать специальный диммер для СД ламп или же и диммер и лампа должны быть специальными, для диммирования?
А чем вообще диммер для СД ламп отличается от диммера для ламп накаливания? Только пониженным нижним порогом мощности нагрузки(например от 1w)? Или же он, как я понимаю, для диммирования использует ШИМ и только так? И как такой диммер в плане экономии энергии, он также не экономит энергию, как и фазовый диммер, или же в этом случае экономия имеет место быть?
Также, в одном из роликов о диммерах для СД ламп утверждалось, что диммер для СД ламп таковым не является, а является лишь управляющим устройством(пультом), а диммирование происходит в самой лампе..

Из этого выходит, что диммеры для СД ламп бывают только низковольтные постоянного напряжения и работают по принципу ШИМ?
А про лампы не понял? то есть нужно брать лампы без драйвера или лампы с драйвером для диммирования?

Тоже начал склоняться к этому варианту, пока не наткнулся на форум, где очень часто люди жалуются на мерцание или гудение от диммируемых СД ламп. И что, якобы, некоторые известные производители даже свернули производство таких ламп некоторых типов цоколя.
Вот и думаю теперь, может вообще отказаться от затеи с диммированием, или же для этих целей ставить обычные галогенные лампа на 12v? Очень уж нравится возможность регулировки света, так как вечером предпочитаю приглушенный свет, да и экономия(?) энергии греет душу(не столько с финансовой, сколько с экологической точки зрения).

Еще раз благодарю за участие! Удачи вам!

Мне вот что пришло в голову, насколько я понимаю, светодиодные диммируемые лампы вообще не могут быть без мерцания, так как диммирование происходит методом ШИМ, верно?
Но, почему в светодиодных лампах нельзя использовать регулировку силой тока?
Ведь, насколько я знаю, сейчас продаются мониторы без ШИМ, и регулировка яркости подсветки там происходит за счет изменения силы тока?

И еще такой вопрос возник: если к примеру, диапазон мощности у трансформатора от 10w до 150w, а мы несколько ламп суммарной мощностью 50w. Логично предположить, что трансформатор для такой мощности подходит, но что будет при уменьшении мощности на диммере менее, чем 10w?

Не за что, попробуем прояснить.

Такой выпрямитель, вероятно, стоит, т.к. я пробовал эти лампы подключать к бытовому адаптеру на 12 вольт и необходимости соблюдать полярность не было. Лампа одинаково горела и так и так.
Тем не менее, лампы эти(лампы разные, от совсем дешевых noname до средних по цене, каких-то китайских брендов) работают от трансформатора для галогенок уже довольно давно. Получается, этим можно пренебречь.

Будем надеяться, что так. Если драйвер в лампе рассчитан на питание по входу до 17В, то всё будет хорошо. Просто хотел обратить внимание, что 12В переменки — это почти 17В постоянки. Иногда это принципиально (много делаем именно низковольтных светильников и с недопониманием сталкиваюсь достаточно часто).

Мои лампы через камеру смартфона не пульсируют, хотя подключены к трансформатору с переменным 12v, однако пульсация становится заметна при 120fps на камере. Если же их подключаю к постоянному 12v, пульсация не заметна и на 120fps. Интересно, те лампы, о которых вы говорите, тоже на 120fps все-таки будет заметна пульсация. Тогда такие лампы все же не подойдут, т.к. влияние на здоровье этих мерцаний явно негативное, даже если и не заметна визуально. Сужу по своему монитору с LED подсветкой, хотя и с 400ГЦ ШИМ. Голова от него болит при длительном пользовании.
Да и потестить лампу через телефон не получится, т.к. покупать я их планирую не в магазине, а через интернет напрямую из страны производителя.

По нормативам пульсации с частотой выше 400Гц не нормируются: считается, что мозг их уже совсем не воспринимает. Если полосы едва заметны — значит уровень пульсаций невелик. Точнее измерять можно либо пульсметром, либо фотодиодом, прикрученным к осциллографу. А через интернет будете покупать «кота в мешке» — но Вы это прекрасно и сами понимаете.

Вот с этим самая сложность.
Правильно ли я понимаю, что при использовании обычного диммера для ламп накаливания для СД ламп, просто нужно покупать СД лампы с возможностью диммирования, где необходимая электроника для этого установлена в самой лампе( и работает она по аналогии с диммером для СД ламп, преобразуя ток в постоянный и управляет яркостью с помощью ШИМ модуляции)? А для обычных СД ламп нужно покупать специальный диммер для СД ламп или же и диммер и лампа должны быть специальными, для диммирования?
А чем вообще диммер для СД ламп отличается от диммера для ламп накаливания? Только пониженным нижним порогом мощности нагрузки(например от 1w)? Или же он, как я понимаю, для диммирования использует ШИМ и только так? И как такой диммер в плане экономии энергии, он также не экономит энергию, как и фазовый диммер, или же в этом случае экономия имеет место быть?
Также, в одном из роликов о диммерах для СД ламп утверждалось, что диммер для СД ламп таковым не является, а является лишь управляющим устройством(пультом), а диммирование происходит в самой лампе..

Есть два разных случая: 220В и низковольтка (12/24В).
Для случая 220В лампа должна иметь пометку, что она диммируемая и тогда она может управляться обычным диммером для ламп накаливания (про возможные неприятности я писал ранее). Если пометки нет — диммировать не получится. Специальных фазовых диммеров для светодиодных ламп на 220В не существует. Фазовое диммирование никакого отношения к ШИМ, с бытовой точки зрения (если не рассматривать с точки зрения физики) не имеет.

В случае низковольтки (относится не к лампам, а к светодиодным лентам и т.д.) используется уже специальный диммер для светодиодов (как правило, это ШИМ). Экономия в этом случае при диммировании достигается благодаря тому, что диоды часть времени не горят вообще — то есть и не потребляют.
Светодиодные лампы, подключенные через трансформатор для галогенок, диммировать не получится. Как я понимаю, низковольтные лампы накаливания при таком подключении можно диммировать, регулируя подаваемое на них напряжение. Светодиодная лампа с драйвером питания на борту, в общем случае, имеет диапазон входных напряжений, внутри которого яркость приблизительно 100%. При понижении напряжения она просто погаснет. Светодиод вообще, в отличие от лампы накаливания, прибор токовый и напряжением не управляется. Допускаю, что существуют лампы, у которых в драйвере стоит анализатор уровня входного напряжения, который может диммировать лампу. Но с таким не сталкивался.
Я не рассматриваю также сейчас экзотику типа ламп, которые имеют встроенный диммер и управляются по радиоканалу.

Из этого выходит, что диммеры для СД ламп бывают только низковольтные постоянного напряжения и работают по принципу ШИМ?
А про лампы не понял? то есть нужно брать лампы без драйвера или лампы с драйвером для диммирования?

В общем верно. Специализированных диммеров для светодиодных ламп нет. Есть специализированные диммеры для светодиодов и светодиодных лент.

Источник