Меню

Сварка углеродистой стали постоянным током



Сварка углеродистых сталей — виды и технологии сварки

Сварка углеродистых сталей

Сварка

Сталь – это сплав железа и углерода, который применяется более чем все другие вместе взятые металлы и их сплавы. Без применения стальных конструкций и деталей немыслимо существование современной техногенной цивилизации.

Особое место в современной промышленности занимает сварка низкоуглеродистых сталей, как самый широко используемый способ соединения. Сталь имеет отличные показатели свариваемости – это обусловило возникновение ряда методов и способов сварных соединений.

Современные технологии позволяют достигать высокого качества сварочных швов. Таким образом, сварные соединения почти вытеснили применяемые раньше – клепанные. Разработаны методы сварки в тяжелых условиях, например, подводная сварка.

  • Определение понятия – углеродистая сталь
  • Виды и технологии сварки углеродистых сталей

Определение понятия – углеродистая сталь

Если в сплаве вместительность углерода не превышает 2,07%, то такой материал смело можно называть сталью. Все, что превышает процентное соотношение 2,14 – это чугуны. Увеличение процента углерода в сплаве ведет к повышению его твердости и хрупкости.

  • Низкоуглеродистые стали содержат до 0,25% углерода.
  • Среднеуглеродистые стали содержат от 0,25 до 0,6% углерода.
  • Высокоуглеродистые стали содержат от 0,6 до 2,07% углерода.

Для изготовления инструментальных сплавов повышенной прочности применяют низкоуглеродистые легированные стали. В качестве легирующих добавок служат хром, никель, молибден, ванадий, вольфрам, ниобий, титан. Незначительные примеси серы и фосфора, до 0,035%, также повышают характеристики сплавов, высокая чистота стали обозначается буквой «А» в маркировке.

Углерод в составе стали также играет немаловажною роль. Благодаря ему возможна закалка и отпуск, увеличиваются эксплуатационные сроки, повышается твердость. Такие характеристики важны для изготовления деталей повышенной износостойкости шестеренки, звездочки, корпуса, центровые валы, зубчатые колеса.

Наличие разнообразных примесей в сплавах обуславливает применение различных способов и флюсовых добавок при сварке высоколегированных сталей. Но на свариваемость в основном влияет количество углерода. Чем выше его процентное соотношение, тем менее прочным становится сварочный шов.

Виды и технологии сварки углеродистых сталей

Одним из основных критериев для достижения оптимального качества шва является максимальное приближение его физико-химических характеристик к показателям основного сплава. Равнопрочность и однокомпонентность свариваемой стали и присадочных компонентов позволяют получать максимально прочные соединения.

Поскольку качество свариваемости понижается с повышением процента содержания углерода, то основные марки сталей можно разделить на две группы:

  • Сплавы с хорошей свариваемостью – Ст10, Ст20, 15ГС, 12МХ, 15ХМ
  • Сплавы с удовлетворительной свариваемостью – 15Г2С, 12Х1МФ, 15Х1М1Ф, 12Х2М1, 12Х2МФСР, 12Х2МФБ.

Для преодоления проблем, возникающих при сваривании стали, были разработаны технологии сварки, позволяющие создавать необходимые условия. Ниже предоставлены основные направления разработок по этой теме.

  • Электродуговая сварка

Этот способ предполагает использование электрической дуги для нагрева металла до жидкого состояния. Технология возникла более 100 лет назад и за этот период заняла доминирующее место, почти полностью вытеснив некоторые виды соединений, например, склепывание.

Применение высокотемпературной сварочной дуги значительно сужает необходимую зону прогрева, что сохраняет качество соединяемых деталей. Стабильность горения и быстрота прогрева электрической дуги позволили создать ряд направлений в разработке сварочного оборудования.

  • Электродуговая сварка плавящимися электродами(MMA)

Сварка происходит вследствие горения дуги между кончиком электрода и деталью, при этом электрод плавится, заполняя сварочную ванну. Для предотвращения окисления расплавленного металла, электроды покрываются обмазкой, которая при оплавлении покрывает шов защитным слоем шлака. После остывания шлак удаляется отстукиванием.

Сварочные аппараты такого типа успешно работают как от сети 220 Вт, так и от 380 Вт. Низкие требования и компактные размеры современных сварочных аппаратов позволяют их применять от самых труднодоступных мест, на высотных объектах, до применения в быту.

Тип сварочной дуги может быть как постоянным, так и переменным. Аппараты постоянного сварочного тока обладают большим функционалом вследствие более высоких характеристик сварочной дуги.

Для разных типов свариваемого металла применяются электроды для сварки углеродистых и низколегированных сталей. Главным критерием для подбора марки электродов является образование равнопрочного сварочного шва, без внутренних трещин и хрупких интерметаллических зон.

Сварочные электроды

Для произведения дуговой сварки углеродистых сталей с удовлетворительной свариваемостью, целесообразно применять постоянный сварочный ток.

MMA сварка на данный момент является самым распространенным и часто применяемым видом сварки вообще.

Схематическое изображение компонентов при сварке ММА

  • Электродуговая сварка неплавящимся (вольфрамовым) электродом в среде инертных газов (TIG)

Нагрев металла при таком способе происходит вследствие горения дуги между вольфрамовым электродом и деталью. Заполнение металлом сварочной ванны происходит благодаря подаче присадочной проволоки непосредственно в зону плавления.

Горелка сварочного аппарата такого типа подает аргон в зону нагрева. Этот инертный газ не только защищает расплавленный металл от окисления, но благодаря ионизирующим способностям приводит к стабильному горению дуги.

Повышенные параметры сварочных характеристик позволяют производить работы, требующие особой прочности и аккуратности. TIG сварка особенно оправдана при использовании для соединения легированных инструментальных сталей.

Шов после TIG сварки

  • Электродуговая полуавтоматическая сварка в среде защитных газов (MIG-MAG)

Сваривание происходит вследствие горения дуги между подаваемой проволокой и деталью. Проволока подается в автоматическом режиме и является заполнением для сварочной ванны. Горелка устроена таким образом, чтобы подавать защитный или инертный газ в зону плавления.

Полуавтоматическая сварка благодаря высокой производительности и аккуратности сварочных швов прочно заняла свое место в промышленности.

Принципиальная схема полуавтоматической сварки

  • Электродуговая газо-плазменная сварка

Дуга на кончике вольфрамового электрода ионизирует поток атомов аргона, что образует плазменный факел, плавящий металл. Благодаря эффекту плазмы происходит более глубокое проплавление стали, увеличивается качество и прочность швов.

Оборудование для газо-плазменной сварки обычно производится в промышленном формате. Зачастую, это полностью автоматические комплексы, контролируемые исключительно при помощи программного обеспечения.

  • Электрошлаковая сварка

Благодаря этой технологии появилась возможность сваривать толстый металл за один проход, что значительно улучшает качество сварочного шва.

Разогрев металла происходит из-за прохождения электрической дуги через токопроводящий шлак (флюс). В слой шлака вживлены металлические электроды, которые при расплавлении шлака, перенимают токопроводимость на себя, гася тем самым дугу. Последующее бездуговое нагревание происходит исключительно из-за сопротивления металла электрическому току.

Сваривание производят обычно в направлении снизу вверх, ограничивая место сварки медными охлаждаемыми ползунами. Такой способ весьма удобен для заполнения толстых швов нелинейной конфигурации.

Схема электрошлаковой сварки

  • Газовая сварка

Плавление металла производится высокотемпературным факелом сжигаемого горючего газа в среде чистого кислорода. Смешение газов происходит в специальной газопламенной горелке, которая оснащена рукоятками управления интенсивности подачи горючей смеси.

Сварочная ванна заполняется металлом благодаря присадочной проволоке, которая подается в зону плавления.

Для газовой сварки далеко не каждый горючий газ будет приемлемым. Например, пропан имеет примеси, которые окисляют расплавленный метал, шов получается рыхлым и бесформенным.

Технология газовой сварки углеродистых сталей подразумевает использование традиционного ацетилена или более новомодного МАФа.

Недостатком газосварки является ее низкая производительность, повышенные трудозатраты, дороговизна расходных компонентов. Развитие различных технологий электросварки постепенно вытеснило газосварку из повсеместного использования.

Газовая сварка

Перечисленный ряд способов сварки является наиболее популярным, но далеко не полным. Эта отрасль постоянно развивается. Существуют термитная, электролизерная, лазерная, химическая сварки. Даже способ сваривания трением нашел свое место в определенных отраслях производства. Среднеуглеродистые и низкоуглеродистые марки сталей в обозримом будущем вряд ли утратят свою популярность, скорее наоборот. Так что, развитие перспективных технологий сварки еще надолго останется востребованной отраслью.

Источник

Технические и технологические особенности сварки углеродистых сталей: основные способы сварки и оборудование для каждого способа

Сталью называют сплав железа с углеродом, когда концентрация последнего составляет от 0,02% до 2,14%.

С повышением содержания углерода растут показатели прочности и твердости материала, однако, снижаются его пластичность и вязкость. Поэтому процентное соотношение C к Fe является основным критерием классификации стали, разделившим ее на три группы:

  1. Низкоуглеродистая (0,02-0,3%) – мягкие, ковкие сплавы общего применения, которые часто используются в быту (например, в виде прокатного профиля), а также в ненагруженных узлах строительных конструкций, промышленных деталей и механизмов.
  2. Среднеуглеродистые (0,3-0,6%) – сбалансированные сплавы, зачастую обладающие хорошими показателями упругости, стойкости к деформациям и усталостным нагрузкам. Применяются в машиностроении и электротехнике, в том числе для изготовления пружин, рессор, контактных пластин. Ограниченно применяются для изготовления приборов и инструментов.
  3. Высокоуглеродистые (0,6-2,14%) – прочные, но относительно хрупкие сплавы, применяющиеся для изготовления ответственных изделий, в том числе инструментов и их режущих кромок, подшипников, дроби для абразивной обработки, стальных канатов и тросов, измерительных приборов.
Читайте также:  Что такое 3фазный ток

Кроме того, в углеродистых сталях содержатся примеси других элементов в количестве, недостаточном для того, чтобы материал считался легированным. Допустимо наличие в структуре сплава:

Фосфор, сера и газы являются нежелательными примесями, долю которых в углеродистой стали стараются свести к минимуму. В качестве микролегирования могут использоваться такие присадки, как титан, цирконий, бор, лантаноиды и некоторые другие элементы.

Значительное влияние на качество стали и ее эксплуатационные характеристики оказывает технология производства, режимы последующей термообработки и другие металлургические параметры. В общем виде классификацию сталей по методу их изготовления, назначению, содержанию тех или иных веществ можно представить в виде таблицы.

Углеродистая сталь
Конструкционная Инструментальная
Обычного качества Качественная Качественная

В качестве вида стали может указываться способ ее производства. Углеродистые стали могут изготавливаться как в мартеновских и кислородно-конвертерных печах, так и электросталеплавильным методом. Последний обеспечивает большую стабильность свойств и характеристик готового продукта.

Выбор оборудования

Тип и эксплуатационные особенности сварочного оборудования для работы с углеродистыми сталями варьируются в достаточно широких пределах и зависят от таких факторов, как:

  • выбранный метод сварки;
  • характеристики заготовок;
  • требуемое качество шва;
  • расчетный режим сварки;
  • особенности внешней среды;
  • требуемая производительность;
  • финансово-экономические критерии.

Чаще всего углеродистые стали соединяют одним из методов электродуговой сварки. Если предполагается ручная сварка и объем работ относительно мал, можно воспользоваться обычным сварочным инвертором, главные достоинства которого – компактность и дешевизна. Хорошим выбором станут модели Fubag IR 200, Wester MMA-VRD 200, Elitech АИС 200, Ресанта САИ-220 и другие.

сварка углеродистых сталей

Примерная стоимость аппаратов Ресанта САИ-220 на Яндекс.маркет

В противном случае, лучше отдать предпочтение промышленным трансформаторам с большей производительностью, например, Кавик ТДМ-252У2 (250 А, 12 кВт) или Brima ТДМ1-315-1 (315 А, 24 кВт). В зонах, где подключение к электрической сети невозможно или затруднено, используются сварочные генераторы, оснащенные двигателями внутреннего сгорания.

Для полуавтоматической сварки в среде защитных газов или под слоем флюса применяются специализированные сварочные аппараты комбинированной конструкции, которые обеспечивают генерирование сварочного тока, а также подачу в зону сварки защитного газа и плавящегося электрода (кроме того, может подаваться присадочная проволока). В нише бюджетных моделей лидирует Aurora Overman 180, в топовом сегменте – Blueweld Starmig 210 Dual Synergic.

сварка углеродистых сталей

Примерная стоимость аппаратов Aurora overman на Яндекс.маркет

Для газовой сварки потребуется наличие кислородного и ацетиленового баллонов с манометрами, гибких шлангов и горелки, позволяющей регулировать пропорциональное соотношение газов. Оборудование альтернативных видов сварки специфично, оно относится к промышленным аппаратам и крайне редко используется в быту.

Способы сварки низкоуглеродистых сталей

Низкоуглеродистые стали относятся к хорошо свариваемым материалам и практически не требуют предварительной подготовки заготовок. Если их толщина не превышает 4 мм, кромкование не проводится, а все предварительные операции ограничиваются очисткой и обезжириванием стыка. В ряде случаев, например, при сварке крупногабаритных изделий, проводится предварительный прогрев в печи до 150-200℃. Другие особенности диктуются конкретным видом сварки.

Ручная дуговая сварка

Ручная дуговая сварка проводится покрытым плавящимся электродом с углом наклона в 40-50° в направлении движения инструмента.

Для предотвращения образования закалочных структур рекомендуется выполнять швы каскадом или горкой, что способствует равномерному теплообмену с окружающим металлом и медленному остыванию стыка. Если заготовки уже подвергались закалке, шов наносят послойно, после каждого подхода ожидая полного его остывания.

Особые рекомендации даются в случае устранения трещин, сколов и других дефектов в деталях из низкоуглеродистой стали. В таком случае выбранный тип шва должен обеспечить достаточное заглубление сварочной ванны, что достигается повышением тока или сокращением длины дуги до 1-1,5 мм. Вне зависимости от размера дефекта, длина шва не должна быть меньше 100 мм. При работе с ответственными деталями зону стыка обрабатывают растворами, предотвращающими коррозию.

Дуговая сварка в защитных газах

Роль защитной среды при электродуговой сварке чаще всего играет углекислый газ (MAG-технология). Более эффективную защиту обеспечивает смесь активных газов (не более 30% кислорода) или сочетание углекислого газа с аргоном. Для ответственных соединений зачастую выбирается MIG-сварка, которая предполагает подачу к стыку аргона или гелия.

Самым распространенным присадочным материалом при дуговой сварке низкоуглеродистой стали в защитной среде является проволока Св-08Г2С. Ее подают одновременно с началом сварки, то есть через 5-15 секунд после поступления газа к стыку. Для верхнего положения используется проволока диаметром до 1,2 мм, для нижнего – до 3 мм. Угол ведения материала составляет 30-40°, электрод ведется строго перпендикулярно поверхности.

Сварка под флюсом

Автоматическая и полуавтоматическая сварка низкоуглеродистых сталей проводится под слоем флюса плавящимся прутком СВ-08 (-А, -ГА) диаметром от 1,2 до 3 мм. Роль защитных составов обычно играет смесь АН-348-А или ОСЦ-45.

Обратите внимание, что при сварке без разделывания кромок в зоне шва может повыситься содержание углерода, что повысит прочность соединения, но снизит его пластичные свойства.

Полуавтоматическая сварка малопригодна для создания угловых и сложносоставных соединений низкоуглеродистой стали, так как способствует образованию закалочных структур в околошовной зоне. Частично решить эту проблему позволяет предварительный прогрев заготовок.

Способы сварки среднеуглеродистых сталей

При сварке среднеуглеродистых сталей велик риск образования кристаллизационных трещин и закалочных структур в околошовной зоне, что, в свою очередь, снижает долговечность соединения и негативно влияет на его показатели упругости. Поэтому главными требованиями к сварке такого материала становятся особые щадящие режимы проведения работ, защита шва от образования пор и пузырьков воздуха, снижение содержания углерода в зоне стыка.

Сварка в защитной среде

При соединении заготовок из среднеуглеродистых сталей используется MIG-технология, схожая с технологией сварки низкоуглеродистых сталей. Обязательным условием является предварительный прогрев заготовок до температуры около 200℃. Применяются электроды с низким содержанием карбона и наличием дополнительных микролегирующих элементов: фтора, кальция, марганца и кремния. К ним относятся изделия марок УОНИ-13/45 (-55, -65), УП-1/45, УП-2/45, ОЗС-2, К-5А и другие.

сварка чугуна

Примерная стоимость электродов УОНИ 13/55 на Яндекс.маркет

Диаметр электрода обычно лежит в пределах 2-6 мм и определяется толщиной свариваемых заготовок. От него, в свою очередь, зависит режим сварки. Так, сила тока при сварке 3-миллиметровыми электродами в нижнем положении составляет 80-100 А, диаметру в 4 мм соответствуют значения 130-200 А, 5-миллиметровыми изделиями работают при токе 170-280 А, а 6-миллиметровыми – 210-380 А. Температура прокаливания электродов варьируется в пределах 250-400℃.

Сварка полуавтоматом

Полуавтоматическая сварка среднеуглеродистых сталей требует раздельной структуры шва, то есть его наложения в несколько ванн. При этом рекомендуется работать короткой дугой и полностью исключить любые движения электродом, кроме продольных. Как и в случае с MIG-сваркой, заготовки прогревают до температуры не более 200℃.

Особое внимание уделяется разделыванию кромок на толстых заготовках. Скосы выполняют под углом 35-45°, тщательно зачищают и обезжиривают. Важно обеспечить высокие показатели коррозионной стойкости шва. Для сохранения его упругости принимают меры для медленного и равномерного остывания стыка.

Газовая сварка

Надежным способом соединения среднеуглеродистых сталей является газовая сварка, которая может проводиться даже при низких температурах. Используется «левая» технология со стандартным или слабо науглероживающим пламенем интенсивностью 75-100 куб. м в час. При чрезмерной мощности сваривания велик риск прожогов или нежелательной закалки стыка.

После выполнения газовой сварки заготовок из среднеуглеродистой стали рекомендуется выполнить их отпуск или отжиг. При этом локальный нагрев шва не должен превышать 650℃, а общий нагрев заготовок – 350℃. Альтернативным способом является проковка стыка.

Сварка высокоуглеродистых сталей

Высокоуглеродистые стали относятся к сложно свариваемым и ограниченно свариваемым материалам ввиду их особой склонности к закалке, образованию трещин и других термических дефектов. Ввиду высокой сложности выполнения работ ручные методы электродуговой сварки практически не используются.

Газовая сварка

Основным методом соединения заготовок из высокоуглеродистой стали является газовая сварка с предварительным прогревом до 200-300℃. В ряде случаев используется и сопутствующий подогрев. Работы проводятся восстановительным пламенем или пламенем с небольшим избытком ацетилена, интенсивность – не более 90 куб. дм в час. Используется «левый» способ, позволяющий снизить время термического воздействия на металл.

В качестве присадки используется проволока Св-15 или Св-15Г, иногда – проволоки, легированные хромом, никелем, марганцем. В отличие от среднеуглеродистых сталей высокоуглеродистые не рекомендуется обрабатывать ковкой. В случае необходимости выполняется их отпуск или отжиг с полным прогревом заготовок до 350-400℃.

Другие способы сварки

Альтернативным способом соединения высокоуглеродистых сталей является лучевая сварка, которая подразделяется на электролучевую (направленный поток заряженных частиц) и лазерную (направленный поток фотонов). К недостаткам этих технологий можно отнести высокую сложность и дороговизну оборудования, к преимуществам – высокую скорость и точность проведения работ, короткое время и малую площадь температурного воздействия на стык.

Ограниченно применяются технологии контактной, плазменной, электрошлаковой сварки, которые требуют значительных ресурсозатрат, однако, не решают всех проблем, связанных с сообщением необходимых механических свойств шву. Одним из перспективных направлений является соединение заготовок высокоуглеродистых сталей между собой и с другими материалами сваркой трением.

Источник

Электроды для сварки углеродистых сталей

К углеродистым сталям относят класс сплавов, в которых углерод (С) как химический элемент является основным легирующим компонентом, задающим важнейшие свойства металла. Его доля в составе может быть различна, в зависимости от нее различают и группы данных сталей:

  • низкоуглеродистые — доля С в них менее 0,25%;
  • среднеуглеродистые — с долей углерода от 0,25 до 0,6%;
  • высокоуглеродистые — с долей углерода от 0,6% до 2,07%.

Также в состав таких сталей в весьма малых количествах входят марганец и кремний — в качестве полезных легирующих элементов, а в качестве вредных примесей — водород и сера.

Особенности сварки углеродистых сталей

Ключевое требование при сварке деталей из углеродистых сталей — прочностные характеристики металла шва и околошовной области: они должны соответствовать характеристикам основного металла. Чем выше доля углерода, тем сложнее получить соединение, которое бы строго соответствовало этому требованию. Поэтому в отношении каждой из групп углеродистых сталей существуют свои особенности сварки.

Сварка низкоуглеродистых сталей

Это группа хорошо свариваемых, наиболее пластичных углеродистых сталей благодаря низкому содержанию углерода и легирующим добавкам. Выполнять сварку можно любыми известными технологиями, включая сварку ручную электродуговую.

Однако такой химический состав металла обуславливает и свои особенности: при неправильном выборе электрода есть риски того, что металл шва будет более прочным, чем металл детали, что может негативно сказаться на общей прочности конструкции. А при выполнении многослойной сварки возможна повышенная хрупкость шовного металла.

Чтобы избежать этих проблем, для сварки обычно используют электроды с рутиловым и фтористо-кальциевым покрытием, а в обмазку добавляется доля железного порошка. В ряду широко используемых для профессиональной сварки низкоуглеродистых сталей — марки МР-3ЛЮКС, МР-3, ОЗС-4, АНО-4, АНО-21, ОЗС-12, МК-46.00, УОНИ-13/55, УОНИ 13/45, УОНИ 13/85.

АНО-21 СТАНДАРТ

МР-3 ЛЮКС (НАКС)

МР-3 (НАКС, РРР)

ОЗС-4 (НАКС)

Электроды по среднеуглеродистым сталям

Количество углерода в таких сплавах больше, соответственно, процесс сварки осложняется. Минус в том, что металл сварного стыка и металл детали могут получиться разной прочности. Кроме того, металл близ кромок шва может получиться очень хрупким и с характерными трещинами. Чтобы этого не было, используют электроды с достаточно низкой долей углерода.

Особое внимание — к кромкам соединяемых деталей. Они обязательно должны быть разделаны, чтобы избежать проплавления металла, которое могут вызвать высокие токи — они необходимы для разогрева соединяемых деталей.

Также следует учитывать:

  • для повышения качества шва детали, как сказано выше, предварительно разогреваются и прогреваются в процессе сварки;
  • движения электродом лучше осуществлять не поперек, а вдоль стыка;
  • сварку лучше всего выполнять на короткой дуге;
  • после сварки для большей прочности шов также проковывается и подвергается термообработке.

В ряду известных электродов, которые применяют для сваривания среднеуглеродистых сталей — марки УОНИ-13/55, УОНИИ 13/55, УОНИИ 13/45А, УОНИ-13/65.

Сварка высокоуглеродистых сталей

В таких сталях — высокое содержание углерода, что практически делает их непригодными для сварки различных конструкций. Сварочные работы, как правило, выполняются лишь при необходимости ремонта.

В этом случае используются те же технологии, что и при сварке среднеуглеродистых сталей. Осуществляется предварительный прогрев металла в области шва до 250-300 °C, по завершении сварки производится проковка и термообработка шва. Необходимо соблюдать еще два условия — сварка возможно при температуре не ниже -5 градусов Цельсия в помещении, где полностью отсутствуют сквозняки.

Электроды для углеродистых и низколегированных сталей

Широчайший ряд электродов используется для сварки как углеродистых, так и низколегированных сталей. К этой группе относят углеродистые стали с содержанием С до 0,25%, а также низколегированные с временным сопротивлением разрыву до 590 МПа. И те, и другие имеют повышенное содержание углерода. Благодаря этому уменьшается окисление металла и легче получают свободные от окислов соединения. Их пластичность повышают путем предварительной термической обработки или последующего подогрева.

Доля легирующих элементов (кобальт, никель, молибден, алюминий, вольфрам, медь и другие) может доходить в низколегированных сталях до 5%. В сравнении с углеродистыми они характеризуются пониженной склонностью к механическому старению, более высокой износостойкостью, коррозионной и хладостойкостью, пределом текучести.

В зависимости от доли легирующих элементов определяются параметры, по которым выбирают электроды для сварки углеродистых сталей. В число таких параметров входят:

  • механические характеристики металла шва;
  • требуемые свойства сварного соединения;
  • временное сопротивление разрыву;
  • ударная вязкость;
  • относительное удлинение.

АНО-4 (НАКС)

АНО-21 (НАКС)

МК-46.00 (НАКС)

ОЗС-12 (НАКС, РРР)

Электроды для углеродистых конструкционных сталей

Марка и тип Назначение и описание
АНО-4 (Э46) Электроды с рутиловым покрытием для сварки конструкций из углеродистых и низколегированных сталей с временным сопротивлением разрыву не более 451 МПа. Токи — переменный, постоянный прямой полярности. При повышенных токах не образуют пор. Допускают сварку по ржавчине и по незачищенным кромкам, обеспечивают легкое отделение шлаковой корки. Коэффициент наплавки — 8,5 г/А ч, расход на 1 кг наплавленного шва — 1,7 кг.
АНО-6 (Э46) Электроды с рутиловым покрытием для сварки переменным и постоянным током обратной полярности конструкций из углеродистых сталей. Доля углерода в составе металла — до 0,25%. Обеспечивают легкое отделение шлаковой корки. Могут работать на повышенных режимах, обеспечивают шов без кристаллизационных трещин. Коэффициент наплавки — 10 г/А ч, расход на 1 кг наплавленного шва — 1,6 кг. Марка АНО-6 рекомендуется для сварки в монтажных условиях.
АНО-21 (Э46) Электроды с рутиловым покрытием для сварки переменным и постоянным током прямой и обратной полярности ответственных и рядовых конструкций из углеродистых сталей по ГОСТ 380-71 Ст0, Ст1, Ст2, Ст3 (групп А, Б, В, спокойных, полуспокойных, кипящих); по ГОСТ 1030-74 (10, 15кп, 20кп, 20пс, 20). Способны работать по окисленным, гальваническим поверхностям, по неподготовленным кромкам. Легкий поджиг и стабильность дуги, отличное качество сварного шва. Коэффициент наплавки — 9 г/А ч, расход на 1 кг наплавленного шва — 1,7 кг.
МР-3 (Э46) Электроды с рутилово-основным покрытием марки МР-3 предназначены для сварки сталей с временным сопротивлением разрыву не более 500 МПа., доля углерода в них не превышает 0,25%. Сварка выполняется переменным и постоянным током обратной полярности. Обеспечивают стабильность дуги, легкий повторный поджиг. Сварка — только по очищенной от окалины поверхности. Коэффициент наплавки — 8,5 г/А ч, расход на 1 кг наплавленного шва -1,7 кг.
МР-3С (Э46) Электроды с рутилово-основным покрытием используются для сварки переменным и постоянным током обратной полярности конструкций из углеродистых сталей, когда к качеству получаемого шва предъявляются повышенные требования. Сварка возможна во всех без исключения пространственных положениях. Временное сопротивление разрыву — не более 500 МПа. Коэффициент наплавки — 8,5 г/А ч, расход на 1 кг наплавленного шва — 1,7 кг.
ОЗС-4 (Э46) Электроды с рутиловой обмазкой применяются для сварки переменным и постоянным током обратной полярности ответственных конструкций из углеродистых сталей (временное сопротивление разрыву до 490 МПа). В равной степени качественно сваривают детали больших и малых толщин. Возможна сварка по ржавой и влажной поверхности. Коэффициент наплавки — 8,5 г/А ч, расход на 1 кг наплавленного шва — 1,7 кг.
ОЗС-6 (Э46) Для сварки переменным и постоянным током обратной полярности конструкций из углеродистых и низколегированных сталей с временным сопротивлением разрыву не более 451 МПа. Имеют рутиловое (с железным порошком) покрытие. Демонстрируют высокую производительность. Возможна сварка удлиненной дугой и по ржавчине. Коэффициент наплавки — 10 г/А ч, расход на 1 кг наплавленного шва — 1,5 кг.
ОЗС-12 (Э46) Электроды с рутиловым покрытием для сварки переменным и постоянным током обратной полярности углеродистых и низколегированных конструкционных сталей с временным сопротивлением разрыву не более 500 МПа. Оптимально подходят для сварки соединений таврового профиля с получением вогнутых мелкочешуйчатых швов. Возможна сварка удлиненной дугой и по окисленной поверхности без образования пор. Также допускается сварка на предельно низком напряжении. Коэффициент наплавки — 8,5 г/А ч, расход на 1 кг наплавленного шва — 1,7 кг.
МК-46.00 (Э50А) Универсальные рутиловые электроды для сварки переменным и постоянным током любой полярности углеродистых и низколегированных сталей с временным сопротивлением до 450 МПа. Широко применяются для сварки листовых и трубных конструкций. Создают пониженное тепловложение. Хорошо подходят для прихваток, сварки коротких и корневых швов. Не чувствительны к ржавчине и загрязнениям поверхности. Сварка возможна во всех пространственных положениях. Коэффициент наплавки — 8,5 г/А ч, расход на 1 кг наплавленного шва — 1,7 кг.
ОК-48.00 (Э50А) Универсальные сварочные электроды с основным покрытием для сварки судовых сталей, ответственных конструкций с условиями работы при отрицательных температурах и высоких знакопеременных нагрузках. Обеспечивают минимальное содержание водорода в наплавленном металле. Сварка возможна на постоянном и переменном токе обратной полярности. Отлично подходят для сварки износостойких сталей типа Hardox.
УОНИ-13/45 (Э42А) Электроды с основным типом обмазки для сварки постоянным током обратной полярности особо ответственных конструкций с повышенными требованиями к металлу по пластичности и ударной вязкости. Временное сопротивление сталей на разрыв — до 490 МПа. Рекомендуется для сварки конструкций, эксплуатируемых в низкотемпературных условиях, а также для сварки стыков труб в местах месторождений с высоким содержанием сероводорода. Коэффициент наплавки — 9 г/А ч, расход на 1 кг наплавленного шва — 1,6 кг.
УОНИ-13/55 (Э50А) Электроды с основным покрытием для сварки постоянным током обратной полярности особо ответственных конструкций из углеродистых и низколегированных сталей. Позволяют получить металл шва, стойкий к образованию кристаллизационных трещин. Благодаря этому используются для сварки конструкций, работающих при отрицательных температурах и знакопеременных нагрузках. Коэффициент наплавки — 9,5 г/А ч, расход на 1 кг наплавленного шва — 1,65 кг.
УОНИ-13/55У (Э55) Электроды с основным покрытием для ручной дуговой сварки переменным и постоянным током обратной полярности ответственных конструкций, а также сварки ванным способом рельсов и арматуры ЖБ конструкций из сталей марок: СТ5, 18Г2С, 15ГС и других. Коэффициент наплавки — 10 г/А ч, расход на 1 кг наплавленного шва — 1,6 кг.
УОНИ-13/55Р (Э50А) Электроды с основным покрытием для сварки постоянным током обратной полярности судовых сталей с пределом текучести до 390H/мм2 (категории А, B, D, A32, A36, D32, D36, D40, E40 по ГОСТ Р 52927-2008 и Правилам Российского морского регистра судоходства). Используются для сварки тавровых и стыковых соединений. Изготавливаются под надзором Российского морского регистра судоходства. Коэффициент наплавки — 9 г/А ч, расход на 1 кг наплавленного шва — 1,7 кг.
УОНИ-13/65 (Э60) Электроды с основным покрытием для сварки постоянным током обратной полярности машиностроительных конструкций, рассчитанных на тяжелые нагрузки. Временное сопротивление сталей на разрыв до 588 МПа. Коэффициент наплавки — 9 г/А ч, расход на 1 кг наплавленного шва — 1,6 кг.
ТМУ-21У (Э50А) Электроды с основным покрытием для сварки постоянным током обратной полярности ответственных конструкций и трубопроводов, используемых в атомной, электро- и тепловой энергетике. Коэффициент наплавки — 9 г/А ч, расход на 1 кг наплавленного шва — 1,6 кг.
ЦУ-5 (Э50А) Электроды с основным покрытием для сварки постоянным током элементов емкостей, трубного оборудования, котлоагрегатов. Позволяют сваривать корневые швы толстостенных трубопроводов, используемых на объектах энергетики. Максимальная температура эксплуатации сварных соединений до 400°С. Коэффициент наплавки — 9,5 г/А ч, расход на 1 кг наплавленного шва — 1,7 кг.

Продукция производства Магнитогорского электродного завода

Магнитогорский электродный завод выпускает электроды для сварки высокоуглеродистых, средне- и низкоуглеродистых сталей. Электроды позволяют варить любые конструкции из этих материалов – от неответственных при ремонте или для бытового использования до особо ответственных из сталей повышенной прочности, рассчитанных на высокие нагрузки.

Купить электроды по углеродистым сталям вы можете на нашем сайте. Мы предлагаем собственную продукцию, поэтому цены на нее – одни из самых низких в регионе. Весь товар сертифицирован в системе ГОСТ Р, что подтверждается сопроводительными документами.

Источник

Технология сварки углеродистых и низколегированных сталей

Температура плавления углеродистой стали составляет 1535°С. Наиболее часто аргонодуговой сваркой неплавящимся электродом сваривают стали, используемые в теплоэнергетике

Углеродистые и низколегированные стали

Марка стали

Свариваемость

Технологические особенности сварки

Сталь 10, Сталь 20, 15ГС

Присадок Св-08Г2С, Св-08ГС

Зачистка кромок до металлического блеска

Присадок Св-08НХ, Св-08ХМ

Присадок Св-08Г2С, Св-08ГС

12X1МФ, 15Х1М1Ф, 12Х2М1, 12Х2МФСР, 12Х2МФБ

Присадок Св-08ХМФА, Св-08ХГСМФА

ТРУДНОСТИ ПPИ СВАРКИ. Основная — трудно избежать образования пор из-за недостаточного раскисления основного металла. Средством борьбы с порообразованием служит снижение доли основного металла в наплавленном металле шва

Подготовка к сварке. Для разделки сталей, а также подготовки кромок используют газовую, плазменную или воздушно-дуговую резку. После нее участки нагрева металла зачищают резцовым или абразивным инструментом до удаления следов термообработки. Непосредственно перед сборкой стыка кромки зачищают на ширину 20 мм до металлического блеска и обезжиривают.

Зачистка абразивным инструментом

Стыки собирают в сборочных кондукторах либо с помощью прихваток, которые выполняют с полным проваром и их переплавкой при наложении основного шва. Прихватки с недопустимыми дефектами следует удалять механическим способом. На потолочные участки шва прихватки накладывать не рекомендуется, поскольку там они труднее поддаются переплавке при выполнении основного шва. На сталях 10 и 20 прихватки выполняют только с помощью присадочной проволоки. Ее поверхность должна быть чистой, без окалины, ржавчины и грязи. Очищать проволоку можно как механическим способом, гак и химическим травлением в 5%-ном растворе соляной кислоты.

Высота прихваток, мм

Толщина кромок свариваемых изделий, мм

Установка прихваток

1-5 — очередность установки прихваток А, Б — выводные планки для начала и окончания сварки

Выбор параметров режима. Сварку ведут на постоянном токе прямой полярности. Сварочный ток назначают: при однопроходной сварке — в зависимости от толщины конструкции, а при многопроходной — исходя из высоты шва. Высота шва (валика) при ручной аргонодуговой сварке должна составлять 2-2,5 мм. Ориентировочно сварочный ток выбирают из расчета 30-35 А на 1 мм диаметра вольфрамового электрода.

Напряжение на дуге должно быть минимально возможным, что соответствует сварке короткой дугой.

Скорость сварки выбирают с учетом гарантированного проплавления кромок и формирования требуемой выпуклости сварного шва.

Техника сварки. При выполнении первого (корневого) шва возможна сварка без присадочной проволоки, но при этом все прихватки должны быть проплавлены. Нельзя сваривать без присадочной проволоки конструкционные углеродистые стали марок 10 и 20, так как в металле шва могут появиться поры. Сварку ведут углом вперед. Присадочную проволоку подают навстречу движению горелки, причем угол между ними должен составлять 90°. Следует избегать резких движений проволокой — они приведут к разбрызгиванию присадочного металла или окислению конца проволоки.

Присадок должен всегда находиться в зоне защиты аргоном.

Корневой шов сваривают без поперечных колебаний. При наложении последующих слоев горелкой совершают колебательные движения, амплитуда которых зависит от формы разделки кромок.

Кратер шва при отсутствии системы плавного снижения сварочного тока заваривают путем введения в кратер капли присадочного металла, одновременно плавно увеличивая дугу до ее естественного обрыва. Газовую защиту убирают, отводя горелку через 10-15 с после обрыва дуги.

РЕЖИМЫ СВАРКИ НИЗКОУГЛЕРОДИСТЫХ И НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ

Подготовка кромок и вид сварного соединения (1-6 — очередность проходов)

Источник